JPH0538420A - Treatment method for removing nitrogen oxide - Google Patents

Treatment method for removing nitrogen oxide

Info

Publication number
JPH0538420A
JPH0538420A JP3041363A JP4136391A JPH0538420A JP H0538420 A JPH0538420 A JP H0538420A JP 3041363 A JP3041363 A JP 3041363A JP 4136391 A JP4136391 A JP 4136391A JP H0538420 A JPH0538420 A JP H0538420A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
hydrocarbons
nox
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3041363A
Other languages
Japanese (ja)
Other versions
JP2598717B2 (en
Inventor
Yoshiaki Kindaichi
嘉昭 金田一
Hideaki Hamada
秀昭 浜田
Tatsuhiko Ito
建彦 伊藤
Motoi Sasaki
基 佐々木
Mitsunori Tabata
光紀 田畑
Fujio Suganuma
藤夫 菅沼
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Agency of Industrial Science and Technology
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Cosmo Oil Co Ltd, Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3041363A priority Critical patent/JP2598717B2/en
Publication of JPH0538420A publication Critical patent/JPH0538420A/en
Application granted granted Critical
Publication of JP2598717B2 publication Critical patent/JP2598717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove NOx in an exhaust gas efficiently. CONSTITUTION:From a viewpoint that in the reduction reaction between NOx and hydrocarbons on a reduction catalyst in an oxidative atmosphere, NO2, is reduced more easily than NO, an exhaust gas is previously contacted with an oxidation catalyst to oxidize NO in the exhaust gas into NO2. The treated exhaust gas, in an oxidative atmosphere containing excessive oxygen and in the presence of hydrocarbons, is contacted with a reduction catalyst selected from zeolite of a proton type, zeolite of an alkali metal type, and acid metal oxide (metal oxide treated with a compound having sulfate group to reduce NO2, in the exhaust gas into nitrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化物
を予め二酸化窒素に変換し、過剰の酸素が存在する全体
として酸化条件下において、該排ガスを、少量添加した
炭化水素類の存在下で、特定の触媒と接触させ、排ガス
中の窒素酸化物を除去する方法に関する。
TECHNICAL FIELD The present invention relates to the presence of hydrocarbons to which nitrogen oxides in exhaust gas have been previously converted into nitrogen dioxide, and the exhaust gas has been added in a small amount under oxidizing conditions as a whole in the presence of excess oxygen. The following relates to a method for removing nitrogen oxides in exhaust gas by contacting with a specific catalyst.

【0002】[0002]

【従来の技術】各種の排ガス中の窒素酸化物(以下、
「NOx」)は、健康に有害であり、かつ光化学スモッ
グや酸性雨の発生原因ともなり得るため、その効果的処
理手段の開発が望まれている。
2. Description of the Related Art Nitrogen oxides in various exhaust gases (hereinafter referred to as
Since "NOx") is harmful to health and can cause photochemical smog and acid rain, it is desired to develop an effective treatment means.

【0003】従来、このNOxの除去方法として、触媒
を用いて排ガス中のNOxを低減する方法が既にいくつ
か実用化されている。例えば、(イ)ガソリン自動車に
おける三元触媒法や、(ロ)ボイラー等の大型設備排出
源からの排ガスについてアンモニアを用いる選択的接触
還元法が挙げられる。また、その他の提案されている方
法としては、(ハ)炭化水素を用いる排ガス中のNOx
の除去方法として、各種金属を含むゼオライトを炭化水
素の存在下でNOxを含むガスと接触させる方法(特開
昭63−283727号公報等)があり、触媒としては
ゼオライトに各種の金属を添加したものが提案されてい
る。
Conventionally, several methods for reducing NOx in exhaust gas using a catalyst have been put into practical use as methods for removing NOx. For example, (a) a three-way catalyst method for gasoline automobiles, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility emission source such as a boiler. Further, as another proposed method, (c) NOx in exhaust gas using hydrocarbon
There is a method for removing zeolite containing various metals with a gas containing NOx in the presence of hydrocarbons (Japanese Patent Laid-Open No. 63-283727, etc.), and various metals are added to zeolite as a catalyst. Things have been proposed.

【0004】更に、本発明者らにより、(ニ)炭化水素
を用いる排ガス中のNOxの除去方法として、炭化水素
の存在下で、特定のゼオライトや酸性を有する金属酸化
物とNOxを含む排ガスとを接触させる方法が提案され
ている(特願平2−139340号公報)。
Further, the present inventors have proposed (d) a method for removing NOx in exhaust gas using hydrocarbons, in the presence of hydrocarbons, a specific zeolite or an exhaust gas containing NOx and a metal oxide having acidity. There has been proposed a method of contacting with each other (Japanese Patent Application No. 2-139340).

【0005】[0005]

【発明が解決しようとする課題】上記(イ)の方法は、
自動車の燃焼排ガス中に含まれる炭化水素成分と一酸化
炭素を触媒によって水と二酸化炭素とし、同時にNOx
を還元して窒素とするものであるが、NOxに含まれる
酸素量と、炭化水素成分と一酸化炭素が酸化されるのに
必要とする酸素量とが化学的に等量となるように燃焼を
調整する必要があり、ディーゼルエンジンのように過剰
の酸素が存在する系では、原理的に適用は不可能であ
る。
The above method (a) is
The hydrocarbon components and carbon monoxide contained in the exhaust gas of automobiles are converted into water and carbon dioxide by a catalyst, and at the same time NOx
Is reduced to nitrogen, but is burned so that the amount of oxygen contained in NOx and the amount of oxygen required to oxidize hydrocarbon components and carbon monoxide are chemically equivalent. Must be adjusted, and cannot be applied in principle in a system in which excess oxygen exists, such as a diesel engine.

【0006】また、(ロ)の方法では、有毒かつ可燃性
の高圧ガスであるアンモニアを用いるため保安上巨大な
設備が必要であり、排ガス発生源が移動する場合に適用
することは技術的に極めて困難である。
In addition, since the method (b) uses ammonia, which is a toxic and combustible high-pressure gas, a huge facility is required for safety, and it is technically applicable to apply when the exhaust gas source moves. It's extremely difficult.

【0007】一方、(ハ)の方法は、ガソリン自動車を
主な対象としており、ディーゼル機関の排ガス条件下で
は適用が困難であると共に、活性も不充分である。すな
わち、触媒の成分として各種金属類を含むため、ディー
ゼル機関から排出される硫黄酸化物により被毒されるば
かりでなく、添加した金属が凝集する等して活性の低下
も起こるため、ディーゼル機関からの排ガス中のNOx
を除去するには適さず、実用化には至っていない。
On the other hand, the method (c) is mainly applied to gasoline automobiles, and it is difficult to apply it under the exhaust gas conditions of a diesel engine and its activity is insufficient. That is, since various metals are contained as components of the catalyst, not only are they poisoned by sulfur oxides discharged from the diesel engine, but also the activity of the added metal is reduced due to aggregation of the added metal. In NOx exhaust gas
It is not suitable for the removal of pesticides and has not been put to practical use.

【0008】また、(ニ)の方法は、炭化水素の存在下
で従来よりも効率的にNOxを分解除去できるが、これ
らの触媒を用いて一層高い割合でNOxを除去すること
ができる方法が切望させている。
In the method (d), NOx can be decomposed and removed more efficiently than in the conventional method in the presence of hydrocarbons, but a method capable of removing NOx at a higher rate using these catalysts is available. Coveted.

【0009】本発明は、以上の(イ)〜(ニ)に存在す
る各種の問題について検討した結果なされたものであっ
て、酸化雰囲気において、ディーゼル機関排ガスをはじ
め、種々の設備からの排ガス中のNOxを効率良く除去
する方法を提案することを目的とする。
The present invention has been made as a result of studying various problems existing in the above (a) to (d). In the oxidizing atmosphere, exhaust gas from various facilities including diesel engine exhaust gas is generated. It is an object of the present invention to propose a method for efficiently removing NOx of.

