JPH0755285B2 - Method for removing nitrogen oxides from waste smoke - Google Patents

Method for removing nitrogen oxides from waste smoke

Info

Publication number
JPH0755285B2
JPH0755285B2 JP63299622A JP29962288A JPH0755285B2 JP H0755285 B2 JPH0755285 B2 JP H0755285B2 JP 63299622 A JP63299622 A JP 63299622A JP 29962288 A JP29962288 A JP 29962288A JP H0755285 B2 JPH0755285 B2 JP H0755285B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxides
waste smoke
mordenite
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63299622A
Other languages
Japanese (ja)
Other versions
JPH02149317A (en
Inventor
孝章 田村
Original Assignee
財団法人産業創造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人産業創造研究所 filed Critical 財団法人産業創造研究所
Priority to JP63299622A priority Critical patent/JPH0755285B2/en
Publication of JPH02149317A publication Critical patent/JPH02149317A/en
Publication of JPH0755285B2 publication Critical patent/JPH0755285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 各種の燃料を燃焼させる時に生成する廃煙中に窒素酸化
物が含まれている事はよく知られている。これらの酸化
物を除去して無害化するために各種の方法が実用化され
ている。
DETAILED DESCRIPTION OF THE INVENTION It is well known that nitrogen oxides are contained in waste smoke produced when burning various fuels. Various methods have been put into practical use in order to remove these oxides and render them harmless.

たとえば、ボイラー廃煙については、特殊触媒とアンモ
ニアガスを用いる選択的還元法による方法が実用化され
ている。又、火花着火方式の普通のガソリン機関では、
空気と燃料の比を制御して廃ガス中の酸素濃度をある一
定値以内(ウインドーと称されている)に保ちながら三
元触媒により窒素酸化物の除去と同時に一酸化炭素や炭
化水素類も除去する方法が実用化されている(文献:化
学総説No.34 触媒設計204頁〜219頁学会出版センター
昭和57年発行、又は化学と工業86巻12月号87頁〜88頁昭
和61年)。
For example, for boiler waste smoke, a selective reduction method using a special catalyst and ammonia gas has been put into practical use. Also, in a normal gasoline engine of the spark ignition system,
While controlling the ratio of air to fuel to keep the oxygen concentration in the exhaust gas within a certain fixed value (called a window), the three-way catalyst removes nitrogen oxides and simultaneously removes carbon monoxide and hydrocarbons. The method of removal has been put to practical use (Reference: Chemistry Review No. 34, Catalyst Design, pages 204-219, Academic Publishing Center, published in 1982, or Chemistry and Industry, Vol. 86, December issue, pages 87-88, 1986) .

然しながら前者においては、酸素過剰下の廃煙でも有効
である長所はあるが、還元剤としてアンモニアが必須で
あるために、特殊の用途には有効であるが一般的な用途
には使用しにくい。アンモニアを用いる脱硝法は、火力
発電等の大型ボイラ等には実用化されているが、安全性
等の点で自動車や自家発電用発電機等には実用化できな
い。
However, the former has the advantage that it is also effective for waste smoke under excess oxygen, but since ammonia is essential as a reducing agent, it is effective for special applications but difficult to use for general applications. The denitration method using ammonia has been put to practical use in large-scale boilers for thermal power generation, etc., but cannot be put to practical use in automobiles, generators for private power generation, etc. in terms of safety and the like.

特に圧縮点火方式のディーゼル機関を搭載する自動車や
定置式でも一般の小型ボイラー等には実用化しにくい。
In particular, even a vehicle equipped with a compression ignition type diesel engine or a stationary type is difficult to put into practical use for a general small boiler or the like.

又、後者の三元触媒方式は酸素過剰下では無効であり、
ディーゼル機関排気等には適用できない。
Also, the latter three-way catalyst system is ineffective under excess oxygen,
Not applicable to diesel engine exhaust, etc.

