JP2002131472A - Reprocessing method for spent nuclear fuel oxide - Google Patents
Reprocessing method for spent nuclear fuel oxideInfo
- Publication number
- JP2002131472A JP2002131472A JP2000323487A JP2000323487A JP2002131472A JP 2002131472 A JP2002131472 A JP 2002131472A JP 2000323487 A JP2000323487 A JP 2000323487A JP 2000323487 A JP2000323487 A JP 2000323487A JP 2002131472 A JP2002131472 A JP 2002131472A
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- molten salt
- inert gas
- plutonium
- uranium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、乾式法における使
用済核燃料酸化物の回収方法に関する。更に詳しくは、
使用済核燃料酸化物よりウラン、プルトニウム等の有用
金属を酸化物として回収する使用済核燃料酸化物の回収
方法に関するものである。The present invention relates to a method for recovering spent nuclear fuel oxide in a dry process. More specifically,
The present invention relates to a method for recovering spent nuclear fuel oxide, which recovers useful metals such as uranium and plutonium as oxides from spent nuclear fuel oxide.
【0002】[0002]
【従来の技術】原子力発電所から排出される使用済核燃
料の再処理では、未燃焼の核分裂性物質や新しく精製し
た核分裂性物質を分離回収するために、いわゆるピュー
レックス(Purex)法と呼ばれる湿式法が行われて
いる。この方法は溶媒抽出を利用して有機溶媒への溶解
度の違いによりウラン及びプルトニウムを分離回収して
いる。しかし、使用する有機溶媒が高価であり、また強
い放射線により変質するので使用済核燃料を長期間放置
してから処理しなければならず、工程数も多い等問題が
多い。2. Description of the Related Art In the reprocessing of spent nuclear fuel discharged from a nuclear power plant, in order to separate and recover unburned fissile material and newly purified fissile material, a wet process called the Purex method is used. The law is taking place. In this method, uranium and plutonium are separated and recovered by using solvent extraction due to differences in solubility in an organic solvent. However, since the organic solvent used is expensive and deteriorates due to strong radiation, the spent nuclear fuel must be treated after being left for a long period of time.
【0003】一方、近年においては電気分解の原理を利
用した乾式法と呼ばれる再処理技術がロシア原子炉科学
研究所(Research Institute of Atomic Reactors、以
下、RIARという。)や米国アルゴンヌ国立研究所
(Argonne National Laboratory、以下、ANLとい
う。)を中心にして開発されつつある。この乾式法では
使用済核燃料を塩化物に転換し、この塩化物を溶融した
溶融塩浴の中で電気化学的に精製している。この乾式法
による再処理は、従来の湿式法に比べると水を使用しな
いため設備をコンパクト化でき、廃液の発生もなくすこ
とができるため経済性の向上の観点から注目を浴びてい
る。このうち、RIARで行われている溶融塩電解法
(以下、RIAR法という。)の工程図を図2に示す。
RIAR法は先ず反応容器にパイログラファイト製るつ
ぼを用意し、このるつぼに溶融塩を貯留する。このるつ
ぼは後述するUO2電解回収工程において陽極も兼ね
る。貯留した溶融塩中に使用済核燃料酸化物を供給し、
続いて溶融塩中に塩素ガスを吹込むことにより核燃料酸
化物を塩素化して、ウランをオキシクロライド化合物と
して、プルトニウムを塩化物として溶融塩中に溶解させ
る(塩素化溶解工程)。次いで電気分解を行い、溶融塩
中のウランを電極上にウラン酸化物として析出させて回
収する(UO2電解回収工程)。次にウランを回収した
溶融塩に塩素及び酸素の混合ガスを吹込み、プルトニウ
ム酸化物を沈殿析出させて回収する(PuO2沈殿回収
工程)。この方法では使用済核燃料酸化物から直接精製
されたウラン及びプルトニウムの酸化物を得ることがで
きる。On the other hand, in recent years, a reprocessing technique called a dry method utilizing the principle of electrolysis has been used in the Research Institute of Atomic Reactors (hereinafter referred to as RIAR) and the Argonne National Laboratory (Argonne) in the United States. National Laboratory (hereinafter referred to as ANL). In this dry method, spent nuclear fuel is converted into chloride, and the chloride is electrochemically purified in a molten salt bath in which the chloride is melted. The reprocessing by the dry method has attracted attention from the viewpoint of economical efficiency because it does not use water as compared with the conventional wet method, so that the equipment can be made compact and no waste liquid is generated. FIG. 2 shows a process chart of the molten salt electrolysis method (hereinafter, referred to as RIAR method) performed by RIAR.
In the RIAR method, a pyrographite crucible is first prepared in a reaction vessel, and a molten salt is stored in the crucible. This crucible also functions as an anode in a UO 2 electrolytic recovery step described later. Supplying spent nuclear fuel oxide into the stored molten salt,
Subsequently, chlorine fuel is chlorinated by blowing chlorine gas into the molten salt to dissolve uranium as an oxychloride compound and plutonium as chloride in the molten salt (chlorination dissolution step). Next, electrolysis is performed to precipitate and recover uranium in the molten salt as uranium oxide on the electrode (UO 2 electrolytic recovery step). Next, a mixed gas of chlorine and oxygen is blown into the molten salt from which uranium has been recovered to precipitate and recover plutonium oxide (PuO 2 precipitation recovery step). In this method, uranium and plutonium oxides purified directly from spent nuclear fuel oxides can be obtained.