【0010】[0010]

【課題を解決するための手段及び作用】本発明者等は、
上記の従来技術に存在する問題を解決するために、鋭意
研究を重ねた結果、排ガス中のNOxを予め二酸化窒素
(以下、「NO2」)に変換した後、炭化水素類の存在
下において、特定の触媒に接触させることにより、従来
より高い割合でNOxを除去することができることを見
出し、本発明を完成するに至った。
Means and Actions for Solving the Problems The present inventors have
In order to solve the above problems existing in the prior art, as a result of intensive studies, after converting NOx in exhaust gas into nitrogen dioxide (hereinafter, “NO 2 ”) in advance, in the presence of hydrocarbons, It was found that NOx can be removed at a higher rate than before by contacting with a specific catalyst, and the present invention has been completed.

【0011】すなわち、本発明の窒素酸化物の除去処理
方法は、排ガス中の窒素酸化物を予め二酸化窒素に変換
し、次いで該排ガスを過剰の酸素が存在する酸化雰囲気
中、炭化水素類の存在下において、プロトン型ゼオライ
ト,アルカリ金属型ゼオライト又は酸性を有する金属酸
化物から選ばれる1種以上の触媒に接触させることを特
徴とする。また、本発明の排ガス浄化方法は、上記の酸
性を有する金属酸化物として、硫酸根を有する化合物に
より処理した金属酸化物を使用することをも特徴とす
る。
That is, in the method for removing nitrogen oxides of the present invention, the nitrogen oxides in the exhaust gas are converted into nitrogen dioxide in advance, and then the exhaust gas is subjected to the presence of hydrocarbons in an oxidizing atmosphere containing excess oxygen. It is characterized in that it is brought into contact with at least one catalyst selected from proton-type zeolite, alkali metal-type zeolite, and acidic metal oxides. Further, the exhaust gas purification method of the present invention is also characterized in that a metal oxide treated with a compound having a sulfate group is used as the above-mentioned acidic metal oxide.

【0012】以下、本発明方法の詳細を作用と共に説明
する。ディーゼル機関,ガソリン機関をはじめ、各種燃
焼設備から発生するNOxは、ほぼ全量が一酸化窒素
(以下、「NO」)であり、外部に排出される間に一部
がNO2に酸化され、NOxの濃度測定場所によってN
2の割合は変化するが、通常の燃焼設備の排ガスでは
約90%以上がNOである。
The details of the method of the present invention will be described below together with the operation. Diesel engine, including gasoline engine, NOx generated from various combustion equipment, almost all the nitric oxide (hereinafter, "NO"), and some is oxidized to NO 2 while being discharged to the outside, NOx N depending on the concentration measurement location
Although the proportion of O 2 changes, about 90% or more is NO in the exhaust gas of ordinary combustion equipment.

【0013】従来、NOxを窒素に還元して除去する場
合、NO2はNOよりも窒素の価数が高く、一般には還
元が困難であると考えられていた。ところが、本発明者
等の研究によれば、還元触媒上での炭化水素類によるN
Oxの選択還元に関しては、NOよりもNO2が窒素に
還元され易いという、当初全く予見し得ない驚くべき結
果が得られ、本発明はこの知見を基に完成されたもので
ある。
Conventionally, when NOx is reduced to nitrogen and removed, NO 2 has a higher valence of nitrogen than NO, and it has been generally considered that reduction is difficult. However, according to the study by the present inventors, N by the hydrocarbons on the reduction catalyst is reduced.
With respect to the selective reduction of Ox, a surprising result that NO 2 is more easily reduced to nitrogen than NO, which is completely unexpected, was initially obtained, and the present invention has been completed based on this finding.

【0014】本発明方法において、排ガス中のNOxを
予めNO2に変換するためには、対象とするガスを酸化
触媒又はオゾン,二酸化塩素等の酸化性物質と接触させ
る等の公知の方法を用いることができる。
In the method of the present invention, in order to convert NOx in the exhaust gas into NO 2 in advance, a known method such as contacting the target gas with an oxidation catalyst or an oxidizing substance such as ozone or chlorine dioxide is used. be able to.

【0015】ここで、排ガス中のNOからNO2への変
換は、NOの約70%以上、好ましくは約90%以上、
特に好ましくはほぼ全量をNO2とすることにより、効
率よくNOxを除去することができる。
Here, the conversion of NO in the exhaust gas to NO 2 is about 70% or more, preferably about 90% or more of NO,
Particularly preferably, NOx can be efficiently removed by setting almost all the amount to NO 2 .

【0016】すなわち、本発明方法では、第1段階で被
処理排ガスを酸化触媒と接触させ、次いで還元剤である
炭化水素類を添加して、第2段階で還元触媒に接触させ
てNOxを除去するものである。
That is, in the method of the present invention, the exhaust gas to be treated is brought into contact with the oxidation catalyst in the first step, and then hydrocarbons as a reducing agent are added, and in the second step, it is brought into contact with the reducing catalyst to remove NOx. To do.

【0017】排ガス中のNOをNO2に酸化するために
用いる酸化触媒としては、活性アルミナ,シリカ,ジル
コニア,ゼオライト等の多孔質担体に、例えば、白金,
パラジウム,ロジウム,ルテニウム,イリジウム等の貴
金属、ランタン,セリウム,銅,鉄等の卑金属、三酸化
コバルトランタン、三酸化鉄ランタン,三酸化コバルト
ストロンチウム等のペロブスカイト型結晶構造物等の触
媒成分を単独又は2種以上を組み合わせて担持させたも
のが挙げられる。これらの触媒成分の担持量は、貴金属
では担体に対して約0.01〜2wt%程度であり、卑
金属では約5〜70wt%程度である。担持量が夫々少
な過ぎる場合は、酸化触媒としての効果が余り期待でき
ず、また夫々の適量を超えて担持してもそれに見合うだ
けの効果の向上は得られない。
As an oxidation catalyst used to oxidize NO in exhaust gas to NO 2 , a porous carrier such as activated alumina, silica, zirconia or zeolite can be used.
Noble metals such as palladium, rhodium, ruthenium and iridium, base metals such as lanthanum, cerium, copper and iron; perovskite type crystal structures such as cobalt lanthanum trioxide, lanthanum trioxide and cobalt strontium trioxide; The thing which carried in combination of 2 or more types is mentioned. The loading amount of these catalyst components is about 0.01 to 2 wt% for the noble metal and about 5 to 70 wt% for the base metal. If the supported amount is too small, the effect as an oxidation catalyst cannot be expected so much, and even if the supported amount exceeds the appropriate amount, the effect corresponding to it cannot be improved.

【0018】また、排ガス中のNOxをNO2に酸化す
る他の方法としてオゾンを用いることも可能である。こ
の場合は、オゾン発生器から発生させたオゾンを排ガス
中のNOx量に応じて添加することにより、NO2とす
ることができる。オゾンの添加量は、排ガス中のNOと
ほぼ等モル量添加することにより、NOxの大部分はN
2となるが、より完全にNO2とするためにやや過剰に
添加することが好ましい。
It is also possible to use ozone as another method for oxidizing NOx in exhaust gas to NO 2 . In this case, NO 2 can be obtained by adding ozone generated from the ozone generator according to the amount of NOx in the exhaust gas. The amount of ozone added is almost equimolar to NO in the exhaust gas so that most of NOx is N
Although it becomes O 2 , it is preferable to add it in a slight excess in order to make it completely NO 2 .

【0019】本発明方法において、上記のようにしてN
OをNO2に酸化した後、炭化水素類の存在下において
NO2を還元するために使用することができる還元触媒
は、プロトン型ゼオライト、アルカリ金属型ゼオライ
ト、又はアルミナ(酸化アルミニウム),シリカアルミ
ナのような酸性を有する金属酸化物から選ばれる1種以
上の還元触媒である。
In the method of the present invention, N
After oxidizing O to NO 2 , reduction catalysts that can be used to reduce NO 2 in the presence of hydrocarbons are proton-type zeolite, alkali metal-type zeolite, or alumina (aluminum oxide), silica-alumina. One or more reducing catalysts selected from metal oxides having acidity as described above.