本発明者は酸素過剰の廃煙に用いても窒素酸化物の除去
に有効な触媒及び還元剤を種々探究した結果、次のごと
き発明に到達するに至った。
The present inventor has reached various aspects of the invention as a result of various searches for catalysts and reducing agents that are effective in removing nitrogen oxides even when used for waste smoke containing excess oxygen.

本発明は、各種燃料を燃焼させた時に生じる廃煙を 水素型のモルデナイトもしくは水素型のクリノプチロラ
イトよりなる触媒または銅,クロム,マンガン,鉄,ニ
ッケル,コバルト,ロジウム,パラジウム,白金,バナ
ジウムおよびモリブデンから選ばれた一種または二種以
上の元素を担持せしめた水素型のモルデナイトもしくは
水素型のクリノプチロライトの触媒に 炭素水素類、アルコール、ケトンおよびエーテルから選
ばれた一種または二種以上の有機化合物の共存下で接触
させることを特徴とする廃煙中に含まれる窒素酸化物を
除去する方法である。
According to the present invention, waste smoke produced when burning various fuels is a catalyst composed of hydrogen type mordenite or hydrogen type clinoptilolite, or copper, chromium, manganese, iron, nickel, cobalt, rhodium, palladium, platinum, vanadium. And a catalyst of hydrogen type mordenite or hydrogen type clinoptilolite supporting one or more elements selected from molybdenum and one or more selected from carbon hydrogens, alcohols, ketones and ethers The method is a method for removing nitrogen oxides contained in waste smoke, which is characterized in that they are contacted in the presence of the organic compound.

本発明の触媒を有機化合物の存在下に窒素酸化物を含む
廃煙と接触させる方法を用いれば、たとえ廃煙が多量の
酸素を含有していても有効に窒素酸化物を選択的に除去
し得ることが明らかとなった。このことは、後述の実施
例と対照例を比べてみると明らかであり、アルミナ,シ
リカゲル,又は水素化されていない天然産のモルデナイ
ト又はクリノプチロライト等をそのまま用いた場合は窒
素酸化物の除去能力は著しく低い。
By using the method of contacting the catalyst of the present invention with waste smoke containing nitrogen oxides in the presence of an organic compound, nitrogen oxides can be selectively removed effectively even if the waste smoke contains a large amount of oxygen. It became clear to get. This is apparent by comparing the examples and control examples described below, and when alumina, silica gel, or non-hydrogenated naturally occurring mordenite or clinoptilolite is used as it is, nitrogen oxides The removal capacity is extremely low.

本発明の方法によれば、三元触媒の場合と異なり廃煙中
の酸素濃度の大小にかかわらず、窒素酸化物を選択的に
除去し得ることは後述の実施例で明らかである。又、還
元剤として用いる有機化合物としては炭化水素類,アル
コール,ケトン,エーテルすべてが実施例に示すごとく
有効であり、アンモニアによる既知の選択還元方法にく
らべてはるかに広範囲に使用可能である。
According to the method of the present invention, it is apparent from the examples described later that nitrogen oxides can be selectively removed regardless of the oxygen concentration in waste smoke, unlike the case of a three-way catalyst. As the organic compound used as the reducing agent, hydrocarbons, alcohols, ketones and ethers are all effective as shown in the examples, and can be used in a far wider range than the known selective reduction method with ammonia.

水素化の方法は、天然産のモルデナイト又はクリノプチ
ロライト又は合成のナトリウム型モルデナイト(米国ノ
ルトン社市販名ゼオロン900Na)を鉱酸でくり返し洗う
直接法と一旦ゼオライト中の陽イオンをアンモニウムイ
オン含有水と処理することにより、アンモニウムイオン
で置換した後、加熱焼成してアンモニアガスを除去する
ことにより水素化する間接法とがあるが本発明ではいず
れの方法でも有効である。
The hydrogenation method is a direct method in which naturally occurring mordenite or clinoptilolite or synthetic sodium-type mordenite (commercial name Zeolon 900Na, manufactured by Norton, USA) is repeatedly washed with a mineral acid, and once the cations in the zeolite are ammonium ion-containing water. There is an indirect method of substituting ammonium ions by the treatment of the above and then heating and baking to remove ammonia gas to hydrogenate, but any method is effective in the present invention.