【0004】具体的には、パイログラファイト製のるつ
ぼに反応媒体である塩化物溶融塩を貯留し、この溶融塩
中に使用済核燃料酸化物を投入した後、塩素ガスを溶融
塩中に吹込みウラン酸化物をオキシクロライド化合物と
塩化物に、プルトニウム酸化物を塩化物にそれぞれ転換
することにより溶融塩中に溶解させている。主な反応式
を下記式(1)〜式(4)に示す。Specifically, a molten chloride salt as a reaction medium is stored in a crucible made of pyrographite, a spent nuclear fuel oxide is charged into the molten salt, and chlorine gas is blown into the molten salt. Uranium oxide is converted into an oxychloride compound and chloride, and plutonium oxide is converted into chloride, thereby dissolving it in a molten salt. The main reaction formulas are shown in the following formulas (1) to (4).
【0005】 UO2(s) + Cl2(g) → UO2Cl2(l) ……(1) UO2(s) + C(s) + 2Cl2(g) → UCl4(l) + CO2(g)↑ ……(2) PuO2(s) + 2Cl2(g) → PuCl4(l) + O2(g)↑ ……(3) PuO2(s) + C(s) + 2Cl2(g) → PuCl4(l) + CO2(g)↑ ……(4) ここで(s)は固体を、(l)は液体を、(g)は気体をそれぞ
れ示す。UO 2 (s) + Cl 2 (g) → UO 2 Cl 2 (l) (1) UO 2 (s) + C (s) + 2Cl 2 (g) → UCl 4 (l) + CO 2 (g) ↑ …… (2) PuO 2 (s) + 2Cl 2 (g) → PuCl 4 (l) + O 2 (g) ↑ …… (3) PuO 2 (s) + C (s) + 2Cl 2 (g) → PuCl 4 (l) + CO 2 (g) ↑ (4) where (s) indicates a solid, (l) indicates a liquid, and (g) indicates a gas.
【0006】しかしながら、上記式(3)の反応は熱力
学的に反応が進行するのが困難であるため、核燃料酸化
物中のウラン及びプルトニウムが溶融塩中に溶解するた
めには、上記式(4)による反応、C即ち炭素源が必要
となる。RIAR法の場合、上記式(4)の反応を進行
させるために必要な炭素がるつぼ材質の腐食により進ん
でいる。また、上記式(2)の反応により、回収におい
て好ましくないUCl 4の生成とるつぼの腐食も進行す
る。従って、核燃料酸化物の溶解反応によりパイログラ
ファイト製のるつぼが腐食されるため、装置の寿命が制
限される。この上記式(2)及び式(4)の反応は、る
つぼ表面より溶出した炭素、或いはるつぼ表面の炭素と
固体のUO2或いはPuO2が塩素ガスCl2の存在下で
接触して初めて反応が生じる固体−固体−気体反応であ
るため、反応速度は非常に遅い。また、プルトニウムを
沈殿法で回収するには、核燃料酸化物に含まれるウラ
ン、プルトニウム以外の核分裂生成物(Fission Produc
ts、以下、FPsという。)の酸化物も全量塩化物に転
換する必要があるため、上記式(2)及び式(4)に示
す反応と同様に、るつぼからの炭素源が必要となる。そ
のため、るつぼの寿命は更に短縮される。また、後続す
るウラン回収のためにはウランの形態はUO2Cl2の形
態にすることが好ましいが、上記式(1)〜式(4)の
反応ではUO2Cl2の形態を塩中に保持することは極め
て難しい。従って、この形態の制御がうまくできない
と、後続するUO2の電解回収工程とPuO2の沈殿回収
工程が良好に行うことができない問題もあった。更に、
上記式(2)及び式(4)の反応によって消耗されたる
つぼは、最終的に炭素系廃棄物として発生するため、そ
の廃棄物処理、処分の方策の検討が必要であった。[0006] However, the reaction of the above formula (3) is thermal
Reaction is difficult to proceed
Of uranium and plutonium in wastes
In order to achieve this, a reaction according to the above formula (4), ie, a carbon source is required
Becomes In the case of the RIAR method, the reaction of the above formula (4) proceeds
Carbon required to cause the corrosion of the crucible material
In. Also, by the reaction of the above formula (2), the recovery odor
Unpleasant UCl FourFormation and crucible corrosion progress
You. Therefore, pyrolysis is caused by the dissolution reaction of nuclear fuel oxide.
Corrosion of the fight crucible limits the life of the equipment.
Limited. The reaction of the above formulas (2) and (4)
With carbon eluted from the crucible surface or carbon on the crucible surface
Solid UOTwoOr PuOTwoIs chlorine gas ClTwoIn the presence of
A solid-solid-gas reaction in which a reaction occurs only upon contact
Therefore, the reaction rate is very slow. Also plutonium
In order to recover by the precipitation method, the back
Fission products other than plutonium
ts, hereinafter referred to as FPs. ) Also converts all oxides to chloride
Since it is necessary to change the equation, the equations (2) and (4)
Like the reaction, a carbon source from the crucible is required. So
Therefore, the life of the crucible is further reduced. Also follow
Uranium forms UO for recovery of uraniumTwoClTwoForm of
It is preferable to use the above-mentioned formulas (1) to (4).
UO in reactionTwoClTwoIt is extremely important to keep the form in salt
Difficult. Therefore, this form of control cannot be performed well.
And the following UOTwoElectrolytic recovery process and PuOTwoPrecipitation collection
There was also a problem that the process could not be performed well. Furthermore,
It is consumed by the reaction of the above formulas (2) and (4)
Pots are ultimately generated as carbon-based waste,
It was necessary to examine waste treatment and disposal measures.