【0020】本発明方法における上記のゼオライトは、
具体的には、ペンタシル型ゼオライト,モルデナイト,
Y型ゼオライト,X型ゼオライト,L型ゼオライト,シ
リカライト等の各種のゼオライトが使用できる。これら
ゼオライトのケイバン比(SiO2対Al23の式量
比)は、特に制限されるものではないが、熱や水蒸気に
対する安定性等から比較的高いものが好ましく、より好
ましくは約5〜200、更に好ましくは約10〜100
である。
The above-mentioned zeolite in the method of the present invention is
Specifically, pentasil-type zeolite, mordenite,
Various zeolites such as Y-type zeolite, X-type zeolite, L-type zeolite and silicalite can be used. The Cavern ratio of these zeolites (the formula weight ratio of SiO 2 to Al 2 O 3 ) is not particularly limited, but is preferably relatively high in view of stability against heat and steam, and more preferably about 5 to 5. 200, more preferably about 10-100
Is.

【0021】これらゼオライトは、公知の方法で製造す
ることができ、シリカ,シリカゾル,ケイ酸ナトリウム
等のシリカ源、アルミナゲル,アルミナゾル,アルミン
酸ナトリウム等のアルミナ源、水酸化ナトリウム,ケイ
酸ナトリウム等のアルカリ源、水、そして必要に応じて
アミン等の有機塩基を含む原料混合物を水熱合成し、生
成物を分離後、水洗、乾燥してアルカリ金属型ゼオライ
トとすることができる。完全にNa型とするためには、
イオン交換することにより可能となる。
These zeolites can be produced by a known method. Silica, silica sol, silica source such as sodium silicate, alumina gel, alumina sol, alumina source such as sodium aluminate, sodium hydroxide, sodium silicate, etc. The alkali metal type zeolite can be obtained by hydrothermally synthesizing a raw material mixture containing an alkali source, water, and optionally an organic base such as amine, separating the product, washing with water and drying. To make it completely Na type,
It becomes possible by ion exchange.

【0022】ここで、アルカリ金属型ゼオライトを、塩
化アンモニウムあるいは硝酸アンモニウム水溶液等で処
理してアンモニウム型のゼオライトとし、しかる後、約
400〜700℃の温度範囲で焼成してプロトン型ゼオ
ライトとすることができる。プロトン型ゼオライトを用
いることにより、より一層効率的にNO2を分解除去す
ることが可能となる。
Here, the alkali metal type zeolite may be treated with an ammonium chloride or ammonium nitrate aqueous solution to form an ammonium type zeolite, and then calcined at a temperature range of about 400 to 700 ° C. to form a proton type zeolite. it can. By using the proton type zeolite, NO 2 can be decomposed and removed more efficiently.

【0023】更に、本発明方法においては、酸性を有す
る金属酸化物をも使用することができ、例えば、アルミ
ナ(Al23),酸化チタン(TiO),酸化ジルコニ
ウム(ZrO2)等の金属酸化物、シリカアルミナ(S
iO2・Al23),シリカマグネシア(SiO2・Mg
O),シリカジルコニア(SiO2・ZrO2),アルミ
ナチタニア(Al23・TiO2)等のような複合酸化
物が挙げられる。
Further, in the method of the present invention, an acidic metal oxide can be used, and examples thereof include metals such as alumina (Al 2 O 3 ), titanium oxide (TiO), zirconium oxide (ZrO 2 ). Oxide, silica alumina (S
iO 2 · Al 2 O 3 ), silica magnesia (SiO 2 · Mg)
O), silica zirconia (SiO 2 .ZrO 2 ), alumina titania (Al 2 O 3 .TiO 2 ), and other complex oxides.

【0024】また、金属酸化物3成分以上からなるもの
でも固体酸性を示すものであれば有効に使用でき、酸性
が強く酸量が多いものが特に好ましい。
Further, even those composed of three or more metal oxides can be effectively used as long as they show solid acidity, and those having a strong acidity and a large amount of acid are particularly preferable.

【0025】その他の金属酸化物の例として、硫酸根を
有する化合物で処理して調製した金属酸化物を使用する
ことができ、未処理の金属酸化物よりもより一層効率的
にNO2を分解することができる。硫酸根を有する化合
物の具体例として、硫酸,硫酸アンモニウム等を挙げる
ことができ、その他処理後の乾燥焼成により金属酸化物
上で硫酸根が生成する化合物であれば用いることができ
る。硫酸根を有する化合物、例えば、硫酸による処理を
行う金属酸化物触媒の調製は、アルミナ(Al23),
酸化チタン(TiO2)等のような金属酸化物を、室温
で特定の濃度の硫酸と接触させ、乾燥後、特定の温度で
空気焼成することにより得られるが、非晶質の酸化物あ
るいは対応する水酸化物を硫酸で同様に処理することに
よって、より一層高い活性の触媒が得られる。処理に使
用する硫酸の濃度は、酸化物の種類により異なるが、通
常、約0.01〜10mol/l、好ましくは約0.1
〜5mol/lであり、該濃度の硫酸を触媒重量当たり
約5〜20倍量使用し、金属酸化物と接触させる。ここ
で、硫酸の濃度が約0.01mol/l未満では、硫酸
との接触によるNO2分解活性への効果は余り期待でき
ず、また約10mol/lを超えると、金属硫酸塩の生
成あるいは触媒構造の破壊等が起こる虞があり余り好ま
しくない。
As another example of the metal oxide, a metal oxide prepared by treating with a compound having a sulfate group can be used, and NO 2 is decomposed more efficiently than an untreated metal oxide. can do. Specific examples of the compound having a sulfate group include sulfuric acid, ammonium sulfate, and the like, and any other compound that produces a sulfate group on the metal oxide by dry baking after the treatment can be used. A compound having a sulfate group, for example, a metal oxide catalyst to be treated with sulfuric acid is prepared by using alumina (Al 2 O 3 ),
It can be obtained by bringing a metal oxide such as titanium oxide (TiO 2 ) into contact with sulfuric acid of a specific concentration at room temperature, drying and then calcining in air at a specific temperature. By similarly treating the hydroxides with sulfuric acid, an even more highly active catalyst is obtained. The concentration of sulfuric acid used for the treatment varies depending on the type of oxide, but is usually about 0.01 to 10 mol / l, preferably about 0.1.
˜5 mol / l, about 5 to 20 times the sulfuric acid concentration is used based on the weight of the catalyst, and it is contacted with the metal oxide. Here, when the concentration of sulfuric acid is less than about 0.01 mol / l, the effect on NO 2 decomposition activity due to contact with sulfuric acid cannot be expected so much, and when it exceeds about 10 mol / l, the formation of metal sulfate or the catalyst is promoted. There is a possibility that the structure may be broken, which is not preferable.

【0026】また、硫酸アンモニウムを硫酸根を有する
化合物として処理に用いる場合も、上記と同様の方法で
処理することができる。空気焼成温度も、酸化物の種類
により最適温度は異なるが、通常、約300〜850
℃、好ましくは約400〜700℃である。空気焼成温
度が約300℃未満では、処理に用いた硫酸等の化合物
が除去できず、触媒活性点が形成されない虞があり、8
50℃を超えると、触媒表面積の減少あるいは触媒活性
点の破壊が生じる可能性がある。
When ammonium sulfate is used as a compound having a sulfate group for the treatment, the treatment can be carried out in the same manner as above. The optimum temperature for air calcination also varies depending on the type of oxide, but is usually about 300 to 850.
C., preferably about 400-700.degree. If the air calcination temperature is less than about 300 ° C., the compounds such as sulfuric acid used for the treatment may not be removed, and the catalytic active sites may not be formed.
If it exceeds 50 ° C, the surface area of the catalyst may be reduced or the active sites of the catalyst may be destroyed.

【0027】これらの触媒を用いてNOxを除去する具
体例としては、酸化触媒を配置した反応器を排ガス導入
部(前段)に、還元触媒を配置した反応器を排ガス排出
部(後段)に配置し、その中間に炭化水素類の導入口を
設ける方法がある。また、一つの反応器に夫々の触媒を
要求特性に応じた比率で配置し、その酸化触媒と還元触
媒の境界部分に炭化水素類導入口を設けることも可能で
ある。
As a specific example of removing NOx using these catalysts, a reactor in which an oxidation catalyst is arranged is arranged in an exhaust gas introducing section (first stage), and a reactor in which a reducing catalyst is arranged is arranged in an exhaust gas discharging section (second stage). However, there is a method of providing an inlet for hydrocarbons in the middle. It is also possible to arrange each catalyst in one reactor at a ratio according to the required characteristics, and to provide a hydrocarbons inlet at the boundary between the oxidation catalyst and the reduction catalyst.

【0028】以上の触媒は、粉状,粒体状,ペレット
状,ハニカム状等、その形状、構造は問わない。また、
触媒の成型等の目的で使用するシリカ等の非酸性の酸化
物、シリカゾル、あるいはカーボンワックス,油脂等の
成型剤を混合することも可能である。
The above catalyst may have any shape and structure such as powder, granules, pellets and honeycombs. Also,
It is also possible to mix non-acidic oxides such as silica used for the purpose of molding the catalyst, silica sol, or molding agents such as carbon wax and fats and oils.

【0029】本発明方法の処理対象となるNOx含有ガ
スとしては、ディーゼル自動車や定置式ディーゼル機関
等のディーゼルエンジン排ガス,ガソリン自動車等のガ
ソリンエンジン排ガスをはじめ、硝酸製造工場,各種の
燃焼設備等の排ガスを挙げることができる。
The NOx-containing gas to be treated by the method of the present invention includes, for example, diesel engine exhaust gas from diesel automobiles and stationary diesel engines, gasoline engine exhaust gas from gasoline automobiles, nitric acid production plants, various combustion facilities, etc. Exhaust gas can be mentioned.

【0030】これら排ガス中のNOxの除去は、上記触
媒を用い、上記触媒に、酸化雰囲気中、炭化水素類の存
在下で、排ガスを接触させることにより行う。
The NOx in the exhaust gas is removed by using the above catalyst and bringing the exhaust gas into contact with the above catalyst in the presence of hydrocarbons in an oxidizing atmosphere.

【0031】ここで、酸化雰囲気とは、排ガス中に含ま
れる一酸化炭素,水素及び炭化水素類と、本発明方法お
いて必要に応じて添加する炭化水素類の還元性物質を完
全に酸化して水と二酸化炭素に変換するのに必要な酸素
量よりも過剰な酸素が含まれている雰囲気をいい、例え
ば、自動車等の内燃機関から排出される排ガスの場合に
は空気比が大きい状態(リーン領域)の雰囲気であり、
通常、過剰酸素率は約20〜200%程度である。
Here, the oxidizing atmosphere is used to completely oxidize carbon monoxide, hydrogen and hydrocarbons contained in the exhaust gas and reducing substances of hydrocarbons added as necessary in the method of the present invention. It means an atmosphere containing an excess of oxygen in excess of the amount of oxygen necessary to convert it into water and carbon dioxide.For example, in the case of exhaust gas discharged from an internal combustion engine of an automobile, the air ratio is large ( The atmosphere of the lean area)
Usually, the excess oxygen ratio is about 20 to 200%.

【0032】この酸化雰囲気中において、上記の排気上
流側に配置された酸化触媒は、NOをNO2に酸化し、
排気下流側に配置された還元触媒は、炭化水素類と酸素
との反応よりも、炭化水素類とNO2との反応を優先的
に促進させて、NO2を窒素に還元分解する。
In this oxidizing atmosphere, the oxidation catalyst arranged on the upstream side of the exhaust gas oxidizes NO into NO 2 .
The reduction catalyst arranged on the downstream side of the exhaust gas preferentially promotes the reaction between the hydrocarbons and NO 2 over the reaction between the hydrocarbons and oxygen to reduce NO 2 into nitrogen.

【0033】中間部で添加する炭化水素類の量は、特に
制限されないが、NO2の還元分解に必要な量よりも過
剰な方がより還元反応が進むので、過剰に添加するのが
好ましく、通常、炭化水素類の使用量はNO2の還元分
解に必要な理論量の約20〜2,000%過剰、好まし
くは約30〜1,500%過剰に存在させる。
The amount of the hydrocarbons added in the intermediate portion is not particularly limited, but an excessive amount than the amount necessary for the reductive decomposition of NO 2 promotes the reduction reaction, so it is preferable to add it in excess. Usually, the amount of hydrocarbons used is present in about 20 to 2,000% excess, preferably about 30 to 1,500% excess of the stoichiometric amount required for reductive decomposition of NO 2 .

【0034】ここで、必要な炭化水素類の理論量とは、
本発明においては、二酸化窒素(NO2)を還元分解す
るのに必要な炭化水素類と定義するものであり、例え
ば、炭化水素類としてプロパンを用いて1,000pp
mの一酸化窒素(NO)を酸素存在下で還元分解する際
のプロパンの理論量は200ppmとなる。一般には、
排ガス中のNOx量にもよるが、存在させる炭化水素類
の量は、メタン換算で約50〜10,000ppm程度
である。
Here, the theoretical amount of hydrocarbons required is
In the present invention, it is defined as hydrocarbons necessary for reductive decomposition of nitrogen dioxide (NO 2 ), for example, 1,000 pp using propane as the hydrocarbons.
The theoretical amount of propane when the nitric oxide (NO) of m is reductively decomposed in the presence of oxygen is 200 ppm. In general,
Although depending on the amount of NOx in the exhaust gas, the amount of hydrocarbons present is about 50 to 10,000 ppm in terms of methane.

【0035】本発明に用いる炭化水素類としては、気体
状,液体状を含め特に限定されず、反応温度で気化する
ものであれば使用可能である。気体状のものとしては、
メタン,エタン,プロパン,エチレン,プロピレン,ブ
チレン等の炭化水素を具体例として挙げることができ、
液体状のものとしては、ガソリン,軽油等の石油系炭化
水素をはじめ、メタノール,エタノール等のアルコール
類、ジメチルエーテル,エチルエーテル等のエーテル
類、アセトン,メチルエチルケトン等のケトン類等の含
酸素化合物を挙げることができる。
The hydrocarbons used in the present invention are not particularly limited, including those in a gaseous state and a liquid state, and any hydrocarbon that can be vaporized at the reaction temperature can be used. As a gas,
Specific examples include hydrocarbons such as methane, ethane, propane, ethylene, propylene and butylene.
Examples of liquids include petroleum hydrocarbons such as gasoline and light oil, alcohols such as methanol and ethanol, ethers such as dimethyl ether and ethyl ether, and oxygen-containing compounds such as ketones such as acetone and methyl ethyl ketone. be able to.

【0036】反応は、前述のように、酸化触媒を排気上
流側に、還元触媒を排気下流側に用意し、酸化雰囲気中
でNOx含有排ガスを通過させると共に、両触媒の中間
部から還元剤である炭化水素類を添加することにより行
う。
In the reaction, as described above, the oxidation catalyst is prepared on the upstream side of the exhaust gas, the reduction catalyst is prepared on the downstream side of the exhaust gas, the NOx-containing exhaust gas is passed through in the oxidizing atmosphere, and the reducing agent is added from the intermediate portion of both catalysts. This is done by adding certain hydrocarbons.

【0037】以上の工程により、排ガス中のNOxを還
元分解することができるが、更に排気の最終段階に酸化
触媒を配置した反応器を用意し、連続して排ガスを通過
させることにより、反応条件によっては排出される可能
性がある未反応の炭化水素類及び一酸化炭素等の有害成
分を酸化して除去することができる。
By the above steps, NOx in the exhaust gas can be reduced and decomposed. Further, by preparing a reactor having an oxidation catalyst at the final stage of exhaust gas and continuously passing the exhaust gas, reaction conditions can be improved. Depending on the situation, it is possible to oxidize and remove unreacted hydrocarbons and harmful components such as carbon monoxide that may be discharged.

【0038】本発明方法における反応温度は、触媒及び
炭化水素類の種類により最適温度が異なるが、排ガスの
温度に近い温度が排ガス加熱設備等を必要としないので
好ましく、約100〜800℃、特に約200〜600
℃の範囲での使用が有効である。ここで、オレフィン類
を添加炭化水素類として用いた場合は、パラフィン類を
用いた場合よりもやや低い温度が好ましい。反応圧力
は、特に制限されず、通常の排気圧力で反応が進行し、
また排ガスを触媒層へ導入する空間速度(SV)は、反
応温度等の他の反応条件や要求されるNOx及び有害成
分の除去率により異なり、特に制限はないが、約500
〜100,000Hr-1、好ましくは約1,000〜7
0,000Hr-1の範囲である。なお、本発明方法にお
いて、内燃機関からの排ガスを処理する場合は、上記触
媒は、排気マニホールドの下流に配置するのが好まし
い。
The reaction temperature in the method of the present invention varies depending on the type of catalyst and hydrocarbons, but a temperature close to the temperature of the exhaust gas is preferable because exhaust gas heating equipment and the like are not required, and it is preferably about 100 to 800 ° C. About 200-600
Use within the range of ° C is effective. Here, when olefins are used as the added hydrocarbons, the temperature is preferably slightly lower than when paraffins are used. The reaction pressure is not particularly limited, the reaction proceeds at a normal exhaust pressure,
The space velocity (SV) at which the exhaust gas is introduced into the catalyst layer varies depending on other reaction conditions such as reaction temperature and required NOx and harmful component removal rates, and is not particularly limited, but is about 500.
100 to 100,000 Hr -1 , preferably about 1,000 to 7
It is in the range of 10,000 Hr -1 . In the method of the present invention, when treating the exhaust gas from the internal combustion engine, it is preferable that the catalyst be arranged downstream of the exhaust manifold.

【0039】[0039]

【実施例】次に、本発明方法の実施例を挙げるが,本発
明方法は、これらの実施例によって制限されるものでは
ない。 実施例1 (ペンタシル型ゼオライトの調製)水1,200gにケ
イ酸ナトリウム957gを溶解させた水溶液中に、水
1,600gに硫酸アルミニウム96g,濃硫酸80
g,塩化ナトリウム360gを溶解させた水溶液を、3
0分で徐々に攪拌しながら加え混合した。更に、臭化テ
トラプロピルアンモニウム120gを加え、pH10に
調整した。この混合液をオートクレーブに仕込み、16
5℃で16時間攪拌したところ、結晶化した。生成物を
分離後、水洗,乾燥して基剤となるSiO2/Al23
=34.5のペンタシル型であるZSM−5ゼオライト
を得た。
EXAMPLES Next, examples of the method of the present invention will be given, but the method of the present invention is not limited to these examples. Example 1 (Preparation of pentasil-type zeolite) In an aqueous solution prepared by dissolving 957 g of sodium silicate in 1,200 g of water, 96 g of aluminum sulfate and 80 g of concentrated sulfuric acid in 1,600 g of water.
g, an aqueous solution in which 360 g of sodium chloride is dissolved is added to 3
The mixture was gradually added with stirring for 0 minutes and mixed. Further, 120 g of tetrapropylammonium bromide was added to adjust the pH to 10. Charge this mixture into an autoclave and
Upon stirring at 5 ° C for 16 hours, crystallization occurred. After separating the product, it is washed with water and dried to form the base SiO 2 / Al 2 O 3
= 34.5 pentasil type ZSM-5 zeolite was obtained.

【0040】(プロトン型ペンタシル型ゼオライトの調
製)硝酸アンモニウム1mol/lの溶液500ml
に、上記のペンタシル型ゼオライト20gを投入し、1
昼夜攪拌しながら、還流後、遠心分離した。これを純水
で5回洗浄し、110℃で終夜乾燥後、500℃で3時
間空気焼成してプロトン型ZSM−5ゼオライトを調製
した。
(Preparation of Proton-Type Pentacyl-Type Zeolite) Ammonium nitrate 1 mol / l solution 500 ml
Then, 20 g of the above pentasil-type zeolite is charged into
The mixture was refluxed while stirring day and night, and then centrifuged. This was washed 5 times with pure water, dried overnight at 110 ° C., and air-baked at 500 ° C. for 3 hours to prepare a proton-type ZSM-5 zeolite.

【0041】(NOxの除去反応)酸化触媒として市販
の0.5%白金アルミナ0.1gと、還元触媒として上
記のようにして調製したH/ZSM−5ゼオライト0.
1gを常圧固定床流通式反応装置に充填し(上流側に白
金アルミナ、下流側にH/ZSM−5を配置し、中間部
に炭化水素類注入口を設ける)、表1に示す反応温度
で、1,000ppmのNOと10%の酸素を含むヘリ
ウムガスを毎分60mlの流速で流し、炭化水素類注入
口からプロパンを含むヘリウムガスを毎分2mlの流速
で注入した。但し、プロパンの注入量は、プロパン注入
後の混合ガス中のプロパン濃度が表1に示なるように変
化させた。反応ガスの分析はガスクロマトグラフを用い
て行い、NOの還元分解率は生成した窒素の収率から求
めた。NOの還元分解率を表1に示した。
(NOx removal reaction) 0.1 g of commercially available 0.5% platinum alumina as an oxidation catalyst, and H / ZSM-5 zeolite 0.1% prepared as described above as a reduction catalyst.
1 g of a normal pressure fixed bed flow reactor was charged (platinum alumina on the upstream side, H / ZSM-5 was placed on the downstream side, and a hydrocarbons injection port was provided in the middle part), and the reaction temperature shown in Table 1 Then, helium gas containing 1,000 ppm NO and 10% oxygen was flowed at a flow rate of 60 ml / min, and helium gas containing propane was injected from a hydrocarbons inlet at a flow rate of 2 ml / min. However, the injection amount of propane was changed so that the propane concentration in the mixed gas after the injection of propane was as shown in Table 1. The analysis of the reaction gas was performed using a gas chromatograph, and the reduction decomposition rate of NO was determined from the yield of generated nitrogen. Table 1 shows the reductive decomposition rate of NO.

【0042】比較例1 上流側の酸化触媒の白金アルミナを使用せず、用いる触
媒を0.1gのH/ZSM−5のみとした以外は、実施
例1と同様にして反応を行い、結果を表1に併せて示し
た。表1から明らかなように、比較例1は実施例1に比
べてNOの還元分解率が低く、排気上流側に酸化触媒
(白金アルミナ)を配置し、NOを予めNO2に酸化し
ておくことが還元分解率を高める効果を有していること
が判る。
COMPARATIVE EXAMPLE 1 The reaction was carried out in the same manner as in Example 1 except that platinum alumina as the upstream oxidation catalyst was not used and only 0.1 g of H / ZSM-5 was used as the catalyst. The results are also shown in Table 1. As is clear from Table 1, Comparative Example 1 has a lower reductive decomposition rate of NO than Example 1, and an oxidation catalyst (platinum alumina) is arranged on the exhaust upstream side to oxidize NO to NO 2 in advance. It can be seen that this has the effect of increasing the reductive decomposition rate.

【0043】実施例2 用いる還元触媒のH/ZSM−5の量を0.02gとし
た以外は、実施例1と同様にして反応を行い、結果を表
1に併せて示した。
Example 2 The reaction was carried out in the same manner as in Example 1 except that the amount of H / ZSM-5 of the reducing catalyst used was 0.02 g, and the results are also shown in Table 1.

【0044】比較例2 上流側の酸化触媒の白金アルミナを使用せず、用いる触
媒を0.02gのH/ZSM−5のみとした以外は、実
施例2と同様にして反応を行い、結果を表1に併せて示
した。表1から明らかなように、比較例2は実施例2に
比べてNOの還元分解率が低く、排気上流側に酸化触媒
(白金アルミナ)を配置し、NOを予めNO2に酸化し
ておくことが還元分解率を高める効果を有していること
が判る。
Comparative Example 2 The reaction was carried out in the same manner as in Example 2 except that platinum oxide as the oxidation catalyst on the upstream side was not used and only 0.02 g of H / ZSM-5 was used as the catalyst. The results are also shown in Table 1. As is clear from Table 1, Comparative Example 2 has a lower reductive decomposition rate of NO than Example 2, and an oxidation catalyst (platinum alumina) is arranged on the upstream side of exhaust gas to oxidize NO to NO 2 in advance. It can be seen that this has the effect of increasing the reductive decomposition rate.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例3 酸化触媒は、38gの硝酸第二鉄(Fe(NO33・9
2O)を300mlの蒸留水に溶解し、これに市販の
γ−アルミナ35gを攪拌しながら加え、14%アンモ
ニア水をpH8になるまで滴下して水酸化鉄をアルミナ
上に沈着させ、次いで濾過、水洗、乾燥後、空気中50
0℃で3時間焼成することにより調製した。この酸化触
媒1gと、還元触媒として市販のγ−アルミナ1gを、
実施例1と同様に常圧固定床流通式反応装置に充填し、
表2に示す反応温度で、1,000ppmのNOと10
%の酸素を含むヘリウムガスを毎分60mlの流速で流
し、また炭化水素類注入口からプロパンを含むヘリウム
ガスを毎分2mlの流速で注入した。但し、プロパンの
注入量は、プロパン注入後の混合ガス中のプロパン濃度
が640ppmとなるようにした。排出ガスの分析と、
NOの還元分解率の算出は、実施例1と同様に行い、そ
の結果を表2に示した。
[0046] Example 3 oxidation catalyst, nitrate 38g ferric (Fe (NO 3) 3 · 9
H 2 O) was dissolved in 300 ml of distilled water, 35 g of commercially available γ-alumina was added thereto with stirring, and 14% aqueous ammonia was added dropwise until pH 8 was reached to deposit iron hydroxide on the alumina. 50 in the air after filtration, washing with water and drying
It was prepared by firing at 0 ° C. for 3 hours. 1 g of this oxidation catalyst and 1 g of commercially available γ-alumina as a reduction catalyst,
In the same manner as in Example 1, the atmospheric pressure fixed bed flow reactor was charged,
At the reaction temperatures shown in Table 2, 1,000 ppm NO and 10
Helium gas containing 60% oxygen was flowed at a flow rate of 60 ml / min, and helium gas containing propane was injected from the hydrocarbon inlet at a flow rate of 2 ml / min. However, the injection amount of propane was such that the propane concentration in the mixed gas after the injection of propane was 640 ppm. Analysis of exhaust gas,
The reduction decomposition rate of NO was calculated in the same manner as in Example 1, and the results are shown in Table 2.

【0047】比較例3 上流側の酸化触媒の鉄アルミナを使用せず、用いる触媒
を1gのアルミナのみとした以外は、実施例3と同様に
して反応を行い、結果を表2に併せて示した。表2から
明らかなように、比較例3は実施例3に比べてNOの還
元分解率が低く、排気上流側に酸化触媒(鉄アルミナ)
を配置し、NOを予めNO2に酸化しておくことが還元
分解率を高める効果を有していることが判る。
Comparative Example 3 The reaction was performed in the same manner as in Example 3 except that the iron oxide of the upstream oxidation catalyst was not used and only 1 g of alumina was used as the catalyst, and the results are also shown in Table 2. It was As is clear from Table 2, Comparative Example 3 has a lower reductive decomposition rate of NO than Example 3, and the oxidation catalyst (iron alumina) is provided on the upstream side of the exhaust gas.
It can be seen that arranging and oxidizing NO to NO 2 in advance has the effect of increasing the reductive decomposition rate.

【0048】実施例4 用いる還元触媒のアルミナの量を0.1gとした以外
は、実施例3と同様にして反応を行い、結果を表2に併
せて示した。
Example 4 The reaction was performed in the same manner as in Example 3 except that the amount of alumina used as the reducing catalyst was 0.1 g, and the results are also shown in Table 2.

【0049】比較例4 上流側の酸化触媒の鉄アルミナを使用せず、用いる触媒
を0.1gのアルミナのみとした以外は、実施例4と同
様にして反応を行い、結果を表2に併せて示した。表2
から明らかなように、比較例4は実施例4に比べてNO
の還元分解率が低く、排気上流側に酸化触媒(鉄アルミ
ナ)を配置し、NOを予めNO2に酸化しておくことが
還元分解率を高める効果を有していることが判る。
Comparative Example 4 The reaction was carried out in the same manner as in Example 4 except that the iron oxide of the upstream oxidation catalyst was not used and only 0.1 g of alumina was used as the catalyst, and the results are summarized in Table 2. Showed. Table 2
As is clear from the above, Comparative Example 4 has NO compared to Example 4.
It can be seen that the reduction decomposition rate is low and that an oxidation catalyst (iron alumina) is arranged on the upstream side of exhaust gas to oxidize NO into NO 2 in advance has the effect of increasing the reduction decomposition rate.

【0050】[0050]

【表2】 [Table 2]

【0051】実施例5 (ナトリウム型ペンタシル型ゼオライトの調製)硝酸ナ
トリウムの0.1mol/lの溶液を調製し、これに実
施例1と同様にして調製した基剤ZSM−5ゼオライト
を投入し、1昼夜攪拌しながら加熱還流後、遠心分離し
た。これを純水で5回洗浄し、110℃で終夜乾燥して
ナトリウム型ZSM−5ゼオライトを調製した。
Example 5 (Preparation of Sodium-Type Pentacyl-Type Zeolite) A 0.1 mol / l solution of sodium nitrate was prepared, and the base ZSM-5 zeolite prepared in the same manner as in Example 1 was added thereto, The mixture was heated and refluxed with stirring for 1 day and then centrifuged. This was washed 5 times with pure water and dried overnight at 110 ° C. to prepare sodium-type ZSM-5 zeolite.

【0052】(NOxの除去反応)酸化触媒として市販
の0.5%白金アルミナ0.5gと、還元触媒として上
記のようにして調製したナトリウム型ZSM−5ゼオラ
イト1gを常圧固定床流通式反応装置に充填し(上流側
に白金アルミナ、下流側にナトリウム型ZSM−5を配
置し、中間部に炭化水素類注入口を設ける)、表3に示
す反応温度で、1,000ppmのNOと10%の酸素
を含むヘリウムガスを毎分60mlの流速で流し、炭化
水素類注入口からプロパンを含むヘリウムガスを毎分2
mlの流速で注入した。但し、プロパンの注入量は、プ
ロパン注入後の混合ガス中のプロパン濃度が320pp
mとなるようにした。反応ガスの分析はガスクロマトグ
ラフを用いて行い、NOの還元分解率は生成した窒素の
収率から求めた。NOの還元分解率を表3に示した。
(NOx removal reaction) 0.5 g of commercially available 0.5% platinum alumina as an oxidation catalyst and 1 g of sodium-type ZSM-5 zeolite prepared as described above as a reduction catalyst are subjected to a reaction under a fixed pressure fixed bed flow system. After filling the device (platinum alumina on the upstream side, sodium type ZSM-5 on the downstream side and providing a hydrocarbons injection port in the middle), 1,000 ppm of NO and 10 were added at the reaction temperature shown in Table 3. Helium gas containing 60% oxygen was flowed at a flow rate of 60 ml / min, and helium gas containing propane was supplied from the hydrocarbon inlet at 2 ml / min.
It was injected at a flow rate of ml. However, the injection amount of propane is 320 pp in the mixed gas after the injection of propane.
It was set to m. The analysis of the reaction gas was performed using a gas chromatograph, and the reduction decomposition rate of NO was determined from the yield of generated nitrogen. Table 3 shows the reductive decomposition rate of NO.

【0053】比較例5 上流側の酸化触媒の白金アルミナを使用せず、用いる触
媒を1gのナトリウム型ZSM−5のみとした以外は、
実施例5と同様にして反応を行い、結果を表3に併せて
示した。表3から明らかなように、比較例5は実施例5
に比べてNOの還元分解率が低く、排気上流側に酸化触
媒(白金アルミナ)を配置し、NOを予めNO2に酸化
しておくことが還元分解率を高める効果を有しているこ
とが判る。
COMPARATIVE EXAMPLE 5 Platinum-alumina as the upstream oxidation catalyst was not used, but only 1 g of sodium type ZSM-5 was used as the catalyst.
The reaction was carried out in the same manner as in Example 5, and the results are also shown in Table 3. As is clear from Table 3, Comparative Example 5 is Example 5
The reduction decomposition rate of NO is lower than that of, and it may be effective to increase the reduction decomposition rate by arranging an oxidation catalyst (platinum alumina) on the upstream side of exhaust gas and oxidizing NO to NO 2 in advance. I understand.

【0054】実施例6 (硫酸処理酸化チタン触媒の調製)蒸留水1リットルを
ビーカーに採り、攪拌しながら徐々に市販のチタンイソ
プロポキシド200mlを加え、沈澱を生成させた。こ
れに濃硝酸170mlを静かに攪拌しながら加えて沈澱
を溶解させた。次に、25%アンモニア水200mlを
滴下してpHを8に調整して再び沈澱を生成させ、1昼
夜放置して濾別、水洗、乾燥させ、水酸化チタン(チタ
ン酸)を得た。この水酸化チタン10gを濾紙上に採
り、0.5mol/lの硫酸を150ml流した後、風
乾した。最後に空気気流中500℃で3時間焼成し、硫
酸処理酸化チタン触媒を得た。
Example 6 (Preparation of sulfuric acid-treated titanium oxide catalyst) 1 liter of distilled water was placed in a beaker, and 200 ml of commercially available titanium isopropoxide was gradually added with stirring to form a precipitate. 170 ml of concentrated nitric acid was gently added to this to dissolve the precipitate. Next, 200 ml of 25% ammonia water was added dropwise to adjust the pH to 8 to generate a precipitate again, and the precipitate was left standing for one day and night, filtered, washed with water and dried to obtain titanium hydroxide (titanic acid). 10 g of this titanium hydroxide was placed on a filter paper, 150 ml of 0.5 mol / l sulfuric acid was flowed, and then air dried. Finally, it was calcined in an air stream at 500 ° C. for 3 hours to obtain a sulfuric acid treated titanium oxide catalyst.

【0055】(NOxの除去反応)酸化触媒として実施
例3で調製した鉄アルミナ0.5g、還元触媒として上
記のようにして調製した硫酸処理酸化チタン1gを常圧
固定床流通式反応装置に充填し(上流側に鉄アルミナ、
下流側に硫酸処理酸化チタンを配置し、中間部に炭化水
素類注入口を設ける)、表3に示す反応温度で、1,0
00ppmのNOと10%の酸素を含むヘリウムガスを
毎分60mlの流速で流し、炭化水素類注入口からプロ
パンを含むヘリウムガスを毎分2mlの流速で注入し
た。但し、プロパンの注入量は、プロパン注入後の混合
ガス中のプロパン濃度が320ppmとなるようにし
た。反応ガスの分析はガスクロマトグラフを用いて行
い、NOの還元分解率は生成した窒素の収率から求め
た。NOの還元分解率を表3に示した。
(NOx removal reaction) 0.5 g of iron-alumina prepared in Example 3 as an oxidation catalyst and 1 g of sulfuric acid-treated titanium oxide prepared as described above as a reduction catalyst were packed in an atmospheric fixed bed flow reactor. (Alumina on the upstream side,
Sulfuric acid-treated titanium oxide is arranged on the downstream side, and a hydrocarbons injection port is provided in the middle part), at a reaction temperature shown in Table 3, 1,0
Helium gas containing 00 ppm NO and 10% oxygen was flowed at a flow rate of 60 ml / min, and helium gas containing propane was injected from the hydrocarbon inlet at a flow rate of 2 ml / min. However, the amount of propane injected was such that the propane concentration in the mixed gas after propane injection was 320 ppm. The analysis of the reaction gas was performed using a gas chromatograph, and the reduction decomposition rate of NO was determined from the yield of generated nitrogen. Table 3 shows the reductive decomposition rate of NO.

【0056】比較例6 上流側の酸化触媒の鉄アルミナを使用せず、用いる触媒
を1gの硫酸処理酸化チタンのみとした以外は、実施例
6と同様にして反応を行い、結果を表3に併せて示し
た。表3から明らかなように、比較例6は実施例6に比
べてNOの還元分解率が低く、排気上流側に酸化触媒
(鉄アルミナ)を配置し、NOを予めNO2に酸化して
おくことが還元分解率を高める効果を有していることが
判る。
Comparative Example 6 The reaction was performed in the same manner as in Example 6 except that iron-alumina of the upstream side oxidation catalyst was not used, and the catalyst used was only 1 g of sulfuric acid-treated titanium oxide, and the results are shown in Table 3. It is also shown. As is clear from Table 3, Comparative Example 6 has a lower reductive decomposition rate of NO than Example 6, and an oxidation catalyst (iron alumina) is arranged on the exhaust upstream side to oxidize NO to NO 2 in advance. It can be seen that this has the effect of increasing the reductive decomposition rate.

【0057】[0057]

【表3】 [Table 3]

【0058】表1〜表3から明らかなように、本発明方
法では、排ガス中のNOxの大部分を占めるNOをNO
2に酸化し、更に特定の還元触媒を用いることによっ
て、過剰の酸素の存在下において、NOxの炭化水素類
による選択的還元が効率的に起こることが判る。
As is clear from Tables 1 to 3, in the method of the present invention, NO which accounts for most of NOx in exhaust gas is NO.
It can be seen that the selective reduction of NOx with hydrocarbons efficiently occurs in the presence of excess oxygen by oxidizing to 2 and using a specific reduction catalyst.

【0059】[0059]

【発明の効果】以上詳述したように、本発明方法によれ
ば、酸素が過剰に存在する酸化雰囲気において、効率的
に排ガス中のNOxを除去することができる。これは、
排気上流側にて酸化触媒等を用いて排ガス中のNOxの
大部分のNOをNO2に酸化することにより、プロトン
型ゼオライト,酸性を有する金属酸化物等の還元触媒に
よるNO2還元効率が高まるからである。
As described in detail above, according to the method of the present invention, NOx in exhaust gas can be efficiently removed in an oxidizing atmosphere in which oxygen is excessively present. this is,
By oxidizing most NO of NOx in the exhaust gas to NO 2 using an oxidation catalyst on the upstream side of the exhaust gas, the NO 2 reduction efficiency by the reduction catalyst such as proton-type zeolite and acidic metal oxides is increased. Because.

【0060】このように、本発明方法は、排ガス中のN
Oxを事前にNO2とすることによって、ディーゼル機
関排ガスをはじめ種々の設備からの排ガスから効率よく
NOxを除去することができ、極めて工業的価値が高い
ものである。
As described above, according to the method of the present invention, N in exhaust gas is
By previously converting Ox to NO 2 , NOx can be efficiently removed from exhaust gas from various facilities including diesel engine exhaust gas, which is extremely industrially valuable.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/08 B 7910−3G 3/10 A 7910−3G (71)出願人 000105567 コスモ石油株式会社 東京都港区芝浦1丁目1番1号 (74)上記3名の代理人 弁理士 久保田 千賀志 (外 1名) (72)発明者 金田一 嘉昭 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 浜田 秀昭 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 伊藤 建彦 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 佐々木 基 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 田畑 光紀 埼玉県幸手市権現堂1134−2 (72)発明者 菅沼 藤夫 埼玉県北葛飾郡庄和町新宿新田228−16 (72)発明者 仲辻 忠夫 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location F01N 3/08 B 7910-3G 3/10 A 7910-3G (71) Applicant 000105567 Cosmo Oil Co., Ltd. 1-1-1, Shibaura, Minato-ku, Tokyo (74) Attorney-at-law 3 Chiga Kubota (1 outside) (72) Inventor Yoshiaki Kaneda 1-1-1 Higashi, Tsukuba, Ibaraki Prefectural Institute of Technology In-house (72) Hideaki Hamada 1-1, Higashi, Tsukuba-shi, Ibaraki Institute of Chemical Technology, Institute of Industrial Technology (72) Inventor Takehiko Ito 1-1-1-1, East, Tsukuba, Ibaraki Institute of Institute of Chemical Technology (72) Inventor Motoki Sasaki, 1-1, Higashi 1-chome, Tsukuba-shi, Ibaraki Institute of Chemical Technology, Institute of Industrial Technology (72) Inventor Mitsunori Tabata 1134 Gongendo, Satte City, Saitama Prefecture 2 (72) Inventor Fujio Suganuma 228-16 Shinden Shinjuku, Showa-cho, Kita-Katsushika-gun, Saitama (72) Inventor Tadao Nakatsuji 5-1, Ebishima-cho, Sakai-shi, Osaka Sakai Chemical Industry Co., Ltd. (72) Inventor Shimizu Hiromasu 5-1, Ebishima-cho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】排ガス中の窒素酸化物を予め二酸化窒素に
変換し、次いで該排ガスを過剰の酸素が存在する酸化雰
囲気中、炭化水素類の存在下において、プロトン型ゼオ
ライト,アルカリ金属型ゼオライト又は酸性を有する金
属酸化物から選ばれる1種以上の触媒に接触させること
を特徴とする窒素酸化物の除去処理方法。
1. A nitrogen oxide in exhaust gas is converted into nitrogen dioxide in advance, and the exhaust gas is then heated in an oxidizing atmosphere in the presence of excess oxygen in the presence of hydrocarbons to form a proton type zeolite, an alkali metal type zeolite or A method for removing nitrogen oxides, which comprises contacting with one or more catalysts selected from acidic metal oxides.
【請求項2】酸性を有する金属酸化物が、硫酸根を有す
る化合物により処理した金属酸化物であることを特徴と
する請求項1記載の窒素酸化物の除去処理方法。
2. The method for removing nitrogen oxides according to claim 1, wherein the acidic metal oxide is a metal oxide treated with a compound having a sulfate group.
JP3041363A 1991-01-08 1991-01-08 Nitrogen oxide removal treatment method Expired - Lifetime JP2598717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041363A JP2598717B2 (en) 1991-01-08 1991-01-08 Nitrogen oxide removal treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041363A JP2598717B2 (en) 1991-01-08 1991-01-08 Nitrogen oxide removal treatment method

Publications (2)

Publication Number Publication Date
JPH0538420A true JPH0538420A (en) 1993-02-19
JP2598717B2 JP2598717B2 (en) 1997-04-09

Family

ID=12606387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041363A Expired - Lifetime JP2598717B2 (en) 1991-01-08 1991-01-08 Nitrogen oxide removal treatment method

Country Status (1)

Country Link
JP (1) JP2598717B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156184A (en) * 1996-11-29 1998-06-16 Ict:Kk Catalyst for removing nitrogen oxide
US6261990B1 (en) 1997-12-09 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Composite catalyst for purification of exhaust gas
JP2006116445A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2006116444A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2008272760A (en) * 2008-06-12 2008-11-13 Volvo Ab Porous material, method, and device for catalytic conversion of exhaust gas
EP2113296A2 (en) 2008-04-28 2009-11-04 N.E. Chemcat Corporation Exhaust gas purification method using selective reduction catalyst
WO2011162030A1 (en) 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
WO2012090557A1 (en) 2010-12-27 2012-07-05 エヌ・イー ケムキャット株式会社 Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
WO2012147376A1 (en) 2011-04-28 2012-11-01 エヌ・イー ケムキャット株式会社 Off gas purification device
WO2013172128A1 (en) 2012-05-14 2013-11-21 エヌ・イーケムキャット株式会社 Exhaust gas purifier
US9079162B2 (en) 2008-04-28 2015-07-14 BASF SE Ludwigshafen Fe-BEA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOX in gas streams
JP2015175274A (en) * 2014-03-14 2015-10-05 本田技研工業株式会社 Internal combustion engine exhaust emission control system
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194470A (en) * 1975-02-18 1976-08-19
JPH02149317A (en) * 1988-11-29 1990-06-07 Ind Res Inst Japan Removing nitrogen oxide in flue-gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194470A (en) * 1975-02-18 1976-08-19
JPH02149317A (en) * 1988-11-29 1990-06-07 Ind Res Inst Japan Removing nitrogen oxide in flue-gas

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156184A (en) * 1996-11-29 1998-06-16 Ict:Kk Catalyst for removing nitrogen oxide
US6261990B1 (en) 1997-12-09 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Composite catalyst for purification of exhaust gas
JP2006116445A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
JP2006116444A (en) * 2004-10-22 2006-05-11 Japan Energy Corp Exhaust gas purifying catalyst and manufacturing method therefor
EP2113296A2 (en) 2008-04-28 2009-11-04 N.E. Chemcat Corporation Exhaust gas purification method using selective reduction catalyst
US9079162B2 (en) 2008-04-28 2015-07-14 BASF SE Ludwigshafen Fe-BEA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOX in gas streams
JP2008272760A (en) * 2008-06-12 2008-11-13 Volvo Ab Porous material, method, and device for catalytic conversion of exhaust gas
WO2011162030A1 (en) 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
US8741240B2 (en) 2010-12-27 2014-06-03 N.E. Chemcat Corporation Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
WO2012090557A1 (en) 2010-12-27 2012-07-05 エヌ・イー ケムキャット株式会社 Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
WO2012147376A1 (en) 2011-04-28 2012-11-01 エヌ・イー ケムキャット株式会社 Off gas purification device
US9523302B2 (en) 2011-04-28 2016-12-20 N.E. Chemcat Corporation Off gas purification device
WO2013172128A1 (en) 2012-05-14 2013-11-21 エヌ・イーケムキャット株式会社 Exhaust gas purifier
US9480948B2 (en) 2012-05-14 2016-11-01 N.E. Chemcat Corporation Exhaust gas purifier
US9539544B1 (en) 2012-05-14 2017-01-10 N.E. Chemcat Corporation Exhaust gas purifier
JP2015175274A (en) * 2014-03-14 2015-10-05 本田技研工業株式会社 Internal combustion engine exhaust emission control system
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus

Also Published As

Publication number Publication date
JP2598717B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
KR100201748B1 (en) Process for removing nitrogen oxides from exhaust gases
US7803338B2 (en) Method and apparatus for combination catalyst for reduction of NOx in combustion products
KR101165499B1 (en) Highly acidic composition containing zirconium oxide, titanium oxide and tungsten oxide, method for preparing the same and use thereof in the treatment of exhaust gases
JPH0538420A (en) Treatment method for removing nitrogen oxide
EP0459396B1 (en) Process for removing nitrogen oxides from exhaust gases
WO2020169600A1 (en) Catalyst for reduction of nitrogen oxides
JP2645614B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2691643B2 (en) Exhaust gas purification method
JPH0483516A (en) Removal of nitrogen oxide
JPH0490826A (en) Exhaust gas purification method
JP2506598B2 (en) Nitrogen oxide removal method
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JPH04118030A (en) Method of removing nitrogen oxide
JP2595370B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2506578B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JP2506588B2 (en) Nitrogen oxide removal method
JPH0780317A (en) Waste gas purification catalyst and method for removing nox
JPH0780316A (en) Waste gas purification catalyst and method for removing nox
JPH0523544A (en) Cleaning treatment of waste gas containing nitrogen oxide compound
JPH0531326A (en) Method for removing nitrogen oxide in exhaust gas
JPH06198132A (en) Purifying method of exhaust gas containing nitrogen oxide
JPH0780314A (en) Waste gas purification catalyst, its production and method for removing nox
JPH1024238A (en) Nitrogen oxide catalytically reducing and removing catalyst and nitrogen oxide catalytically reducing and removing method
JPH09141093A (en) Catalyst for catalytic reduction and removal of nitrogen oxides and its production
JPH0780301A (en) Waste gas purifying catalyst and nox purifying method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14