又上記の各種元素を担持する方法としては、それ等の塩
類の水溶液に上記の二方法のいずれかで水素化した沸石
類を投入攪拌して行う方法(以下担持第一方法と記す)
が普通である。場合により沸石類を担持しようとする金
属の塩類水溶液と接触後アンモニウムイオン含有水と接
触せしめ次いで加熱脱アンモニアする方法(以下担持第
二方法と記す)又は上記と逆に先ずアンモニウムイオン
置換後直ちに金属塩水溶液と接触させることにより、金
属成分を担持せしめる方法(以下担持第三方法と記す)
を行った後、加熱脱アンモニアすることにより水素化し
ても有効である。
Further, as a method for supporting the above-mentioned various elements, a method in which an aqueous solution of a salt thereof is charged with and stirred by hydrogenated zeolites by either of the above two methods (hereinafter referred to as a supporting first method)
Is normal. In some cases, a method of contacting with an aqueous salt solution of a metal on which zeolite is to be supported and then contacting with ammonium ion-containing water and then performing heat deammonia (hereinafter referred to as a second supporting method), or conversely, immediately after substitution of ammonium ion, the metal is immediately removed. A method for supporting a metal component by bringing it into contact with an aqueous salt solution (hereinafter referred to as a supporting third method)
It is also effective to perform hydrogenation by heating and deammonia after the above.

以下の実施例においては触媒床として内径2cm長さ16cm
の塔に10〜20メッシュの触媒粒を充填して用いた。
In the following examples, the catalyst bed has an inner diameter of 2 cm and a length of 16 cm.
The column was packed with 10 to 20 mesh catalyst particles for use.

別記しないかぎり試験用ガスの模擬ガスの通ガス速度は
1リットル毎分で行った。
Unless otherwise specified, the gas flow rate of the test gas was 1 liter per minute.

又、ガスの組成は容積比で窒素80%,O210%,CO210%,
NO0.17%の混合ガスに水を毎時4グラムの割合で注入し
たものを用いた。
The composition of gas is 80% by volume of nitrogen, 10% of O 2 and 10% of CO 2 ,
A mixture of 0.17% NO and water injected at a rate of 4 grams per hour was used.

上記混合ガスを反応温度まで予熱し、還元剤としての有
機化合物を混合後触媒床に導入した。
The mixed gas was preheated to the reaction temperature, an organic compound as a reducing agent was mixed and then introduced into the catalyst bed.

ガス中の窒素酸化物の測定にはオゾン発光法により行
い、出口ガス中のNO+NO2の値を入口ガス中の値で割っ
た%値を100%から引いたものを浄化率とした。
The nitrogen oxide in the gas was measured by the ozone emission method, and the purification rate was obtained by subtracting 100% from the value obtained by dividing the NO + NO 2 value in the outlet gas by the value in the inlet gas.

又、以下の実施例又は対照例において用いた天然産のモ
ルデナイト含有岩の中で秋田県産のものは主として第1
表に示す様なX線回析像を有し、主としてSiO2,Al2O3
び水から成り、1〜10%重量%のアルカリ金属又はアル
カリ土類金属の酸化物を含有する一種の凝灰岩であり、
主成分はモルデナイトである。又福島県産のものは主と
して第2表に示す様なX線回析像を有し、前述の秋田県
産のものと似た元素組成を有する凝灰岩であり、主成分
はクリノプチロライトである。
In addition, among the naturally occurring mordenite-containing rocks used in the following Examples or Comparative Examples, those from Akita Prefecture are mainly the first
A kind of tuff which has the X-ray diffraction image as shown in the table, is mainly composed of SiO 2 , Al 2 O 3 and water and contains 1 to 10% by weight of oxide of alkali metal or alkaline earth metal. And
The main component is mordenite. Also, those from Fukushima Prefecture are mainly tuffs that have X-ray diffraction images as shown in Table 2 and have an elemental composition similar to those from Akita Prefecture, and the main component is clinoptilolite. is there.