【0007】一方、国内では塩素ガスを用いずに、溶解
とウランの電解回収を同時に行う方法が提案されている
(特開平6−324189号)。この方法では、溶融塩
相を電気絶縁性の環状隔壁で同心円的に区画するととも
に溶融金属相中の金属燃料成分濃度と溶融塩相中の金属
燃料成分濃度を所定濃度にコントロールするとともに、
使用済金属燃料の陽極溶解及び固体陰極面に電解析出を
1つの電圧印加手段によって同時に行っている。On the other hand, in Japan, a method of simultaneously performing dissolution and electrolytic recovery of uranium without using chlorine gas has been proposed (JP-A-6-324189). In this method, the molten salt phase is concentrically partitioned by an electrically insulating annular partition wall and the metal fuel component concentration in the molten metal phase and the metal fuel component concentration in the molten salt phase are controlled to predetermined concentrations,
The anode dissolution of the spent metal fuel and the electrolytic deposition on the solid cathode surface are simultaneously performed by one voltage applying means.
【0008】[0008]
【発明が解決しようとする課題】しかし、特開平6−3
24189号に示された方法では、塩素ガスの供給を行
わないため使用済核燃料酸化物は塩素化されず、沈殿と
して存在することが予想される。そのため、ウラン回収
は可能であっても後続するプルトニウムには、未溶解の
酸化物が沈殿に同伴することが予想され、極めて純度の
低いプルトニウムしか回収できない。また、上記RIA
R法と同様に反応容器にパイログラファイト製のるつぼ
を使用するため、るつぼが核燃料酸化物の溶解反応によ
り腐食し、装置の寿命が制限される問題もあった。However, Japanese Patent Laid-Open No. 6-3 / 1994
In the method disclosed in Japanese Patent No. 24189, the spent nuclear fuel oxide is not chlorinated because chlorine gas is not supplied, and is expected to exist as a precipitate. For this reason, although uranium can be recovered, undissolved oxides are expected to accompany precipitation in the subsequent plutonium, and only extremely low-purity plutonium can be recovered. In addition, the above RIA
Since a crucible made of pyrographite is used for the reaction vessel as in the case of the R method, there is also a problem that the crucible is corroded by the dissolution reaction of the nuclear fuel oxide, and the life of the apparatus is limited.
【0009】本発明の目的は、装置寿命の長時間化を図
るとともに、ウラン及びプルトニウムを効率的に回収す
る使用済核燃料酸化物の再処理方法を提供することにあ
る。本発明の別の目的は、発生したるつぼ廃棄物も放射
性廃棄物処分材料としてリサイクルし得る使用済核燃料
酸化物の再処理方法を提供することにある。It is an object of the present invention to provide a method for reprocessing spent nuclear fuel oxide, which prolongs the life of the apparatus and efficiently recovers uranium and plutonium. Another object of the present invention is to provide a method for reprocessing spent nuclear fuel oxide, which can recycle generated crucible waste as radioactive waste disposal material.
【0010】[0010]
【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、石英るつぼに貯留された反応媒体で
ある塩化物溶融塩中にウラン及びプルトニウムを含む使
用済核燃料酸化物を供給し、かつ溶融塩中に塩素、一酸
化炭素及び不活性ガスからなる第1混合ガスを吹込んで
ウラン及びプルトニウムの全量を溶解させる塩素化溶解
工程11と、溶融塩中に酸素、塩素及び不活性ガスから
なる第2混合ガスを吹込んで溶融塩に溶解したプルトニ
ウムをプルトニウム酸化物として析出させるPuO2沈
殿回収工程12と、溶融塩中に酸素、塩素及び不活性ガ
スからなる第3混合ガスを吹込むとともに溶融塩内に設
置した陰極と陽極の間に電流を流して陰極に溶融塩に溶
解したウランをウラン酸化物として析出させるUO2電
解回収工程13とを含む使用済核燃料酸化物の再処理方
法である。請求項1に係る発明では、塩素化溶解工程1
1において第1混合ガスは塩素とともに一酸化炭素を使
用するため、るつぼに炭素源となる材料を用いる必要が
ない。このため塩素に耐食性のある珪素系の材料を用い
ることができ、装置の腐食を回避できる。また、この塩
素化溶解工程における反応は固気反応により溶解が進む
ため、RIAR法の固固気反応に比べて反応は非常にス
ムーズに起きる。白金類元素等の不溶解残渣が多く発生
する場合には、塩素化溶解工程の後に、この不溶解残渣
沈殿の回収を行う。PuO2沈殿回収工程12におい
て、酸素分圧を高く調整した第2混合ガスを吹込みプル
トニウムをPuO2として沈殿させ回収する。UO2電解
回収工程13において、酸素に富んだ塩素との第3混合
ガスを吹込み、選択的にウランのオキシクロライド化合
物UO2Cl2を生成させ、電解によりUO2に還元す
る。The invention according to claim 1 is
As shown in FIG. 1, a spent nuclear fuel oxide containing uranium and plutonium is supplied to a chloride molten salt, which is a reaction medium stored in a quartz crucible, and chlorine, carbon monoxide and inert gas are contained in the molten salt. A chlorination dissolution step 11 in which a first mixed gas composed of gas is blown to dissolve the entire amount of uranium and plutonium, and a second mixed gas composed of oxygen, chlorine and an inert gas is blown into the molten salt to be dissolved in the molten salt. PuO 2 precipitation / recovery step 12 for depositing plutonium as plutonium oxide; blowing a third mixed gas comprising oxygen, chlorine and an inert gas into the molten salt and applying a current between the cathode and the anode installed in the molten salt And a UO 2 electrolytic recovery step 13 in which uranium dissolved in the molten salt is deposited on the cathode as uranium oxide. In the invention according to claim 1, the chlorination dissolution step 1
In 1, since the first mixed gas uses carbon monoxide together with chlorine, it is not necessary to use a material serving as a carbon source for the crucible. Therefore, a silicon-based material having corrosion resistance to chlorine can be used, and corrosion of the device can be avoided. In addition, the reaction in the chlorination dissolution step proceeds by solid-gas reaction, so that the reaction occurs much more smoothly than the solid-gas reaction of the RIAR method. When a large amount of insoluble residue such as a platinum group element is generated, the insoluble residue precipitate is collected after the chlorination dissolution step. In the PuO 2 precipitation / recovery step 12, a second mixed gas whose oxygen partial pressure has been adjusted to a high level is blown, and plutonium is precipitated and recovered as PuO 2 . In the UO 2 electrolytic recovery step 13, a third mixed gas with oxygen-rich chlorine is blown in to selectively generate uranium oxychloride compound UO 2 Cl 2 and reduce it to UO 2 by electrolysis.
