JPH0490826A - Exhaust gas purification method - Google Patents

Exhaust gas purification method

Info

Publication number
JPH0490826A
JPH0490826A JP2204102A JP20410290A JPH0490826A JP H0490826 A JPH0490826 A JP H0490826A JP 2204102 A JP2204102 A JP 2204102A JP 20410290 A JP20410290 A JP 20410290A JP H0490826 A JPH0490826 A JP H0490826A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
catalyst
hydrocarbon
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2204102A
Other languages
Japanese (ja)
Other versions
JPH0516886B2 (en
Inventor
Yoshiaki Kindaichi
嘉昭 金田一
Hideaki Hamada
秀昭 浜田
Tatsuhiko Ito
伊藤 建彦
Motoi Sasaki
基 佐々木
Mitsunori Tabata
光紀 田畑
Ichiji Usui
薄井 一司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
COSMO SOGO KENKYUSHO KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Agency of Industrial Science and Technology filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP2204102A priority Critical patent/JPH0490826A/en
Priority to DE69125649T priority patent/DE69125649T2/en
Priority to EP91108690A priority patent/EP0459396B1/en
Priority to KR1019910008697A priority patent/KR100201748B1/en
Publication of JPH0490826A publication Critical patent/JPH0490826A/en
Priority to US07/967,578 priority patent/US5336476A/en
Publication of JPH0516886B2 publication Critical patent/JPH0516886B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently remove NOx from the exhaust gases emitting from various facilities and prevent the other harmful components from emitting by a method wherein NOx containing exhaust gases are brought into a step-wise contact with a reducing and an oxidizing catalyst in the presence of hydrocarbon under an oxidative atmosphere where an excessive oxygen is present. CONSTITUTION:Proton type zeolite, alkali metal type zeolite or an acidic metal oxide treated and adjusted with the compounds having sulfuric acid radical is used as a reductive catalyst on the upstream side of an exhaust gaseous stream. On the downstream side of the exhaust gaseous stream, the catalytic component such as platinum, palladium, copper and iron supported alone or in combination on a porous carrier such as active alumina and silica is used as an oxidizing catalyst. The reducing catalyst disposed on the upstream side of the exhaust gaseous stream in the presence of hydrocarbon under an oxidative atmosphere where an excessive oxygen is present accelerates a reaction between hydrocarbon and NOx in preference to that between hydrocarbon and oxygen to reductively decompose NOx in the exhaust gases. Moreover, the oxidizing catalyst disposed on the downstream side of the exhaust gaseous stream removes oxidatively harmful components such as hydrocarbon and carbon monoxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、過剰の酸素が存在する全体として酸化条件下
において、排ガス中の窒素酸化物を、少量添加した炭化
水素又は排ガス中に残存する炭化水素の存在下で、特定
の触媒と接触させ、排ガス中の窒素酸化物を除去する排
ガス浄化方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for reducing nitrogen oxides in exhaust gases by removing nitrogen oxides from a small amount of added hydrocarbons or remaining in the exhaust gases under generally oxidizing conditions in the presence of excess oxygen. The present invention relates to an exhaust gas purification method that removes nitrogen oxides from exhaust gas by bringing it into contact with a specific catalyst in the presence of hydrocarbons.

〔従来の技術〕[Conventional technology]

各種の排ガス中の窒素酸化物(以下、rNOx+)は、
健康に有害であり、かつ光化学スモングや酸性雨の発生
原因ともなり得るため、その効果的処理手段の開発が望
まれている。
Nitrogen oxides (hereinafter referred to as rNOx+) in various exhaust gases are
Since it is harmful to health and can also cause photochemical smong and acid rain, there is a desire to develop effective treatment methods.

従来、このNOxの除去方法として、触媒を用いて排ガ
ス中のNOxを低減する方法が既にいくつか実用化され
ている。
Conventionally, as methods for removing NOx, several methods have already been put into practical use that use catalysts to reduce NOx in exhaust gas.

例えば、(イ)ガソリン自動車における三元触媒法や、
C口)ボイラー等の大型設備排出源からの排ガスについ
てアンモニアを用いる選択Ml還元法が挙げられる。
For example, (a) three-way catalyst method in gasoline cars,
Port C) A selective Ml reduction method using ammonia for exhaust gas from large equipment sources such as boilers can be mentioned.

また、その他の提案されている方法としては、(ハ)炭
化水素を用いる排ガス中のNOxの除去方法として、各
種金属を含むゼオライトを炭化水素の存在下でNOxを
含むガスと接触させる方法(特開昭63−283727
号公報等)があり、触媒としてはぜオライドに各種の金
属を添加したものが提案されている。
Other methods that have been proposed include (c) a method for removing NOx from exhaust gas using hydrocarbons, in which zeolite containing various metals is brought into contact with a gas containing NOx in the presence of hydrocarbons (particularly Kaisho 63-283727
No. 2, etc.), and catalysts prepared by adding various metals to Zeolide have been proposed.

更に、本発明者らにより、(ニ)炭化水素を用いる排ガ
ス中のNOxの除去方法として、炭化水素の存在下で、
特定のゼオライトや酸性を有する金属酸化物とNOxを
含む排ガスとを接触させる方法が提案されている(特願
平2−139340号公報)。
Furthermore, the present inventors have proposed (d) a method for removing NOx in exhaust gas using hydrocarbons, in the presence of hydrocarbons,
A method has been proposed in which a specific zeolite or acidic metal oxide is brought into contact with exhaust gas containing NOx (Japanese Patent Application No. 139340/1999).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記(イ)の方法は、自動車の燃焼排ガス中に含まれる
炭化水素成分と一酸化炭素を触媒によって水と二酸化炭
素とし、同時にNOxを還元して窒素とするものである
が、NOxに含まれる酸素量と、炭化水素成分と一酸化
炭素が酸化されるのに必要とする酸素量とが化学的に等
量となるように燃焼を調整する必要があり、ディーゼル
エンジンのように過剰の酸素が存在する系では、原理的
に適用は不可能である。
In the method (a) above, hydrocarbon components and carbon monoxide contained in combustion exhaust gas from automobiles are converted to water and carbon dioxide using a catalyst, and at the same time, NOx is reduced to nitrogen. Combustion must be adjusted so that the amount of oxygen is chemically equal to the amount of oxygen required to oxidize hydrocarbon components and carbon monoxide. In existing systems, application is impossible in principle.

また、(ロ)の方法では、有毒かつ可燃性の高圧ガスで
あるアンモニアを用いるため保安上巨大な設備が必要で
あり、排ガス発生源が移動する場合に適用することは技
術的に極めて困難である。
In addition, method (b) uses ammonia, which is a toxic and flammable high-pressure gas, and requires huge equipment for safety reasons, making it technically extremely difficult to apply when the exhaust gas source is moving. be.

一方、(ハ)の方法は、ガソリン自動車を主な対象とし
ており、ディーゼル機関の排ガス条件下では適用が困難
であると共に、活性も不充分である。すなわち、触媒の
成分として各種金属類を含むため、ディーゼル機関から
排出される硫黄酸化物により被毒されるばかりでなく、
添加した金属が凝集する等して活性の低下も起こるため
、ディーゼル機関からの排ガス中のNOxを除去するに
は適さず、実用化には至っていない。
On the other hand, method (c) is mainly targeted at gasoline-powered vehicles, and is difficult to apply under the exhaust gas conditions of diesel engines, and its activity is insufficient. In other words, since the catalyst contains various metals, it is not only poisoned by sulfur oxides discharged from diesel engines, but also
Since the added metal aggregates and the activity decreases, it is not suitable for removing NOx from exhaust gas from a diesel engine, and has not been put into practical use.

また、(ニ)の方法は、炭化水素の存在下で従来よりも
効率的にNOxを分解除去できるが、用いる触媒2反応
塩度等の反応条件により、還元剤として添加する炭化水
素や酸化の中間生成物である一酸化炭素が流出する場合
がある。
In addition, method (d) can decompose and remove NOx more efficiently in the presence of hydrocarbons than conventional methods, but depending on the reaction conditions such as the catalyst 2 reaction salinity used, the hydrocarbon added as a reducing agent and the oxidation Carbon monoxide, an intermediate product, may leak out.

本発明は、以上の(イ)〜(ニ)に存在する各種の問題
について検討した結果なされたものであって、酸化雰囲
気において、ディーゼル機関排ガスをはじめ、種々の設
備からの排ガス中のNOxを効率良く除去すると共に、
他の有害成分を排出しない排ガス浄化方法を提案するこ
とを目的とする。
The present invention was made as a result of studying various problems existing in (a) to (d) above, and is a method for reducing NOx in exhaust gas from various equipment, including diesel engine exhaust gas, in an oxidizing atmosphere. In addition to efficiently removing
The purpose is to propose an exhaust gas purification method that does not emit other harmful components.

〔課題を解決するための手段及び作用〕本発明者等は、
上記の従来技術に存在する問題を解決するために、鋭意
研究を重ねた結果、特定の触媒を特定の組合せで用いる
ことにより、硫黄酸化物の含まれている排ガスにおいて
も活性の低下を引き起こすことなく、また−酸化炭素等
の有害物質を排出することなく、従来より高い割合でN
Oxを除去することができることを見出し、本発明を完
成するに至った。
[Means and effects for solving the problem] The present inventors,
In order to solve the above-mentioned problems in the conventional technology, we have conducted intensive research and found that using a specific catalyst in a specific combination causes a decrease in activity even in exhaust gas containing sulfur oxides. Also, - without emitting harmful substances such as carbon oxide, it generates N at a higher rate than before.
It was discovered that Ox can be removed, and the present invention was completed.

すなわち、本発明の排ガス浄化方法は、上記の目的を達
成するために、過剰の酸素が存在する酸化雰囲気中、炭
化水素の存在下において、プロトン型ゼオライトアルカ
リ金属型ゼオライト又は酸性を有する金属酸化物がら選
ばれる1種以上の触媒とNOxを含む排ガスとを接触さ
せ、次いで該排ガスを酸化触媒に接触させることを特徴
とする。
That is, in order to achieve the above object, the exhaust gas purification method of the present invention uses proton type zeolite, alkali metal type zeolite, or acidic metal oxide in an oxidizing atmosphere containing excess oxygen and in the presence of hydrocarbons. The method is characterized in that one or more catalysts selected from the above are brought into contact with exhaust gas containing NOx, and then the exhaust gas is brought into contact with an oxidation catalyst.

また、本発明の排ガス浄化方法は、上記の酸性を有する
金属酸化物として、硫酸根を有する化合物により処理し
た金属酸化物を使用することをも特徴とする。
Furthermore, the exhaust gas purification method of the present invention is characterized in that a metal oxide treated with a compound having a sulfate radical is used as the above-mentioned acidic metal oxide.

以下、本発明方法の詳細を作用と共に説明する。Hereinafter, the details of the method of the present invention will be explained along with its operation.

本発明方法では、被処理排ガスを還元触媒と酸化触媒に
段階的に接触させる。
In the method of the present invention, the exhaust gas to be treated is brought into contact with a reduction catalyst and an oxidation catalyst in stages.

このとき、上段側(すなわち、排気上流側)にて使用す
ることのできる触媒は、プロトン型ゼオライト、アルカ
リ金属型ゼオライト、又はアルミナ(酸化アルミニウム
)、シリカアルミナのような酸性を有する金属酸化物か
ら選ばれる1種以上の還元触媒である。
At this time, the catalyst that can be used on the upper stage side (that is, the upstream side of the exhaust gas) is a proton type zeolite, an alkali metal type zeolite, or a metal oxide with acidity such as alumina (aluminum oxide) or silica alumina. One or more selected reduction catalysts.

本発明方法における上記のゼオライトは、具体的には、
ペンタシル型ゼオライト モルデナイトY型ゼオライト
、X型ゼオライト L型ゼオライト、シリカライト等の
各種のゼオライトが使用できる。
Specifically, the above zeolite in the method of the present invention is
Various zeolites can be used, such as pentasil type zeolite, mordenite, Y type zeolite, X type zeolite, L type zeolite, and silicalite.

これらゼオライトのケイハン比(S i Oz対Alt
O2の弐量比)は、特に制限されるものではないが、熱
や水蒸気に対する安定性等から比較的高いものが好まし
く、より好ましくは約5〜200、更に好ましくは約1
0〜100である。
The Kayhan ratio of these zeolites (S i Oz vs. Alt
Although there are no particular restrictions on the O2 ratio, it is preferably relatively high in terms of stability against heat and water vapor, more preferably about 5 to 200, and even more preferably about 1.
It is 0-100.

これらゼオライトは、公知の方法で製造することができ
、シリカ、シリカゾル、ケイ酸ナトリウム等のシリカ源
、アルミナゲル、アルミナゾル。
These zeolites can be produced by known methods, including silica, silica sol, silica sources such as sodium silicate, alumina gel, and alumina sol.

アルミン酸ナトリウム等のアルミナ源、水酸化ナトリウ
ム、ケイ酸ナトリウム等のアルカリ源、水、そして必要
に応じてアミン等の有機塩基を含む原料混合物を水熱合
成し、生成物を分離後、水洗、乾燥してアルカリ金属型
セオライトとすることができる。
A raw material mixture containing an alumina source such as sodium aluminate, an alkali source such as sodium hydroxide or sodium silicate, water, and if necessary an organic base such as an amine is hydrothermally synthesized, and after separating the product, washing with water, It can be dried to form alkali metal type theolite.

完全にNa型とするためには、イオン交換することによ
り可能となる。
Complete Na-type conversion can be achieved by ion exchange.

ここで、アルカリ金属型ゼオライトを、塩化アンモニウ
ムあるいは硝酸アンモニウム水溶液等で処理してアンモ
ニウム型のゼオライトとし、しかる後、約400〜70
0°Cの温度範囲で焼成してプロトン型ゼオライトとす
ることができる。
Here, the alkali metal type zeolite is treated with ammonium chloride or ammonium nitrate aqueous solution to form ammonium type zeolite, and then the
Proton type zeolite can be obtained by firing at a temperature range of 0°C.

プロトン型ゼオライトを用いることにより、より一層効
率的にNOxを分解除去することが可能となる。
By using proton type zeolite, it becomes possible to decompose and remove NOx even more efficiently.

更に、本発明方法においては、酸性を有する金属酸化物
をも使用することができ、例えば、アルミナ(Af!z
O3)、酸化チタン(TiO)、酸化ジルコニウム(Z
rOz)等の金属酸化物、シリカアルミナ(SiOz・
Aj2zO,+)、シリカマグネシア(S i Oz・
Mg0)、  シリカジルコニア(S i O2ZrO
z)、アルミナチタン(Alz03・Ti0z)等のよ
うな複合酸化物が挙げられる。
Furthermore, in the method of the present invention, acidic metal oxides can also be used, such as alumina (Af!z
O3), titanium oxide (TiO), zirconium oxide (Z
metal oxides such as rOz), silica alumina (SiOz
Aj2zO, +), silica magnesia (S i Oz・
Mg0), silica zirconia (S i O2ZrO
z), alumina titanium (Alz03.Ti0z), and other composite oxides.

また、金属酸化物3成分以上からなるものでも固体酸性
を示すものであれば有効に使用でき、酸性が強く酸量が
多いものが特に好ましい。
Further, even those consisting of three or more metal oxide components can be effectively used as long as they exhibit solid acidity, and those that are highly acidic and have a large amount of acid are particularly preferred.

その他の金属酸化物の例として、硫酸根を有する化合物
で処理して調製した金属酸化物を使用することができ、
未処理の金属酸化物よりもより一層効率的にNOxを分
解することができる。
As an example of other metal oxides, metal oxides prepared by treatment with a compound having a sulfate group can be used,
It can decompose NOx more efficiently than untreated metal oxides.

硫酸根を有する化合物の具体例として、硫酸。A specific example of a compound having a sulfate group is sulfuric acid.

硫酸アンモニウム等を挙げることができ、その他処理後
の乾燥焼成により金属酸化物上で硫酸根が生成する化合
物であれば用いることができる。
Examples include ammonium sulfate, and any other compound that produces a sulfate group on the metal oxide by drying and firing after treatment can be used.

硫酸根を有する化合物、例えば、硫酸による処理を行う
金属酸化物触媒の調製は、アルミナ(AI!。
The preparation of metal oxide catalysts by treatment with compounds having sulfate radicals, e.g. sulfuric acid, can be carried out using alumina (AI!).

Ol)、酸化チタン(T i O□)等のような金属酸
化物を、室温で特定の濃度の硫酸と接触させ、乾燥後、
特定の温度で空気焼成することにより得られるが、非晶
質の酸化物あるいは対応する水酸化物を硫酸で同様に処
理することによって、より一層高い活性の触媒が得られ
る。
Metal oxides such as titanium oxide (T i O
Although obtained by air calcination at specific temperatures, even higher activity catalysts can be obtained by similar treatment of amorphous oxides or the corresponding hydroxides with sulfuric acid.

処理に使用する硫酸の濃度は、酸化物の種類により異な
るが、通常、約0.01〜10moff/2、好ましく
は約0.1〜5moj2/f!であり、該濃度の硫酸を
触媒重量当たり約5〜20倍量使用し、金属酸化物と接
触させる。
The concentration of sulfuric acid used in the treatment varies depending on the type of oxide, but is usually about 0.01 to 10 moff/2, preferably about 0.1 to 5 moj2/f! About 5 to 20 times the amount of sulfuric acid based on the weight of the catalyst is used at the same concentration and brought into contact with the metal oxide.

ここで、g酸の濃度が約0.01mof/f未満では、
硫酸との接触によるNOx分解活性への効果は余り期待
できず、また約]Omoffi/ffiを超えると、金
属硫酸塩の生成あるいは触媒構造の破壊等が起こる虞が
あり余り好ましくない。
Here, if the concentration of g acid is less than about 0.01 mof/f,
Contact with sulfuric acid cannot be expected to have much of an effect on NOx decomposition activity, and if it exceeds about ]Omoffi/ffi, there is a risk of metal sulfate formation or destruction of the catalyst structure, which is not preferable.

また、g酸アンモニウムを硫酸根を有する化合物として
処理に用いる場合も、上記と同様の方法で処理すること
ができる。
Furthermore, when ammonium g-acid is used as a compound having a sulfate group in the treatment, the treatment can be carried out in the same manner as above.

空気焼成温度も、酸化物の種類により最適温度は異なる
が、通常、約300〜850°c1好ましくは約400
〜700°Cである。
The optimum air firing temperature also varies depending on the type of oxide, but is usually about 300 to 850°C, preferably about 400°C.
~700°C.

空気焼成温度が約300°C未満では、処理に用いた硫
酸等の化合物が除去できず、触媒活性点が形成されない
虞があり、850°Cを超えると、触媒表面積の減少あ
るいは触媒活性点の破壊が生じる可能性がある。
If the air calcination temperature is less than about 300°C, compounds such as sulfuric acid used in the treatment may not be removed and catalyst active sites may not be formed; if it exceeds 850°C, the catalyst surface area may decrease or the catalyst active sites may not be formed. Destruction may occur.

一方、本発明方法において、下段側(すなわち、排気下
流側)に使用することができる酸化触媒としては、活性
アルミナ、ンリカ、ジルコニア等の多孔質担体に、例え
ば、白金、パラジウム、ロジウム、ルテニウム、イリジ
ウム等の貴金属、ランタン、セリウム、銅、鉄等の卑金
属、三酸化コバルトランタン、三酸化鉄ランタン、三酸
化コバルトストロンチウム等のペロブスカイト型結晶構
造物等の触媒成分を単独又は組合せて担持したものが挙
げられる。
On the other hand, in the method of the present invention, the oxidation catalyst that can be used on the lower stage side (that is, the downstream side of the exhaust gas) includes, for example, platinum, palladium, rhodium, ruthenium, Catalyst components such as noble metals such as iridium, base metals such as lanthanum, cerium, copper, and iron, and perovskite crystal structures such as lanthanum cobalt trioxide, lanthanum iron trioxide, and cobalt strontium trioxide are supported singly or in combination. Can be mentioned.

この場合の触媒成分の担持量は、貴金属では担体に対し
約0.01〜2wt%程度であり、また卑金属では約5
〜70wt%程度である。
In this case, the supported amount of the catalyst component is about 0.01 to 2 wt% for noble metals, and about 5 wt% for base metals.
It is about 70 wt%.

担持量が夫々少ない場合は、酸化触媒としての効果が余
り期待できず、また夫々の適量を超えて担持してもそれ
に見合うだけの効果の向上は得られない。
If the amount of each supported is small, the effect as an oxidation catalyst cannot be expected, and even if the amount of each supported exceeds the appropriate amount, the effect cannot be improved commensurately.

上記の還元触媒と酸化触媒との使用比率や、酸化触媒に
担持する触媒成分量等は、要求性能に応じて適宜選択可
能であり、特に、酸化除去する物質が一酸化炭素のよう
な炭化水素の中間酸化物である場合には、還元触媒と酸
化触媒とを混合して使用することも可能であるが、一般
には、還元触媒を排気上流側に、酸化触媒を排気下流側
に配置する。
The usage ratio of the above-mentioned reduction catalyst and oxidation catalyst, the amount of catalyst components supported on the oxidation catalyst, etc. can be selected as appropriate depending on the required performance. If the catalyst is an intermediate oxide, it is possible to use a mixture of the reduction catalyst and the oxidation catalyst, but generally the reduction catalyst is placed on the upstream side of the exhaust gas, and the oxidation catalyst is placed on the downstream side of the exhaust gas.

これらの触媒を用いて排ガスを浄化する具体例としては
、還元触媒を配置した反応器を排ガス導入部(前段)に
、酸化触媒を配置した反応器を排ガス排出部(後段)に
配置して用いる方法があるまた、1つの反応器に夫々の
触媒を要求性能に応じた比率で配置して用いることも可
能である。
As a specific example of purifying exhaust gas using these catalysts, a reactor with a reduction catalyst placed in the exhaust gas introduction section (first stage) and a reactor with an oxidation catalyst placed in the exhaust gas discharge part (second stage) are used. Alternatively, it is also possible to arrange and use each catalyst in a single reactor at a ratio depending on the required performance.

還元触媒(A)と酸化触媒(B)の比率は、般には、(
A)/ (B)で表して約0.5/9゜5〜9. 51
0. 5の範囲で用いられる。
Generally, the ratio of reduction catalyst (A) and oxidation catalyst (B) is (
A)/(B) approximately 0.5/9°5-9. 51
0. Used in the range of 5.

以上の触媒は、粉状1粒体状、ペレット状、ハニカム状
等、その形状、構造は問わない。
The above-mentioned catalyst may have any shape or structure, such as powder, single grain, pellet, or honeycomb shape.

また、触媒の成型等の目的で使用するシリカ等の非酸性
の酸化物、シリカゾル、あるいはカーボンワックス、油
脂等の成型剤を混合することも可能である。
It is also possible to mix a non-acidic oxide such as silica, silica sol, or a molding agent such as carbon wax, oil or fat used for the purpose of catalyst molding.

本発明方法の処理対象となるNOx含有ガスとしては、
ディーゼル自動車や定置式ディーゼル機関等のディーゼ
ルエンジン排ガス、ガソリン自動車等のガソリンエンジ
ン排ガスをはじめ、硝酸製造工場、各種の燃焼設備等の
排ガスを挙げることができる。
The NOx-containing gas to be treated by the method of the present invention includes:
Exemplary exhaust gases include diesel engine exhaust gas from diesel cars and stationary diesel engines, gasoline engine exhaust gas from gasoline cars, and exhaust gas from nitric acid manufacturing plants and various combustion equipment.

これら排ガス中のNOxの除去は、上記触媒を用い、上
記触媒に、酸化雰囲気中、炭化水素の存在下で、排ガス
を接触させることにより行う。
The NOx in these exhaust gases is removed by using the catalyst and bringing the exhaust gas into contact with the catalyst in an oxidizing atmosphere in the presence of hydrocarbons.

ここで、酸化雰囲気とは、排ガス中に含まれる一酸化炭
素、水素及び炭化水素と、本発明方法おいて必要に応じ
て添加する炭化水素の還元性物質を完全に酸化して水と
二酸化炭素に変換するのに必要な酸素量よりも過剰な酸
素が含まれている雰囲気をいい、例えば、自動車等の内
燃機関から排出される排ガスの場合には空気比が大きい
状態(リーン領域)の雰囲気であり、通常、過剰酸素率
は約20〜200%程度である。
Here, the oxidizing atmosphere means to completely oxidize the carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas, as well as the reducing substances of the hydrocarbons added as necessary in the method of the present invention, to create water and carbon dioxide. This refers to an atmosphere that contains excess oxygen than the amount of oxygen required to convert it into oxygen. For example, in the case of exhaust gas emitted from internal combustion engines such as automobiles, an atmosphere with a large air ratio (lean region) The excess oxygen rate is usually about 20 to 200%.

この酸化雰囲気中において、上記の排気上流側に配置さ
れた触媒は、炭化水素と酸素との反応よりも、炭化水素
とNOxとの反応を優先的に促進させて、NOxを分解
する。
In this oxidizing atmosphere, the catalyst disposed upstream of the exhaust gas preferentially promotes the reaction between hydrocarbons and NOx rather than the reaction between hydrocarbons and oxygen, and decomposes NOx.

存在させる炭化水素としては、排ガス中に残留する炭化
水素でもよいが、上記反応を促進させるのに必要な量よ
りも不足している場合には、外部より炭化水素を添加す
る必要がある。
The hydrocarbon to be present may be the hydrocarbon remaining in the exhaust gas, but if the amount is insufficient than the amount necessary to promote the above reaction, it is necessary to add the hydrocarbon from the outside.

炭化水素量は、特に制限されないが、NOxの還元分解
に必要な量よりも過剰な方がより還元反応が進むので、
過剰に添加するのが好ましく、通常、炭化水素の使用量
はNOxの還元分解に必要な理論量の約20〜2,00
0%、好ましくは約30〜1.500%過剰に存在させ
る。
The amount of hydrocarbon is not particularly limited, but if it is in excess of the amount required for reductive decomposition of NOx, the reduction reaction will progress more.
It is preferable to add the hydrocarbon in excess, and the amount of hydrocarbon used is usually about 20 to 2,000 times the theoretical amount required for reductive decomposition of NOx.
0%, preferably about 30-1.500% excess.

ここで、必要な炭化水素の理論量とは、反応系内に酸素
が存在するので、本発明においては、二酸化窒素(N 
Ox )を還元分解するのに必要な炭化水素と定義する
ものであり、例えば、炭化水素としてプロパンを用いて
1.OO’Oppmの一酸化窒素(No)を酸素存在下
で還元分解する際のプロパンの理論量は200ppmと
なる。
Here, the theoretical amount of necessary hydrocarbons refers to the amount of nitrogen dioxide (N
Ox ) is defined as a hydrocarbon necessary for reductive decomposition. For example, using propane as the hydrocarbon, 1. The theoretical amount of propane when OO'Oppm nitrogen monoxide (No) is reductively decomposed in the presence of oxygen is 200 ppm.

一般には、排ガス中のNOx量にもよるが、存在させる
炭化水素の量は、メタン置換で約50〜10.000p
pm程度である。
Generally, depending on the amount of NOx in the exhaust gas, the amount of hydrocarbons to be present is approximately 50 to 10,000 p when replaced with methane.
It is about pm.

本発明に用いる炭化水素としては、気体状、液体状を含
め特に限定されず、反応温度で気化するものであれば使
用可能である。
The hydrocarbon used in the present invention is not particularly limited, including gaseous and liquid hydrocarbons, and any hydrocarbon that vaporizes at the reaction temperature can be used.

気体状のものとしては、メタン、エタン、プロパン、エ
チレン、プロピレン、ブチレン等の炭化水素を具体例と
して挙げることができ、液体状のものとしては、ガソリ
ン、軽油等の石油系炭化水素、アルコール類、エーテル
類、ケトン類等の含酸素化合物を挙げることができる。
Specific examples of gaseous ones include hydrocarbons such as methane, ethane, propane, ethylene, propylene, and butylene, and examples of liquid ones include petroleum hydrocarbons such as gasoline and light oil, and alcohols. , ethers, ketones, and other oxygen-containing compounds.

反応は、上記ゼオライト又は金属酸化物を配置した反応
器を排気上流側に用意して、酸化雰囲気中で炭化水素を
存在させて、NOx含有排ガスを通過させることにより
行う。
The reaction is carried out by preparing a reactor in which the zeolite or metal oxide is placed upstream of the exhaust gas, allowing hydrocarbons to exist in an oxidizing atmosphere, and passing the NOx-containing exhaust gas.

以上の工程により、排ガス中のNOxを還元分解するこ
とができるが、更に排気下流側に酸化触媒を配置した反
応器を用意し、連続して排ガスを通過させることにより
、NOxの除去と炭化水素及び−酸化炭素等の有害成分
を酸化することにより除去することができる。
Through the above process, NOx in the exhaust gas can be reductively decomposed, but by preparing a reactor equipped with an oxidation catalyst downstream of the exhaust gas and passing the exhaust gas continuously, NOx can be removed and hydrocarbons can be decomposed. and - Harmful components such as carbon oxide can be removed by oxidation.

このときの反応温度は、触媒及び炭化水素の種類により
最適温度が異なるが、排ガスの温度に近い温度が排ガス
加熱設備等を必要としないので好ましく、約200〜8
00°C1特に約300〜600“Cの範囲での使用が
有効である。
The optimum reaction temperature at this time differs depending on the type of catalyst and hydrocarbon, but a temperature close to the exhaust gas temperature is preferable because it does not require exhaust gas heating equipment, and is approximately 200 to 80℃.
It is effective to use the temperature at 00°C, especially in the range of about 300 to 600"C.

ここで、オレフィン類を添加炭化水素として用いた場合
は、パラフィン類を用いた場合よりもやや低い温度が好
ましい。
Here, when olefins are used as the added hydrocarbon, the temperature is preferably slightly lower than when paraffins are used.

反応圧力は、特に制限されず、通常の排気圧力で反応が
進行し、また排ガスを触媒層へ導入する空間速度(SV
)は、反応温度等の他の反応条件や要求されるNOx及
び有害成分の除去率により異なり、特に制限はないが、
約500〜100゜000Hr−’、好ましくは約1,
000〜70゜000 Hr−’の範囲である。
The reaction pressure is not particularly limited; the reaction proceeds at normal exhaust pressure, and the space velocity (SV) at which exhaust gas is introduced into the catalyst layer
) varies depending on other reaction conditions such as reaction temperature and the required removal rate of NOx and harmful components, and is not particularly limited.
about 500 to 100°000 Hr-', preferably about 1,
The range is from 000 to 70°000 Hr-'.

なお、本発明方法において、内燃機関からの排ガスを処
理する場合は、上記触媒は、排気マニホールドの下流に
配置するのが好ましい。
In addition, in the method of the present invention, when treating exhaust gas from an internal combustion engine, the catalyst is preferably placed downstream of the exhaust manifold.

[実施例〕 次に、本発明方法の実施例を挙げるが2本発明方法は、
これらの実施例によって制限されるものではない。
[Example] Next, examples of the method of the present invention will be given. Two examples of the method of the present invention are as follows.
The invention is not limited to these examples.

実施例1 (ペンタシル型ゼオライトの調製) 水1,200gにケイ酸ナトリウム957gを溶解させ
た水溶液中に、水1,600gに硫酸アルミニウム41
g、!硫酸80g、塩化ナトリウム360gを溶解させ
た水溶液を、30分で徐々に攪拌しながら加え混合した
Example 1 (Preparation of pentasil type zeolite) In an aqueous solution in which 957 g of sodium silicate was dissolved in 1,200 g of water, 41 g of aluminum sulfate was dissolved in 1,600 g of water.
G,! An aqueous solution containing 80 g of sulfuric acid and 360 g of sodium chloride was gradually added and mixed over 30 minutes with stirring.

更に、臭化テトラプロピルアンモニウム120gを加え
、pH10に調整した。
Furthermore, 120 g of tetrapropylammonium bromide was added to adjust the pH to 10.

この混合液をオートクレーブに仕込み、165゛Cで1
6時間攪拌したところ、結晶化した。
Pour this mixture into an autoclave and heat it at 165°C for 1
After stirring for 6 hours, crystallization occurred.

生成物を分離後、水洗、乾燥して基剤となる5i02/
Al−,03−62,7のペンタシル型であるZSM−
5ゼオライトを得た。
After separating the product, it is washed with water and dried to form the base 5i02/
ZSM-, which is a pentasil type of Al-,03-62,7
5 zeolite was obtained.

(プロトン型ペンタシル型ゼオライトの調製)硝酸アン
モニウム1 m o l / lのi液500m1に、
上記のペンタシル型ゼオライト20gを投入し、1昼夜
攪拌しながら、還流後、遠心分離した。
(Preparation of proton type pentasil type zeolite) To 500 ml of i-liquid containing 1 mol/l ammonium nitrate,
20 g of the above-mentioned pentasil type zeolite was added, and the mixture was refluxed and centrifuged while stirring all day and night.

これを純水で5回洗浄し、110℃で終夜乾燥後、50
0°Cで3時間空気焼成してプロトン型23M−5ゼオ
ライトを調製した。
This was washed 5 times with pure water, dried at 110°C overnight, and then
Proton type 23M-5 zeolite was prepared by air calcination at 0°C for 3 hours.

(NOxの除去反応) 上記のようにして調製したプロトン型ZSM5ゼオライ
ト1gと市販の0.5%白金アルミナ1gを常圧固定床
流通式反応装置に充填しく上流側にH/ZSM−5、下
流側に白金アルミナを配置)、表1に示す反応温度で、
1.000ppmの一酸化窒素(以下、rNOJと記す
)と10%の酸素と300ppmのプロパンを含むヘリ
ウムガスを、毎分60m1の流速で流して反応を行った
(NOx removal reaction) 1 g of proton type ZSM5 zeolite prepared as described above and 1 g of commercially available 0.5% platinum alumina were packed into an atmospheric pressure fixed bed flow reactor. Platinum alumina is placed on the side), at the reaction temperature shown in Table 1,
The reaction was carried out by flowing helium gas containing 1.000 ppm of nitrogen monoxide (hereinafter referred to as rNOJ), 10% oxygen, and 300 ppm of propane at a flow rate of 60 ml/min.

Noの還元分解率は生成した窒素の収率から求め、反応
ガスの分析はガスクロマトグラフを用いて行った。
The reductive decomposition rate of No was determined from the yield of produced nitrogen, and the reaction gas was analyzed using a gas chromatograph.

NOの還元分解率、排出された一酸化戻素、プロパン及
び二酸化炭素の量を実施例1として表1に示した。
Table 1 shows the reduction decomposition rate of NO and the amounts of back monoxide, propane, and carbon dioxide discharged as Example 1.

表1から明らかなように、この場合は、NOxの還元分
解が起こると同時に、プロパンがほぼ完全に二酸化炭素
に酸化されていることが判る。
As is clear from Table 1, in this case, propane is almost completely oxidized to carbon dioxide at the same time as the reductive decomposition of NOx occurs.

比較例1 用いる触媒を、1gのH/ZSM−5のみとした以外は
、実施例1と同様にして反応を行った結果を比較例1と
して表1に併せて示した。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the catalyst used was only 1 g of H/ZSM-5. The results are also shown in Table 1 as Comparative Example 1.

表1から明らかなように、この場合は、多量の一酸化炭
素が流出し、反応温度が300°Cと低温の場合はプロ
パンも多量に流出し、有害成分が残留していることが判
る。
As is clear from Table 1, in this case, a large amount of carbon monoxide flows out, and when the reaction temperature is as low as 300°C, a large amount of propane also flows out, indicating that harmful components remain.

実施例2 市販の水酸化ジルコニウムLogを濾紙上に採り、0.
5mof!//!の硫酸を150mA流した後、風乾し
、次に空気気流中600°Cで3時間焼成して、硫酸処
理酸化ジルコニウムを得た。
Example 2 Commercially available zirconium hydroxide Log was taken on a filter paper and 0.
5mof! //! After flowing sulfuric acid at 150 mA, it was air-dried, and then calcined in an air stream at 600°C for 3 hours to obtain sulfuric acid-treated zirconium oxide.

得られた硫酸処理酸化ジルコニウム1gと市販の0.5
%白金アルミナ1gを実施例1と同様に常圧固定床流通
式反応装置に充填し、表2に示す反応温度で、1,00
0ppmのNOと10%の酸素と300ppmのプロパ
ンを含むヘリウムガスを、毎分60mj!の流速で流し
て反応を行った2NOの還元分解率の算出と排出ガスの
分析は、実施例1と同様に行った。
1 g of the obtained sulfuric acid-treated zirconium oxide and commercially available 0.5
% platinum alumina was charged into an ordinary pressure fixed bed flow reactor in the same manner as in Example 1, and at the reaction temperature shown in Table 2, 1 g of platinum alumina was added.
Helium gas containing 0 ppm NO, 10% oxygen, and 300 ppm propane at 60 mj/min! The calculation of the reductive decomposition rate of 2NO and the analysis of the exhaust gas were carried out in the same manner as in Example 1.

その結果は、実施例2として表2に示した。The results are shown in Table 2 as Example 2.

比較例2 用いる触媒を1gの硫酸処理ジルコニウムのみとした以
外は、実施例2と同様にして反応を行った結果を比較例
2として表2に併せて示した。
Comparative Example 2 The reaction was carried out in the same manner as in Example 2 except that only 1 g of sulfuric acid-treated zirconium was used as the catalyst. The results are also shown in Table 2 as Comparative Example 2.

実施例3 NOx還元触媒として市販のFCC用粉状アルミナ(表
面積285m”/g)を用い、また酸化触媒として30
%の酸化第二鉄をアルミナに担持させた触媒を用いた。
Example 3 Commercially available powdered alumina for FCC (surface area 285 m''/g) was used as the NOx reduction catalyst, and 30 m''/g was used as the oxidation catalyst.
% of ferric oxide supported on alumina was used.

酸化触媒は、38gの硝酸第二鉄(Fe(NOx)3−
9H,O)を300ml!の蒸留水に溶解し、これに市
販のγ−アルミナ35gを攪拌しながら加え、14%ア
ンモニア水をpH8になるまで滴下して水酸化鉄をアル
ミナ上に沈着させ、次いで濾過、水洗、乾燥後、空気中
500°Cで3時間焼成することにより得た。
The oxidation catalyst was 38 g of ferric nitrate (Fe(NOx)3-
300ml of 9H,O)! 35 g of commercially available γ-alumina was added thereto with stirring, and 14% ammonia water was added dropwise until the pH reached 8 to deposit iron hydroxide on the alumina, followed by filtration, washing with water, and drying. , was obtained by firing in air at 500°C for 3 hours.

上記アルミナと酸化触媒各1gを、実施例1と同様に常
圧固定床流通式反応装置に充填し、反応温度500℃で
、I、000ppmのNOと10%の酸素を含むヘリウ
ムガスを、毎分60m2の流速で流し、添加するプロパ
ンの量を表3に示すように変化させて反応を行った。
1 g each of the above alumina and oxidation catalyst were charged into an atmospheric fixed bed flow reactor as in Example 1, and at a reaction temperature of 500°C, helium gas containing 1,000 ppm of NO and 10% oxygen was added every time. The reaction was carried out by flowing at a flow rate of 60 m2 per minute and changing the amount of propane added as shown in Table 3.

NOの還元分解率の算出と排出ガスの分析は、実施例1
と同様に行い、その結果は実施例3として表3に示した
Calculation of NO reduction decomposition rate and analysis of exhaust gas are performed in Example 1.
The results are shown in Table 3 as Example 3.

比較例3 用いる触媒を1gのFCC用粉状アルミナ(表面積28
5m”/g)のみとした以外は、実施例3と同様にして
反応を行った結果を比較例3として表3に併せて示した
Comparative Example 3 The catalyst used was 1 g of powdered alumina for FCC (surface area 28
The reaction was carried out in the same manner as in Example 3, except that only 5 m''/g) was used, and the results are also shown in Table 3 as Comparative Example 3.

実施例4 硫酸アルミニウム(Aft(Son)z・16〜18H
,O)300gを1i!、の水に溶解し、攪拌しながら
24%硫酸チタン75gを滴下し、更に14%アンモニ
ア水をpH9になるまで滴下した。
Example 4 Aluminum sulfate (Aft(Son)z・16-18H
, O) 300g 1i! was dissolved in water, and 75 g of 24% titanium sulfate was added dropwise while stirring, and then 14% aqueous ammonia was added dropwise until the pH reached 9.

次に、これを95℃ウォーターバス中で数時間熟成後、
濾過し、硫酸根が検出されなくなるまで水洗し、乾燥後
、空気中500℃で3時間焼成して、10%の酸化チタ
ンを含有するアルミナチタニア(/1.0.・T i 
Oz )を得た。
Next, after aging this in a 95°C water bath for several hours,
It is filtered, washed with water until no sulfate radicals are detected, dried, and then calcined in air at 500°C for 3 hours to produce alumina titania (/1.0.Ti) containing 10% titanium oxide.
Oz) was obtained.

得られたアルミナチタニア1gと市販の0. 5%パラ
ジウムアルミナ1gを、実施例1と同様に常圧固定床流
通式反応装置に充填し、表4に示す反応温度で、2.O
OOppmのNOと10%の酸素と600ppmのプロ
ピレンを含むヘリウムガスを、毎分60m1の流速で流
して反応を行った。
1 g of the obtained alumina titania and 0.0 g of commercially available alumina titania. 1 g of 5% palladium alumina was charged into an atmospheric fixed bed flow reactor in the same manner as in Example 1, and at the reaction temperature shown in Table 4, 2. O
The reaction was carried out by flowing helium gas containing Oppm NO, 10% oxygen, and 600 ppm propylene at a flow rate of 60 ml/min.

NOの還元分解率の算出と排出ガスの分析は、実施例1
と同様に行い、その結果は実施例4として表4に示した
Calculation of NO reduction decomposition rate and analysis of exhaust gas are performed in Example 1.
The results are shown in Table 4 as Example 4.

比較例4 用いる触媒を1gのアルミナチタニアのみとした以外は
、実施例4と同様にして反応を行った結果を比較例4と
して表4に併せて示した。
Comparative Example 4 The reaction was carried out in the same manner as in Example 4 except that only 1 g of alumina titania was used as the catalyst. The results are also shown in Table 4 as Comparative Example 4.

表1〜表4から明らかなように、本発明方法では、過剰
の酸素の存在下においても、NOxの還元分解率が効率
的に起こり、かつ主な有害成分である炭化水素と一酸化
炭素を酸化することができることが判る。
As is clear from Tables 1 to 4, in the method of the present invention, the reductive decomposition rate of NOx occurs efficiently even in the presence of excess oxygen, and the main harmful components, hydrocarbons and carbon monoxide, are removed. It turns out that it can be oxidized.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明方法によれば、酸素が過剰
に存在する酸化雰囲気において、効率的に排ガス中のN
Oxを除去することができると共に、−酸化炭素等のよ
うな有害成分の排出をも効果的に防ぐことができる。
As detailed above, according to the method of the present invention, in an oxidizing atmosphere where oxygen is present in excess, N in exhaust gas can be efficiently removed.
Not only can Ox be removed, but also the discharge of harmful components such as -carbon oxide can be effectively prevented.

これは、本発明にかかるプロトン型ゼオライト若しくは
アルカリ金属型ゼオライト又は酸性を有する金属酸化物
が、炭化水素の存在下で、NOxと炭化水素との反応を
優先的に促進させることに加えて、酸化触媒を用いるこ
とにより反応条件によっては流出することのある未反応
あるいは生成する炭化水素、−酸化炭素、あるいはその
他の酸化中間生成物を完全に酸化して、二酸化炭素及び
水蒸気とすることができるからである。
This is because the proton type zeolite, alkali metal type zeolite, or acidic metal oxide according to the present invention not only preferentially promotes the reaction between NOx and hydrocarbons in the presence of hydrocarbons, but also By using a catalyst, unreacted or generated hydrocarbons, carbon oxides, or other oxidation intermediate products that may flow out depending on the reaction conditions can be completely oxidized into carbon dioxide and water vapor. It is.

このように、本発明方法は、両者の触媒を組合せること
によって、ディーゼル機関排ガスをはじめ種々の設備か
らの排ガス中から効率よくNOxを除去することができ
るのと同時に、有害成分の排出を防ぐことができ、極め
て工業的価値が高いものである。
As described above, by combining both types of catalysts, the method of the present invention can efficiently remove NOx from diesel engine exhaust gas and other exhaust gases from various equipment, and at the same time prevent the emission of harmful components. It has extremely high industrial value.

特許出願人 工 業 技 術 院 長 株式会社コスモ総合研究所 手続補正書 平成2年10月1日 平成2年特許願第204102号 2、発明の名称 住 所 東京都港区芝浦−丁目1番1号名 称 株式会
社 コスモ総合研究所 代表者  岩  佐     孜 (他1名)4、代理
人 住 所〒105東京都港区東新橋2−10−7中銀第2
新橋マンジオン302 置 03(5472)4708 7、補正の対象 明細書の発明の詳細な説明の欄 8、補正の内容 (1)明細書6頁18〜19行の「Al2O2」を「A
l2O3」と訂正する。
Patent applicant Director of the Institute of Industrial Science and Technology Cosmo Research Institute Co., Ltd. Procedural amendment October 1, 1990 1990 Patent Application No. 204102 2 Name of invention Address 1-1 Shibaura-chome, Minato-ku, Tokyo Name: Cosmo Research Institute Co., Ltd. Representative: Kei Iwasa (and 1 other person) 4, Agent address: Chugin 2, 2-10-7 Higashi-Shinbashi, Minato-ku, Tokyo 105
Shinbashi Mansion 302 Place 03 (5472) 4708 7, Detailed explanation of the invention column 8 of the specification subject to amendment, Contents of the amendment (1) “Al2O2” on page 6 lines 18-19 of the specification was replaced with “A
I2O3” is corrected.

(2)同8頁4行のrTiQ」をrTiQ2」と訂正す
る。
(2) Correct "rTiQ" in line 4 of page 8 to "rTiQ2".

(3)同14頁10行の「メタン置換」を「メタン換算
」と訂正する。
(3) On page 14, line 10, "methane substitution" is corrected to "methane conversion."

(4)同29頁3行の「分解率」を「分解」と訂正する
(4) "Decomposition rate" in line 3 on page 29 is corrected to "decomposition."

(他1名)(1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)過剰の酸素が存在する酸化雰囲気中、炭化水素の
存在下において、プロトン型ゼオライト、アルカリ金属
型ゼオライト又は酸性を有する金属酸化物から選ばれる
1種以上の触媒と窒素酸化物を含む排ガスとを接触させ
、次いで該排ガスを酸化触媒に接触させることを特徴と
する排ガス浄化方法。
(1) Exhaust gas containing nitrogen oxides and one or more catalysts selected from proton zeolites, alkali metal zeolites, or acidic metal oxides in an oxidizing atmosphere containing excess oxygen and in the presence of hydrocarbons. 1. A method for purifying exhaust gas, which comprises bringing the exhaust gas into contact with an oxidation catalyst and then bringing the exhaust gas into contact with an oxidation catalyst.
(2)酸性を有する金属酸化物が、硫酸根を有する化合
物により処理した金属酸化物であることを特徴とする請
求項1記載の排ガス浄化方法。
(2) The exhaust gas purification method according to claim 1, wherein the acidic metal oxide is a metal oxide treated with a compound having a sulfate group.
JP2204102A 1990-05-28 1990-08-01 Exhaust gas purification method Granted JPH0490826A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2204102A JPH0490826A (en) 1990-08-01 1990-08-01 Exhaust gas purification method
DE69125649T DE69125649T2 (en) 1990-05-28 1991-05-28 Process for removing nitrogen oxides from exhaust gases
EP91108690A EP0459396B1 (en) 1990-05-28 1991-05-28 Process for removing nitrogen oxides from exhaust gases
KR1019910008697A KR100201748B1 (en) 1990-05-28 1991-05-28 Process for removing nitrogen oxides from exhaust gases
US07/967,578 US5336476A (en) 1990-05-28 1992-10-27 Process for removing nitrogen oxides in exhaust gases to nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2204102A JPH0490826A (en) 1990-08-01 1990-08-01 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH0490826A true JPH0490826A (en) 1992-03-24
JPH0516886B2 JPH0516886B2 (en) 1993-03-05

Family

ID=16484834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204102A Granted JPH0490826A (en) 1990-05-28 1990-08-01 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JPH0490826A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531326A (en) * 1991-01-08 1993-02-09 Sekiyu Sangyo Kasseika Center Method for removing nitrogen oxide in exhaust gas
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
JPH07246318A (en) * 1994-03-11 1995-09-26 Toyota Central Res & Dev Lab Inc Method for reducing nox
JP2006116445A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2006116444A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
WO2008020535A1 (en) * 2006-08-15 2008-02-21 Idemitsu Kosan Co., Ltd. Method for decomposing dinitrogen monoxide
JP2016128144A (en) * 2015-01-09 2016-07-14 株式会社デンソー Wastewater treatment method and wastewater treatment equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501088A (en) * 1973-05-08 1975-01-08
US4297328A (en) * 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
JPS63100919A (en) * 1986-10-17 1988-05-06 Toyota Central Res & Dev Lab Inc Purifying method for exhaust gas and catalyst
JPS63283727A (en) * 1987-04-17 1988-11-21 バイエル・アクチエンゲゼルシヤフト Method and apparatus for reducing nitrogen oxide
JPH01139145A (en) * 1987-11-25 1989-05-31 Toyota Motor Corp Catalyst for controlling exhaust emission
JPH02149317A (en) * 1988-11-29 1990-06-07 Ind Res Inst Japan Removing nitrogen oxide in flue-gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501088A (en) * 1973-05-08 1975-01-08
US4297328A (en) * 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
JPS63100919A (en) * 1986-10-17 1988-05-06 Toyota Central Res & Dev Lab Inc Purifying method for exhaust gas and catalyst
JPS63283727A (en) * 1987-04-17 1988-11-21 バイエル・アクチエンゲゼルシヤフト Method and apparatus for reducing nitrogen oxide
JPH01139145A (en) * 1987-11-25 1989-05-31 Toyota Motor Corp Catalyst for controlling exhaust emission
JPH02149317A (en) * 1988-11-29 1990-06-07 Ind Res Inst Japan Removing nitrogen oxide in flue-gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531326A (en) * 1991-01-08 1993-02-09 Sekiyu Sangyo Kasseika Center Method for removing nitrogen oxide in exhaust gas
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
US5756057A (en) * 1993-04-28 1998-05-26 Nippon Shokubai Co., Ltd. Method for removal of nitrogen oxides from exhaust gas
JPH07246318A (en) * 1994-03-11 1995-09-26 Toyota Central Res & Dev Lab Inc Method for reducing nox
JP2006116445A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2006116444A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
WO2008020535A1 (en) * 2006-08-15 2008-02-21 Idemitsu Kosan Co., Ltd. Method for decomposing dinitrogen monoxide
JP2016128144A (en) * 2015-01-09 2016-07-14 株式会社デンソー Wastewater treatment method and wastewater treatment equipment

Also Published As

Publication number Publication date
JPH0516886B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
KR100201748B1 (en) Process for removing nitrogen oxides from exhaust gases
EP0459396B1 (en) Process for removing nitrogen oxides from exhaust gases
JPH0538420A (en) Treatment method for removing nitrogen oxide
JPH04281844A (en) Catalyst for purification of nitrogen oxide
JPH0490826A (en) Exhaust gas purification method
JPH0483516A (en) Removal of nitrogen oxide
JP2691643B2 (en) Exhaust gas purification method
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JPH04118030A (en) Method of removing nitrogen oxide
JP2506598B2 (en) Nitrogen oxide removal method
JPH06170166A (en) Removal of nitrogen oxide
JP3271802B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2595370B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3395219B2 (en) Nitrogen oxide removal method
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3110921B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH04193347A (en) Catalyst for purification of exhaust gas
JPH06210171A (en) Denitration catalyst
JP2601018B2 (en) Exhaust gas purification catalyst
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH06198173A (en) Catalyst for purifying waste gas and purifying method for nitrogen oxide
JPH0780316A (en) Waste gas purification catalyst and method for removing nox
JPH0760064A (en) Removing process for nitrogen oxide
JPH06198192A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 18