この表においてX−線回析像や比強度10I/I0の価につい
て使用した装置、湿度、温度、結晶粉末の詰め方等の影
響により多少変動するが、これらの変動はこの天然産無
機物を規定するためにはなんら本質的なものではない。
In this table, the X-ray diffraction image and the value of specific intensity of 10 I / I 0 may vary slightly depending on the equipment used, humidity, temperature, packing method of crystal powder, etc. Is not essential to prescribe.

実施例1 本例においては担体として前述の秋田県産の天然モルデ
ナイト岩を直接法で水素化したものを用い、前述の担持
第一方法により各種元素を担持せしめた触媒を使用し
た。直接水素化は100℃の2規定塩酸で40時間くり返し
洗浄して行った。又、担持塩類はほとんどの場合硝酸塩
を用い、3倍量の1モル/lの水溶液と90℃で2時間接触
させる担持方法で行った。但し、パラジウム,ロジウム
は塩化物、白金は塩化白金酸、バナジウムはメタバナジ
ウム酸アンモニウム、モリブデンはモリブデン酸アンモ
ニウムを用いた。
Example 1 In this example, as the carrier, the above-mentioned natural mordenite rock produced in Akita prefecture was hydrogenated by the direct method, and a catalyst on which various elements were supported by the above-mentioned supporting first method was used. Direct hydrogenation was carried out by repeatedly washing with 2N hydrochloric acid at 100 ° C for 40 hours. In most cases, nitrate was used as the supported salt, and the supporting method was carried out by contacting with a 3-fold amount of 1 mol / l aqueous solution at 90 ° C. for 2 hours. However, chloride was used for palladium and rhodium, chloroplatinic acid was used for platinum, ammonium metavanadate was used for vanadium, and ammonium molybdate was used for molybdenum.

得られた結果を第3表に示す。還元剤の中でプロパンは
エタン8%,プロパン92%,イソブタン0.1%の重量化
の燃料用市販品である。軽油はディーゼル自動車用の市
販品を用いた。その他のものは試薬として市販されてい
るものを用いた。なお、還元剤の混合量はmg/分で表示
した。
The results obtained are shown in Table 3. Among the reducing agents, propane is a commercial product for fuel with 8% ethane, 92% propane, and 0.1% isobutane. As the light oil, a commercially available product for diesel vehicles was used. Others used were commercially available as reagents. The mixing amount of the reducing agent is shown in mg / min.

実施例2 本実施例では担体の原料として前述の福島県産のクリノ
プチロライト岩を使用した以外は実施例1と全く同様で
あった。実施結果を第4表に示す。
Example 2 This example was exactly the same as Example 1 except that the above-mentioned clinoptilolite rock from Fukushima Prefecture was used as the raw material of the carrier. The execution results are shown in Table 4.

実施例3 本例においては米国ノルトン社製の合成モルデナイト
(市販名ゼオロン900Na)を水素化したものといわれる
同社製の水素化モルデナイト(市販名ゼオロン900H)を
そのまま或いは担体として用いた以外は実施例1と全く
同様であった。得られた結果を第5表に示す。
Example 3 In this example, hydrogenated mordenite (commercial name Zeolon 900H) manufactured by Norton Corp., which is said to be hydrogenated of synthetic mordenite (commercial name Zeolon 900Na), was used as it was or as a carrier. It was exactly the same as 1. The results obtained are shown in Table 5.

実施例4 本例においては実施例1と全く同一の原料及び担持方法
を用いたが水素化の方法が前述の間接方法である点が異
なる。天然モルデナイト岩を粉砕して2モル/lの塩化ア
ンモニウム水溶液に90℃で2時間浸した後600℃に加熱
して脱アンモニアさせた。得られた結果を第5表に示
す。
Example 4 In this example, the same raw material and supporting method as in Example 1 were used, except that the hydrogenation method was the above-mentioned indirect method. The natural mordenite rock was crushed, immersed in a 2 mol / l ammonium chloride aqueous solution at 90 ° C. for 2 hours, and then heated to 600 ° C. for deammonification. The results obtained are shown in Table 5.