【0011】請求項2に係る発明は、請求項1に係る発
明であって、図1に示すように、UO2電解回収工程1
3に続いて、更に溶融塩中にリン酸ナトリウムを添加し
て溶融塩に含まれる不純物をリン酸塩として沈殿させる
リン酸塩沈殿回収工程14を含む再処理方法である。請
求項2に係る発明では、リン酸塩沈殿回収工程におい
て、溶融塩中にリン酸を添加して溶融塩中に含まれる不
純物をリン酸塩の形態にして沈殿させる。[0011] The invention according to claim 2, an invention according to claim 1, as shown in FIG. 1, UO 2 electrolytic recovery step 1
Subsequent to 3, the reprocessing method includes a phosphate precipitation recovery step 14 in which sodium phosphate is further added to the molten salt to precipitate impurities contained in the molten salt as phosphate. In the invention according to claim 2, in the phosphate precipitation recovery step, phosphoric acid is added to the molten salt to precipitate impurities contained in the molten salt in the form of phosphate.
【0012】[0012]
【発明の実施の形態】次に本発明の実施の形態を図1に
基づいて説明する。 使用済核燃料酸化物の溶解(塩素化溶解工程11)
先ず、反応容器として石英るつぼを用意し、この石英る
つぼに溶融塩、例えばNaCl−KClの共晶塩を貯留
する。次いで、この溶融塩中に使用済核燃料酸化物を供
給し、続いて溶融塩中に塩素、一酸化炭素及び不活性ガ
スからなる第1混合ガスを吹込むことにより、核燃料酸
化物に含まれるウラン及びプルトニウムを溶解させる
(上記式(1)及び下記式(5)〜式(9))。Next, an embodiment of the present invention will be described with reference to FIG. Dissolution of spent nuclear fuel oxide (chlorination dissolution process 11)
First, a quartz crucible is prepared as a reaction vessel, and a molten salt, for example, a eutectic salt of NaCl-KCl is stored in the quartz crucible. Next, the spent nuclear fuel oxide is supplied into the molten salt, and then the first mixed gas composed of chlorine, carbon monoxide and an inert gas is blown into the molten salt, whereby uranium contained in the nuclear fuel oxide is discharged. And plutonium (formula (1) above and formulas (5) to (9) below).
【0013】 UO2(s) + 2CO(g) + 2Cl2(g) → UCl4(l) + 2CO2(g)↑ ……(5) PuO2(s) + 2CO(g) + 2Cl2(g) → PuCl4(l) + 2CO2(g)↑ ……(6) PuO2(s) + 2CO(g) + 3/2Cl2(g) → PuCl3(l) + 2CO2(g)↑ ……(7) PuO2(s) + UCl4(l) + Cl2(g) → PuCl4(l) + UO2Cl2(l) ……(8) PuO2(s) + UCl4(l) + 1/2Cl2(g) → PuCl3(l) + UO2Cl2(l) ……(9) ここで第1混合ガスは、一酸化炭素1モル当り塩素0.
5〜1.5モルの割合で塩素及び一酸化炭素とを混合
し、この混合ガスを更に不活性ガス100容積%当り5
〜90容積%の割合で不活性ガスに混合して調製された
ガスである。不活性ガスの割合を変化させることにより
反応速度を制御することができる。不活性ガスにはA
r、N2等が挙げられる。UO 2 (s) + 2CO (g) + 2Cl 2 (g) → UCl 4 (l) + 2CO 2 (g) ↑ (5) PuO 2 (s) + 2CO (g) + 2Cl 2 (g) → PuCl 4 (l) + 2CO 2 (g) ↑ …… (6) PuO 2 (s) + 2CO (g) + 3 / 2Cl 2 (g) → PuCl 3 (l) + 2CO 2 (g ) ↑ …… (7) PuO 2 (s) + UCl 4 (l) + Cl 2 (g) → PuCl 4 (l) + UO 2 Cl 2 (l) …… (8) PuO 2 (s) + UCl 4 (l) + 1 / 2Cl 2 (g) → PuCl 3 (l) + UO 2 Cl 2 (l) (9) Here, the first mixed gas contains 0.1 mol of chlorine per mole of carbon monoxide.
Chlorine and carbon monoxide are mixed at a ratio of 5 to 1.5 moles, and the mixed gas is further mixed with 5% per 100% by volume of the inert gas.
It is a gas prepared by mixing with an inert gas at a ratio of about 90% by volume. The reaction rate can be controlled by changing the ratio of the inert gas. A for inert gas
r, N 2 and the like.
【0014】この工程では400〜800℃に加熱して
反応を行う。好ましくは600〜700℃である。40
0℃未満では融点の低い塩の選定が難しく、また反応が
遅くなる等の不具合を生じる。800℃を越えると溶融
塩が蒸発してしまう。反応温度は溶解速度に、第1混合
ガスの組成比は使用済核燃料酸化物の脱被覆処理時の熱
処理による酸化次数の変化によってそれぞれ調整する。
また、この溶解反応は発熱反応であるため、不活性ガス
による希釈割合を大きくすることにより発熱を制御しゆ
っくり反応させることができる。従って、使用済核燃料
酸化物の発熱性の変化に応じて希釈割合を変化させるこ
とも可能である。上記式(5)〜式(7)で発生した二
酸化炭素は系外へ排出する。この塩素化溶解工程におけ
る反応は塩素及び一酸化炭素(気体)と使用済核燃料酸
化物(固体)との固気反応であるため、従来より行われ
ていた使用済核燃料酸化物(固体)、るつぼの炭素源
(固体)、塩素ガス(気体)の固固気反応に比べると反
応速度は速い。In this step, the reaction is carried out by heating to 400 to 800 ° C. Preferably it is 600-700 degreeC. 40
If the temperature is lower than 0 ° C., it is difficult to select a salt having a low melting point, and disadvantages such as a slow reaction are caused. When the temperature exceeds 800 ° C., the molten salt evaporates. The reaction temperature is adjusted to the dissolution rate, and the composition ratio of the first mixed gas is adjusted by the change in the oxidation order due to the heat treatment during the decoating treatment of the spent nuclear fuel oxide.
In addition, since this dissolution reaction is an exothermic reaction, by increasing the dilution ratio with an inert gas, it is possible to control the exotherm and cause a slow reaction. Therefore, it is also possible to change the dilution ratio according to the change in the exothermicity of the spent nuclear fuel oxide. The carbon dioxide generated by the above equations (5) to (7) is discharged out of the system. Since the reaction in the chlorination dissolution step is a solid-gas reaction between chlorine and carbon monoxide (gas) and spent nuclear fuel oxide (solid), the conventionally used spent nuclear fuel oxide (solid) and crucible The reaction rate is faster than the solid-gas reaction of carbon source (solid) and chlorine gas (gas).
【0015】 PuO2の沈殿回収(PuO2沈殿回収
工程12) 溶融塩中に酸素、塩素及び不活性ガスからなる第2混合
ガスを吹込んで溶融塩に溶解したプルトニウムをプルト
ニウム酸化物として析出させる。PuO 2 Precipitation Recovery (PuO 2 Precipitation Recovery Step 12) A second mixed gas consisting of oxygen, chlorine and an inert gas is blown into the molten salt to precipitate plutonium dissolved in the molten salt as plutonium oxide.
【0016】 PuCl4(l) + O2(g) → PuO2(s) + 2Cl2(g)↑ ……(10) ここで第2混合ガスは、塩素1モル当り酸素0〜5モル
の割合で酸素と塩素とを混合し、この混合ガスを更に不
活性ガス100容積%当り5〜90容積%の割合で不活
性ガスに混合して調製されたガスである。この第2混合
ガスは後述する第3混合ガスに比べて酸素分圧が高く設
定されている。酸素分圧を高めることで、上記式(1
0)の反応を進行させる。この工程では400〜700
℃に加熱して反応を行う。好ましくは500〜700℃
である。400℃未満では融点の低い塩の選定が難し
い、析出速度の遅い等の不具合を生じる。700℃を越
えると塩や溶解塩素化物が蒸発してしまう。なお、プル
トニウム酸化物の沈殿は、高い反応温度でかつ不活性ガ
スによる希釈割合を大きくすることにより沈殿の結晶径
を大きくでき、低い温度でかつ希釈割合を小さくするこ
とにより粒径を小さくできる。PuCl 4 (l) + O 2 (g) → PuO 2 (s) + 2Cl 2 (g) ↑ (10) Here, the second mixed gas contains 0 to 5 moles of oxygen per mole of chlorine. It is a gas prepared by mixing oxygen and chlorine at a ratio and further mixing this mixed gas with an inert gas at a ratio of 5 to 90% by volume per 100% by volume of the inert gas. This second mixed gas is set to have a higher oxygen partial pressure than a third mixed gas described later. By increasing the oxygen partial pressure, the above equation (1)
The reaction of 0) is allowed to proceed. In this step, 400 to 700
The reaction is carried out by heating to ° C. Preferably 500-700 ° C
It is. If the temperature is lower than 400 ° C., problems such as difficulty in selecting a salt having a low melting point and a low deposition rate occur. When the temperature exceeds 700 ° C., salts and dissolved chlorinated substances evaporate. In addition, the precipitation of plutonium oxide can increase the crystal diameter of the precipitate by increasing the dilution ratio with an inert gas at a high reaction temperature, and can reduce the particle size by decreasing the dilution ratio with a low temperature.
【0017】 UO2の電解回収(UO2電解回収工程
13) 溶融塩中に酸素、塩素及び不活性ガスからなる第3混合
ガスを吹込むことにより、ウランのオキシクロライド化
合物を形成するとともに溶融塩内に設置した陰極と陽極
の間に電流を流して陰極に溶融塩に溶解したウランをウ
ラン酸化物として析出させる。The electrolytic recovery of UO 2 (UO 2 electrolytic recovery step 13) oxygen into the molten salt by blowing a third gas mixture consisting of chlorine and inert gas, molten salt to form the oxychloride compounds of uranium Uranium dissolved in a molten salt is precipitated on the cathode as uranium oxide by flowing an electric current between the cathode and the anode provided therein.
【0018】 UCl4(l) + O2(g) → UO2Cl2(l) + Cl2(g)↑ ……(11) 先ず、溶融塩中に第3混合ガスを吹込んで上記式(1
1)に示すように、ウランのオキシクロライド化合物で
あるUO2Cl2を生成させる。ここで第3混合ガスは、
塩素1モル当り酸素0.1〜2モルの割合で酸素と塩素
とを混合し、この混合ガスを更に不活性ガス100容積
%当り5〜90容積%の割合で不活性ガスに混合して調
製されたガスである。不活性ガスにはAr、N2等が挙
げられる。酸素と塩素との混合割合は電解電流との兼ね
合い、残留不純物の濃度によって変化させる。また、前
述した塩素化溶解工程における第1混合ガスと同様に、
不活性ガスの割合を変化させることにより上記式(1
1)に示す反応の速度を制御することができる。この工
程では400〜700℃に加熱して反応を行う。好まし
くは500〜700℃である。400℃未満では融点の
低い塩の選定が難しい。700℃を越えると塩や溶解塩
素化物が蒸発してしまう。UCl 4 (l) + O 2 (g) → UO 2 Cl 2 (l) + Cl 2 (g) ↑ (11) First, a third mixed gas is blown into the molten salt to obtain the above formula ( 1
As shown in 1), UO 2 Cl 2 which is a uranium oxychloride compound is generated. Here, the third mixed gas is
Oxygen and chlorine are mixed at a rate of 0.1 to 2 moles of oxygen per mole of chlorine, and the mixed gas is further mixed with an inert gas at a rate of 5 to 90% by volume per 100% by volume of the inert gas. Gas. Examples of the inert gas include Ar and N 2 . The mixing ratio of oxygen and chlorine is changed depending on the concentration of the residual impurities in consideration of the electrolytic current. Further, similarly to the first mixed gas in the chlorination dissolution step described above,
By changing the ratio of the inert gas, the above equation (1)
The rate of the reaction shown in 1) can be controlled. In this step, the reaction is performed by heating to 400 to 700 ° C. Preferably it is 500-700 degreeC. If the temperature is lower than 400 ° C., it is difficult to select a salt having a low melting point. When the temperature exceeds 700 ° C., salts and dissolved chlorinated substances evaporate.
【0019】次いで、溶融塩内に陰極と陽極を設置して
電流を流すことにより、下記式(13)〜式(15)に
示す電解反応を起こす。陽極には高密度黒鉛、陰極には
高密度黒鉛或いはパイログラファイトを用いる。電流を
流す前のUO2Cl2は溶融塩内で下記式(12)に示す
ように電離している。下記式(13)は陰極における反
応、下記式(14)は陽極における反応を示し、下記式
(15)は式(12)〜式(14)を合わせた電解反応
式である。Next, an electrolytic reaction represented by the following formulas (13) to (15) is caused by placing a cathode and an anode in the molten salt and flowing an electric current. High-density graphite is used for the anode, and high-density graphite or pyrographite is used for the cathode. UO 2 Cl 2 before current is applied is ionized in the molten salt as shown in the following formula (12). The following formula (13) shows the reaction at the cathode, the following formula (14) shows the reaction at the anode, and the following formula (15) is an electrolytic reaction formula combining formulas (12) to (14).
【0020】 UO2Cl2 → UO2 2+ + 2Cl- ……(12) UO2 2+ + 2e- → UO2(s) ……(13) 2Cl- → Cl2(g)↑ + 2e- ……(14) UO2Cl2(l) → UO2(s) + Cl2(g)↑ ……(15) 上記式(15)で発生した塩素は系外へ排出する。この
ようにウランをオキシクロライド化合物に転換し、この
ウランのオキシクロライド化合物を電気分解することに
より溶融塩に溶解したウランをウラン酸化物として陰極
上に析出させる。析出させたウラン酸化物UO2は電極
とともに除去し回収する。なお、PuO2沈殿回収工程
及びこのUO2電解回収工程では、先ず予備電解を行
い、Nb、Zr、Rh、Pd、Rn等の貴金属系のFP
sをUO2中に濃縮させ、次いでそれぞれの工程を行う
こともできる。この方法によって、純度の高いプルトニ
ウム、ウランを回収することができる。UO 2 Cl 2 → UO 2 2 ++ 2Cl − … (12) UO 2 2 ++ 2e − → UO 2 (s)… (13) 2Cl − → Cl 2 (g) g + 2e − (14) UO 2 Cl 2 (l) → UO 2 (s) + Cl 2 (g) ↑ (15) The chlorine generated by the above formula (15) is discharged out of the system. As described above, uranium is converted into an oxychloride compound, and uranium dissolved in the molten salt is precipitated on the cathode as uranium oxide by electrolyzing the uranium oxychloride compound. The precipitated uranium oxide UO 2 is removed and collected together with the electrode. In the PuO 2 precipitation recovery step and the UO 2 electrolysis recovery step, first, preliminary electrolysis is performed, and a noble metal FP such as Nb, Zr, Rh, Pd, or Rn is used.
It is also possible to concentrate s in UO 2 and then carry out each step. By this method, highly pure plutonium and uranium can be recovered.
【0021】 リン酸塩沈殿回収工程14 上記溶融塩中にリン酸ナトリウムを添加し、不純物をリ
ン酸塩の形態で沈殿させる。この不純物のリン酸塩は溶
融塩にも、水溶液にも溶解しない。この工程では400
〜800℃に加熱して反応を行う。好ましくは600〜
700℃である。Phosphate Precipitation Recovery Step 14 Sodium phosphate is added to the molten salt to precipitate impurities in the form of phosphate. This impurity phosphate is neither soluble in the molten salt nor in the aqueous solution. 400 in this step
The reaction is carried out by heating to 800800 ° C. Preferably 600-
700 ° C.
【0022】 廃るつぼの処理 本発明の再処理方法では、るつぼの材質に塩素に耐食性
のある石英を用いているため、殆ど腐食されない。石英
製のるつぼが寿命となった場合には粉砕し、ガラス添加
剤を加えることで高レベルガラス固化体のガラスフリッ
ト原料とすることができるため、廃棄物のリサイクルも
できる。Processing of Waste Crucible In the reprocessing method of the present invention, since the material of the crucible is quartz having corrosion resistance to chlorine, it is hardly corroded. When the crucible made of quartz reaches the end of its life, it can be ground as a glass frit raw material of a high-level vitrified substance by adding a glass additive, so that waste can be recycled.
【0023】[0023]
【発明の効果】以上述べたように、本発明によれば、塩
素化溶解工程で石英るつぼに貯留された反応媒体である
塩化物溶融塩中にウラン及びプルトニウムを含む使用済
核燃料酸化物を供給し、かつ溶融塩中に塩素、一酸化炭
素及び不活性ガスからなる第1混合ガスを吹込んでウラ
ン及びプルトニウムの全量を溶解させ、PuO2沈殿回
収工程で溶融塩中に酸素、塩素及び不活性ガスからなる
第2混合ガスを吹込んで溶融塩に溶解したプルトニウム
をプルトニウム酸化物として析出させ、UO2電解回収
工程で溶融塩中に酸素、塩素及び不活性ガスからなる第
3混合ガスを吹込むとともに溶融塩内に設置した陰極と
陽極の間に電流を流して陰極に溶融塩に溶解したウラン
をウラン酸化物として析出させるため、装置寿命の長時
間化を図り、ウラン及びプルトニウムを効率的に回収す
ることができ、反応容器に石英るつぼを用いているた
め、発生したるつぼ廃棄物も放射性廃棄物処分材料とし
てリサイクルすることができる。As described above, according to the present invention, a spent nuclear fuel oxide containing uranium and plutonium is supplied to a molten chloride salt as a reaction medium stored in a quartz crucible in a chlorination melting step. Then, a first mixed gas comprising chlorine, carbon monoxide and an inert gas is blown into the molten salt to dissolve the entire amount of uranium and plutonium, and oxygen, chlorine and inert gas are dissolved in the molten salt in the PuO 2 precipitation recovery step. Plutonium dissolved in the molten salt is precipitated as plutonium oxide by blowing a second mixed gas of gas, and a third mixed gas of oxygen, chlorine and an inert gas is blown into the molten salt in the UO 2 electrolytic recovery step. At the same time, an electric current is passed between the cathode and the anode installed in the molten salt to precipitate uranium dissolved in the molten salt as uranium oxide on the cathode, thus prolonging the life of the device, And the plutonium can be efficiently recovered, and since the quartz crucible is used for the reaction vessel, the generated crucible waste can be recycled as a radioactive waste disposal material.
【図1】本発明の使用済核燃料酸化物の再処理方法の工
程順を示す図。FIG. 1 is a diagram showing a process order of a method for reprocessing spent nuclear fuel oxide according to the present invention.
【図2】従来の使用済核燃料酸化物の再処理方法の工程
順を示す図。FIG. 2 is a diagram showing a process sequence of a conventional method for reprocessing spent nuclear fuel oxide.
11 塩素化溶解工程 12 PuO2沈殿回収工程 13 UO2電解回収工程 14 リン酸塩沈殿回収工程11 chlorination dissolution process 12 PuO 2 precipitation recovery process 13 UO 2 electrolysis recovery process 14 phosphate precipitation recovery process
Claims (6)
塩化物溶融塩中にウラン及びプルトニウムを含む使用済
核燃料酸化物を供給し、かつ前記溶融塩中に塩素、一酸
化炭素及び不活性ガスからなる第1混合ガスを吹込んで
前記ウラン及びプルトニウムの全量を溶解させる塩素化
溶解工程(11)と、 前記溶融塩中に酸素、塩素及び不活性ガスからなる第2
混合ガスを吹込んで前記溶融塩に溶解したプルトニウム
をプルトニウム酸化物として析出させるPuO 2沈殿回
収工程(12)と、 前記溶融塩中に酸素、塩素及び不活性ガスからなる第3
混合ガスを吹込むとともに前記溶融塩内に設置した陰極
と陽極の間に電流を流して前記陰極に前記溶融塩に溶解
したウランをウラン酸化物として析出させるUO2電解
回収工程(13)とを含む使用済核燃料酸化物の再処理方
法。1. A reaction medium stored in a quartz crucible.
Spent containing uranium and plutonium in chloride molten salt
Supplying a nuclear fuel oxide and chlorine, monoacid in the molten salt;
The first gas mixture consisting of activated carbon and inert gas
Chlorination to dissolve all of the uranium and plutonium
A dissolving step (11), a second step comprising oxygen, chlorine and an inert gas in the molten salt;
Plutonium dissolved in the molten salt by blowing a mixed gas
That precipitates as plutonium oxide TwoSettling times
Collecting step (12), a third step comprising oxygen, chlorine and an inert gas in the molten salt.
A cathode installed in the molten salt while blowing the mixed gas
A current is passed between the anode and the anode to dissolve the molten salt in the cathode.
UO that precipitates uranium as uranium oxideTwoelectrolytic
Reprocessing method of spent nuclear fuel oxide including recovery step (13)
Law.
溶融塩中にリン酸ナトリウムを添加して前記溶融塩に含
まれる不純物をリン酸塩として沈殿させるリン酸塩沈殿
回収工程(14)を含む請求項1記載の再処理方法。2. A phosphate precipitation-recovering step (13) in which sodium phosphate is further added to the molten salt to precipitate impurities contained in the molten salt as phosphate, following the UO 2 electrolytic recovery step (13). The reprocessing method according to claim 1, wherein the method further comprises (14).
塩素0.5〜1.5モルの割合で塩素及び一酸化炭素と
を混合し、この混合ガスを更に不活性ガス100容積%
当り5〜90容積%の割合で不活性ガスに混合して調製
される請求項1記載の再処理方法。3. The first mixed gas is obtained by mixing chlorine and carbon monoxide at a ratio of 0.5 to 1.5 moles of chlorine per mole of carbon monoxide, and further mixing the mixed gas with 100% by volume of an inert gas.
The reprocessing method according to claim 1, wherein the reprocessing method is prepared by mixing the inert gas with an inert gas at a ratio of 5 to 90% by volume.
〜5モルの割合で酸素と塩素とを混合し、この混合ガス
を更に不活性ガス100容積%当り5〜90容積%の割
合で不活性ガスに混合して調製される請求項1記載の再
処理方法。4. The method according to claim 1, wherein the second mixed gas contains no oxygen per mole of chlorine.
2. The method according to claim 1, wherein oxygen and chlorine are mixed at a ratio of about 5 to 5 mol, and the mixed gas is further mixed with an inert gas at a rate of 5 to 90% by volume per 100% by volume of the inert gas. Processing method.
0.1〜2モルの割合で酸素と塩素とを混合し、この混
合ガスを更に不活性ガス100容積%当り5〜90容積
%の割合で不活性ガスに混合して調製される請求項1記
載の再処理方法。5. The third mixed gas is obtained by mixing oxygen and chlorine at a ratio of 0.1 to 2 moles of oxygen per mole of chlorine, and further mixing the mixed gas with 5 to 90% by volume of inert gas 100% by volume. The reprocessing method according to claim 1, wherein the reprocessing method is prepared by mixing with an inert gas at a ratio of:
uO2沈殿回収工程が400〜700℃、UO2電解回収
工程が400〜700℃の温度範囲でそれぞれ行われる
請求項1記載の再処理方法。6. The chlorination and dissolution step is performed at 400 to 800 ° C.
uO 2 precipitate recovery step 400 to 700 ° C., re-processing method according to claim 1, wherein the UO 2 electrolytic recovery step is performed respectively in the temperature range of 400 to 700 ° C..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000323487A JP2002131472A (en) | 2000-10-24 | 2000-10-24 | Reprocessing method for spent nuclear fuel oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000323487A JP2002131472A (en) | 2000-10-24 | 2000-10-24 | Reprocessing method for spent nuclear fuel oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002131472A true JP2002131472A (en) | 2002-05-09 |
Family
ID=18801145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000323487A Withdrawn JP2002131472A (en) | 2000-10-24 | 2000-10-24 | Reprocessing method for spent nuclear fuel oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002131472A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018525624A (en) * | 2015-07-24 | 2018-09-06 | 中国原子能科学研究院China Institute Of Atomic Energy | Method for dry reprocessing of spent nuclear fuel to obtain zirconium alloy fuel directly |
CN113684504A (en) * | 2021-07-27 | 2021-11-23 | 西安交通大学 | Electrolytic refining waste molten salt treatment method for spent fuel dry-process post-treatment |
-
2000
- 2000-10-24 JP JP2000323487A patent/JP2002131472A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018525624A (en) * | 2015-07-24 | 2018-09-06 | 中国原子能科学研究院China Institute Of Atomic Energy | Method for dry reprocessing of spent nuclear fuel to obtain zirconium alloy fuel directly |
CN113684504A (en) * | 2021-07-27 | 2021-11-23 | 西安交通大学 | Electrolytic refining waste molten salt treatment method for spent fuel dry-process post-treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2403634C1 (en) | Method of spent fuel regeneration | |
JP2641533B2 (en) | Method for purifying spent nuclear fuel containing uranium and plutonium | |
RU2603844C1 (en) | Method of nitride spent nuclear fuel recycling in salt melts | |
JP2005519192A (en) | Electrochemical cells for metal production | |
JPH03123896A (en) | Recovery of actinides | |
JP2000284090A (en) | Method for reprocessing spent nuclear fuel | |
EP1240647B1 (en) | Actinide production | |
JP3342968B2 (en) | Reprocessing of spent fuel | |
US20040244533A1 (en) | Actinide production | |
JP2941741B2 (en) | Dry reprocessing method and spent reprocessing device for spent nuclear fuel | |
JP2000056075A (en) | Recycling method for spent oxide fuel | |
JP2002131472A (en) | Reprocessing method for spent nuclear fuel oxide | |
JP5017069B2 (en) | Reprocessing of spent fuel | |
JPH10111388A (en) | Reprocessing method for spent fuel | |
JP4025125B2 (en) | How to reprocess spent fuel | |
RU2079909C1 (en) | Method of nuclear fuel pyrochemical regeneration | |
JP2005315790A (en) | Reprocessing method for spent oxide fuel | |
JPWO2004036595A1 (en) | Light water reactor spent fuel reprocessing method and apparatus | |
JP3143854B2 (en) | Nuclear fuel material recovery method and apparatus | |
JP2003521583A (en) | Americium electrolytic refining | |
JPH05188186A (en) | Separation and recovery of depleted uranium from spent nuclear fuel | |
JPH11223698A (en) | Regenerating method of polluted metal and device therefor | |
JP2941742B2 (en) | Dry reprocessing of spent nuclear fuel | |
JP3910605B2 (en) | Method for electrolytic reprocessing of spent salt from spent fuel | |
JPH07209483A (en) | Chemical reprocessing method of spent fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080108 |