実施例5 本例においては実施例1で使用したものと同一の原石を
用い先ず所望元素を担持せしめた後アンモニウムイオン
置換を行う間接方法で水素化する前述の担持第2方法に
よって得た触媒を用いた。得られた結果を第5表に示
す。
Example 5 In this example, a catalyst obtained by the above-mentioned supported second method was used, in which the same raw ore as used in Example 1 was used to initially support the desired element and then hydrogenate by an indirect method of ammonium ion substitution. Using. The results obtained are shown in Table 5.

実施例6 本例においては前述の担持第3方法を用いて実施例1と
同一の原石を使用して触媒を製造した。得られた結果は
第5表に示す。
Example 6 In this example, the same rough as in Example 1 was used to produce a catalyst using the above-mentioned supported third method. The results obtained are shown in Table 5.

対照例 前述の天然産ゼオライト又は合成モルデナイトのNa型の
もの又はアルミナ等そのまま或いは各種元素を担持した
ものを用いて行った例を第6表に示す。
Comparative Example Table 6 shows an example of the above-mentioned naturally occurring zeolite or Na type of synthetic mordenite, alumina or the like as it is, or on which various elements are supported.

本例に示す様に水素化しないゼオライト又はアルミナ等
をそのまま或いは各種元素を担持して用いる場合はたと
え有機化合物を還元剤として用いる方法を採用した場合
でも通常の有機化合物の還元剤では酸素含有の廃煙中の
窒素酸化物の還元にはほとんど効力がないことは明らか
である。すなわち、プロパンを還元剤としたとき、例え
ば第5表のモルデナイト−マンガン担持触媒は430℃で
2%の浄化率しかないが、第3表の水素化モルデナイト
を用いたマンガン担持触媒ではきわめて大きな78%もの
浄化率が得られている。
As shown in this example, when non-hydrogenated zeolite or alumina is used as it is or when various elements are supported, even if a method of using an organic compound as a reducing agent is adopted, an ordinary organic compound reducing agent does not contain oxygen. It is clear that it has little effect on the reduction of nitrogen oxides in smoke. That is, when propane is used as the reducing agent, for example, the mordenite-manganese-supported catalyst shown in Table 5 has a purification rate of 2% at 430 ° C., but the manganese-supported catalyst using hydrogenated mordenite shown in Table 3 is very large. A purification rate as high as% has been obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 102 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location 102 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料を燃焼させた時に生じる廃煙を 水素型のモルデナイトもしくは水素型のクリノプチロラ
イトよりなる触媒または銅,クロム,マンガン,鉄,ニ
ッケル,コバルト,ロジウム,パラジウム,白金,バナ
ジウムおよびモリブデンから選ばれた一種または二種以
上の元素を担持せしめた水素型のモルデナイトもしくは
水素型のクリノプチロライトの触媒に 炭化水素類、アルコール、ケトンおよびエーテルから選
ばれた一種または二種以上の有機化合物の共存下で接触
させることを特徴とする廃煙中に含まれる窒素酸化物を
除去する方法。
1. A waste smoke produced when a fuel is burned is composed of hydrogen type mordenite or hydrogen type clinoptilolite as a catalyst or copper, chromium, manganese, iron, nickel, cobalt, rhodium, palladium, platinum, vanadium. And a catalyst for hydrogen-type mordenite or hydrogen-type clinoptilolite loaded with one or more elements selected from molybdenum and one or more selected from hydrocarbons, alcohols, ketones and ethers The method for removing nitrogen oxides contained in waste smoke, which comprises contacting the organic compound in the presence of the organic compound.
JP63299622A 1988-11-29 1988-11-29 Method for removing nitrogen oxides from waste smoke Expired - Fee Related JPH0755285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299622A JPH0755285B2 (en) 1988-11-29 1988-11-29 Method for removing nitrogen oxides from waste smoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299622A JPH0755285B2 (en) 1988-11-29 1988-11-29 Method for removing nitrogen oxides from waste smoke

Publications (2)

Publication Number Publication Date
JPH02149317A JPH02149317A (en) 1990-06-07
JPH0755285B2 true JPH0755285B2 (en) 1995-06-14

Family

ID=17874991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299622A Expired - Fee Related JPH0755285B2 (en) 1988-11-29 1988-11-29 Method for removing nitrogen oxides from waste smoke

Country Status (1)

Country Link
JP (1) JPH0755285B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118030A (en) * 1990-05-28 1992-04-20 Agency Of Ind Science & Technol Method of removing nitrogen oxide
JPH0490826A (en) * 1990-08-01 1992-03-24 Agency Of Ind Science & Technol Exhaust gas purification method
JP2523402B2 (en) * 1990-10-19 1996-08-07 財団法人産業創造研究所 Method for removing nitrogen oxides in combustion exhaust gas
JP2598717B2 (en) * 1991-01-08 1997-04-09 工業技術院長 Nitrogen oxide removal treatment method
DE4206699C2 (en) * 1992-03-04 1996-02-01 Degussa NO¶x¶ reduction in the lean exhaust of automotive engines
JP2506598B2 (en) * 1992-03-12 1996-06-12 工業技術院長 Nitrogen oxide removal method
EP0585025B1 (en) * 1992-08-25 1998-01-14 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst
JP3628439B2 (en) * 1996-05-20 2005-03-09 財団法人産業創造研究所 Concentration method of krypton in oxygen-nitrogen mixed gas
KR100385715B1 (en) * 2001-02-05 2003-05-27 코오롱건설주식회사 Catalyst for removing nitrogen oxide using clinoptilolite
DE102005010221A1 (en) * 2005-03-05 2006-09-07 S&B Industrial Minerals Gmbh Process for the preparation of a catalytically active mineral based on a framework silicate
JP5264316B2 (en) * 2008-06-20 2013-08-14 旭化成株式会社 Lean burn automobile exhaust gas purification catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000383C2 (en) 1979-01-12 1987-02-12 Norton Co., Worcester, Mass. Process for the catalytic reduction of nitrogen oxides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169476A (en) * 1974-12-13 1976-06-16 Toray Industries
JPH07114964B2 (en) * 1986-07-04 1995-12-13 バブコツク日立株式会社 Nitrogen oxide reduction catalyst and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3000383C2 (en) 1979-01-12 1987-02-12 Norton Co., Worcester, Mass. Process for the catalytic reduction of nitrogen oxides

Also Published As

Publication number Publication date
JPH02149317A (en) 1990-06-07

Similar Documents

Publication Publication Date Title
JPH07106300B2 (en) Method for removing nitrogen oxides in combustion exhaust gas
JPH06211525A (en) Composition based on cerium(iv) oxide, preparation and use thereof
JPH0755285B2 (en) Method for removing nitrogen oxides from waste smoke
WO1997004855A1 (en) Emission control catalyst and emission control method using the same
JP2691643B2 (en) Exhaust gas purification method
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP2778801B2 (en) Exhaust gas treatment catalyst
JPH0751577A (en) Catalyst for purification of exhaust gas
JP3197857B2 (en) DeNOx method
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
JP3242126B2 (en) Nitrogen oxide removal method
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3985301B2 (en) Exhaust gas purification catalyst and purification method using the same
JP2775041B2 (en) Method for producing denitration catalyst and denitration method
JP2601018B2 (en) Exhaust gas purification catalyst
JPH07303838A (en) Catalyst for purifying exhaust gas containing nox, and purification method and catalyst manufacture
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH1024238A (en) Nitrogen oxide catalytically reducing and removing catalyst and nitrogen oxide catalytically reducing and removing method
JPH06126184A (en) Catalyst for purifying exhaust gas and purifying method for exhaust gas by using it
JP3366342B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH06126183A (en) Catalyst for purifying exhaust gas, its production, and purification of exhaust gas by using it
JPH08173768A (en) Method for catalytic reduction of nitrogen oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees