JPH0755269A - Operating control method of air conditioner - Google Patents

Operating control method of air conditioner

Info

Publication number
JPH0755269A
JPH0755269A JP5203244A JP20324493A JPH0755269A JP H0755269 A JPH0755269 A JP H0755269A JP 5203244 A JP5203244 A JP 5203244A JP 20324493 A JP20324493 A JP 20324493A JP H0755269 A JPH0755269 A JP H0755269A
Authority
JP
Japan
Prior art keywords
oil
compressor
compressors
inverter
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5203244A
Other languages
Japanese (ja)
Inventor
Katsutoshi Kitagawa
勝敏 北川
Masahiko Sasakura
正彦 佐々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5203244A priority Critical patent/JPH0755269A/en
Publication of JPH0755269A publication Critical patent/JPH0755269A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To suck oil from other compressors to recover the oil level by interrupting the normal operation to perform an operation which is to produce a differential pressure between closed vessels of compressors. CONSTITUTION:When the operation periods of time of compressor 1, 2 and 3 reach an operation period of time stored in an oil equalizing operation decision device 90, normal operation is interrupted and switched to an oil equalizing operation. The oil equalizing operation instruction is input to a compressor capacity decision device 55 and a normal operation instruction to an inverter 52, on-off switches 53 and 54 is stopped. Simultaneously, the oil equalizing operation decision device 90 outputs an operating frequency instruction for the inverter-controlled compressor 1 to the inverter 52 through an output device 56 so that one among compressors 1, 2 and 3, which requires makeup oil, is operated at a larger capacity than that of the other compressors, and an on-off instruction for the on-off controlled compressors 2 and 3 to the inverter 52 and the on-off switches 53 and 54 through output device 56, 57 and 58. As a result, the compressors 1, 2 and 3 are operated based on the oil equalizing operation program.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数台数の圧縮機を1冷
媒系統に搭載した空気調和機の運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for an air conditioner in which a plurality of compressors are mounted in one refrigerant system.

【0002】[0002]

【従来の技術】従来の空気調和機の一例が図3及び図4
に示されている。
2. Description of the Related Art An example of a conventional air conditioner is shown in FIGS.
Is shown in.

【0003】図3において、室外ユニットAに複数台
(図には3台)の室内ユニットB1,B2,B3が冷媒
配管を介して互に並列に接続されている。室外ユニット
Aは複数台(図では3台)の圧縮機1,2,3、逆止弁
4a,4b,4c、室外熱交換器5、アキュムレータ8
等を備えている。
In FIG. 3, a plurality of (three in the figure) indoor units B1, B2, B3 are connected to an outdoor unit A in parallel via refrigerant pipes. The outdoor unit A includes a plurality of (three in the figure) compressors 1, 2, 3, check valves 4a, 4b, 4c, an outdoor heat exchanger 5, and an accumulator 8.
And so on.

【0004】室内ユニットB1,B2,B3はそれぞれ
膨張弁6a,6b,6c、室内熱交換器7a,7b,7
c等を備えている。3台の圧縮機1,2,3のうち1台
はインバータ制御圧縮機1、他の2台はオン・オフ制御
圧縮機2,3である。
The indoor units B1, B2 and B3 respectively include expansion valves 6a, 6b and 6c and indoor heat exchangers 7a, 7b and 7 respectively.
c is provided. Of the three compressors 1, 2 and 3, one is an inverter control compressor 1 and the other two are on / off control compressors 2 and 3.

【0005】インバータ制御圧縮機1の吐出口と逆止弁
4aとの間の吐出配管に油分離器10が設けられ、この
油分離器10からインバータ制御圧縮機1の吸入配管に
かけて油戻し管11が設けられている。
An oil separator 10 is provided in the discharge pipe between the discharge port of the inverter-controlled compressor 1 and the check valve 4a, and an oil return pipe 11 extends from this oil separator 10 to the suction pipe of the inverter-controlled compressor 1. Is provided.

【0006】オン・オフ制御圧縮機2,3の吐出口と各
々の逆止弁4b,4cとの間の吐出配管に油分離器2
0,30が設けられ、この油分離器20,30から各々
オン・オフ制御圧縮機2,3の吸入配管にかけて油戻し
管21,31が設けられている。また、3台の圧縮機
1,2,3の密閉容器は均油管9を介して互に接続され
ている。51は電源、52はインバータである。
The oil separator 2 is connected to the discharge pipe between the discharge ports of the on / off control compressors 2 and 3 and the respective check valves 4b and 4c.
0 and 30 are provided, and oil return pipes 21 and 31 are provided from the oil separators 20 and 30 to the suction pipes of the on / off control compressors 2 and 3, respectively. The closed containers of the three compressors 1, 2 and 3 are connected to each other via an oil equalizing pipe 9. Reference numeral 51 is a power source, and 52 is an inverter.

【0007】なお、図3では冷房運転時の冷媒配管系統
図が示されており、ヒートポンプ装置に見られるような
四方弁機構の図示は省略されている。図4のように電源
51からの電流はインバータ制御圧縮機1にはインバー
タ52を介して供給され、オン・オフ制御圧縮機2,3
にはオン・オフスイッチ53,54を介して供給され
る。そして、これらインバータ52及びオン・オフスイ
ッチ53,54は室外制御装置50内の圧縮機能力決定
手段55の指令によって制御され、この室外制御装置5
0には室内要求負荷が各室内ユニットごとに室内要求周
波数として入力される。
Incidentally, FIG. 3 shows a refrigerant piping system diagram during the cooling operation, and the illustration of the four-way valve mechanism as seen in the heat pump device is omitted. As shown in FIG. 4, the current from the power supply 51 is supplied to the inverter control compressor 1 via the inverter 52, and the on / off control compressors 2 and 3 are supplied.
Is supplied via the on / off switches 53 and 54. The inverter 52 and the on / off switches 53 and 54 are controlled by the command of the compression function force determination means 55 in the outdoor control device 50, and the outdoor control device 5 is controlled.
The required indoor load is input to 0 as the required indoor frequency for each indoor unit.

【0008】冷房運転時、圧縮機1,2,3から吐出さ
れたガス冷媒は油分離器10,20,30、逆止弁4
a,4b,4cを経て、合流して室外熱交換器5に入
り、ここで凝縮液化する。この液冷媒は室内ユニットB
1,B2,B3に並列に流入し、膨張弁6a,6b,6
cで断熱膨張した後、室内熱交換器7a,7b,7cで
室内空気を冷却することによって蒸発気化する。このガ
ス冷媒はアキュムレータ8を経て圧縮機1,2,3に並
列に吸入される。
During the cooling operation, the gas refrigerant discharged from the compressors 1, 2 and 3 is the oil separators 10, 20, 30 and the check valve 4.
After passing through a, 4b, and 4c, they merge and enter the outdoor heat exchanger 5, where they are condensed and liquefied. This liquid refrigerant is the indoor unit B
1, B2, B3 flow in parallel to the expansion valves 6a, 6b, 6
After adiabatic expansion in c, the indoor heat exchangers 7a, 7b, 7c cool the indoor air to evaporate and vaporize. This gas refrigerant is sucked into the compressors 1, 2 and 3 in parallel via the accumulator 8.

【0009】なお、油分離器10,20,30では、各
々圧縮機1,2,3から吐出されたガス冷媒中に含まれ
ている潤滑油(以下、油と略す)が分離され、各々油戻
し管11,21,31を介して、各圧縮機1,2,3の
密閉容器内に戻される。
In the oil separators 10, 20 and 30, the lubricating oil (hereinafter abbreviated as oil) contained in the gas refrigerant discharged from the compressors 1, 2 and 3, respectively, is separated, and each oil is separated. It is returned to the inside of the hermetically sealed containers of the compressors 1, 2 and 3 via the return pipes 11, 21 and 31.

【0010】室内ユニットB1,B2,B3は室内制御
装置60,70,80を有しその内部には室内要求周波
数決定手段61,71,81を有している。これらには
運転操作部62,72,82及び室内温度センサ63,
73,83が接続されている。室内要求周波数決定手段
61,71,81は運転操作部62,72,82で設定
される設定室内温度と室内温度センサ63,73,83
の検知温度から室内要求負荷を求め、これを要求周波数
に変換して、室外制御装置50に出力する。
The indoor units B1, B2, B3 have indoor control devices 60, 70, 80, and have indoor required frequency determining means 61, 71, 81 therein. These include driving operation units 62, 72, 82 and an indoor temperature sensor 63,
73 and 83 are connected. The indoor required frequency determining means 61, 71, 81 are set indoor temperatures set by the operation operation parts 62, 72, 82 and indoor temperature sensors 63, 73, 83.
The indoor required load is obtained from the detected temperature of, and this is converted into a required frequency and output to the outdoor control device 50.

【0011】この室内要求周波数が室外制御装置50内
の圧縮機能力決定手段55に入力されると、圧縮機能力
決定手段55内に記憶された制御マップや演算式に基い
て圧縮機能力、即ち、インバータ制御圧縮機1の運転周
波数、オン・オフ制御圧縮機2,3のオン又はオフを決
定する。決定された運転周波数は出力手段56を経てイ
ンバータ52に出力されインバータ制御圧縮機1は決定
された運転周波数で運転される。
When the indoor required frequency is input to the compression function force determining means 55 in the outdoor control device 50, the compression function force, that is, the compression function force is calculated based on the control map and the arithmetic expression stored in the compression function force determining means 55. The operating frequency of the inverter control compressor 1 and the ON / OFF control compressors 2 and 3 are determined. The determined operating frequency is output to the inverter 52 via the output means 56, and the inverter-controlled compressor 1 is operated at the determined operating frequency.

【0012】また、決定されたオン・オフ指令は出力手
段57,58を経てオン・オフスイッチ53,54に出
力され、これらをオン又はオフとする。
The determined on / off command is output to the on / off switches 53 and 54 via the output means 57 and 58 to turn them on or off.

【0013】上記のように室内要求負荷に応じ、3台の
圧縮機1,2,3が運転制御され、圧縮能力が調整され
る。その状況の一例を図5に示す。
As described above, the operation of the three compressors 1, 2 and 3 is controlled according to the indoor load demand, and the compression capacity is adjusted. An example of the situation is shown in FIG.

【0014】圧縮機1,2,3のうちの複数台の圧縮機
が運転中はインバータ制御圧縮機1の運転周波数は例え
ば55Hz〜95Hzの範囲とされる。
The operating frequency of the inverter-controlled compressor 1 is, for example, in the range of 55 Hz to 95 Hz while a plurality of compressors among the compressors 1, 2, 3 are in operation.

【0015】[0015]

【発明が解決しようとする課題】上記従来の空気調和機
の運転方法には解決すべき次の課題があった。
The conventional method of operating the air conditioner has the following problems to be solved.

【0016】即ち、従来の空気調和機においては、図5
に示されるようにオン・オフ制御圧縮機2,3のオン時
にはインバータ制御圧縮機1の運転周波数は所定の範囲
内、例えば、55〜95Hzで変化し、インバータ制御
圧縮機1はオン・オフ制御圧縮機2,3よりも概して高
速回転で運転される。
That is, in the conventional air conditioner, FIG.
As shown in FIG. 3, when the on / off control compressors 2 and 3 are turned on, the operating frequency of the inverter control compressor 1 changes within a predetermined range, for example, 55 to 95 Hz, and the inverter control compressor 1 performs on / off control. Generally, it is operated at a higher speed than the compressors 2 and 3.

【0017】同種の圧縮機では、通常、回転数が高くな
る程、吐出ガス冷媒のOC%(注1)が大きくなる傾向
になるので、インバータ制御圧縮機1の吐出ガス冷媒の
OC%の方が、オン・オフ制御圧縮機2,3の吐出ガス
冷媒のOC%より大きくなる。
In a compressor of the same type, the OC% (Note 1) of the discharge gas refrigerant generally tends to increase as the rotation speed increases, so that the OC% of the discharge gas refrigerant of the inverter-controlled compressor 1 tends to be higher. Is larger than the OC% of the gas refrigerant discharged from the on / off control compressors 2 and 3.

【0018】注1:OC%とは、下記の式による。Note 1: OC% is calculated by the following formula.

【0019】OC%=(O/L)×100 但し
L:吐出冷媒量(g/h) O:吐出冷媒中に混入して吐出される油量(g/h) 一方、冷媒系統は1系統のため、各圧縮機から吐出され
たガス冷媒は冷凍サイクルを循環する間に混合されるの
で、各圧縮機の吸入ガス冷媒のOC%はほぼ等しくな
る。
OC% = (O / L) × 100
L: amount of discharged refrigerant (g / h) O: amount of oil mixed and discharged in the discharged refrigerant (g / h) On the other hand, since the refrigerant system is one system, the gas refrigerant discharged from each compressor is frozen. Since they are mixed while circulating through the cycle, the OC% of the intake gas refrigerant of each compressor will be approximately equal.

【0020】従って、インバータ制御圧縮機1について
は、油分離機10を経て冷凍サイクル中に出る油量の方
が冷凍サイクルを循環して戻る油量より概して多くなる
ので、該圧縮機1の密閉容器内底部に貯溜されている油
の量は運転継続に伴い徐々に減少し、その油面は低下す
る。この時、インバータ制御圧縮機1の密閉容器内の圧
力が、オン・オフ制御圧縮機2,3の密閉容器内の圧力
より低ければ、オン・オフ制御圧縮機2,3の密閉容器
内の油が均油管9を通って、インバータ制御圧縮機1の
密閉容器内に流入、補充され、該圧縮機内の油面は回復
する。
Therefore, in the inverter-controlled compressor 1, the amount of oil that goes out in the refrigeration cycle through the oil separator 10 is generally larger than the amount of oil that circulates in the refrigeration cycle and returns, so that the compressor 1 is hermetically closed. The amount of oil stored in the bottom of the container gradually decreases as the operation continues, and the oil level drops. At this time, if the pressure in the closed container of the inverter-controlled compressor 1 is lower than the pressure in the closed container of the on / off controlled compressors 2 and 3, the oil in the closed container of the on / off controlled compressors 2 and 3 is reduced. Flows through the oil equalizing pipe 9 into the closed container of the inverter-controlled compressor 1 and is replenished, and the oil level in the compressor is restored.

【0021】しかし、実際の運転では、インバータ制御
圧縮機1の密閉容器内の圧力はオン・オフ制御圧縮機
2,3の密閉容器内の圧力に等しいか高い場合もあるの
で、オン・オフ制御圧縮機2,3の密閉容器内の油が、
均油管9を通って、インバータ制御圧縮機1の密閉容器
内に流入しないことが起る。この結果、インバータ制御
圧縮機1の密閉容器内の油面が低下して、インバータ制
御圧縮機1の潤滑不良又はこれに基く故障を惹起するお
それがあった。
However, in actual operation, the pressure in the closed vessel of the inverter-controlled compressor 1 may be equal to or higher than the pressure in the closed vessel of the on / off control compressors 2 and 3, so the on / off control is performed. The oil in the closed containers of the compressors 2 and 3
It may happen that the oil does not flow into the closed container of the inverter-controlled compressor 1 through the oil equalizing pipe 9. As a result, the oil level in the closed container of the inverter-controlled compressor 1 may be lowered, which may cause lubrication failure of the inverter-controlled compressor 1 or a failure based thereon.

【0022】本発明は上記問題解決のため、所望の圧縮
機の密閉容器内を低圧にして他の圧縮機から均油管を経
て油を吸引、油面を回復する、空気調和機の運転制御方
法を提供することを目的とする。
In order to solve the above problems, the present invention is a method for controlling the operation of an air conditioner in which the pressure inside a desired compressor is reduced to a low pressure and oil is sucked from another compressor through an oil equalizing pipe to recover the oil level. The purpose is to provide.

【0023】[0023]

【課題を解決するための手段】本発明は上記課題の解決
手段として次の(1),(2)に記載の空気調和機の運
転制御方法を提供しようとするものである。
The present invention is intended to provide an air conditioner operation control method described in the following (1) and (2) as means for solving the above problems.

【0024】(1).複数台の圧縮機を1冷媒系統に並
列に接続すると共に各圧縮機を均油管で接続してなる空
気調和機の運転制御方法において、通常の運転中に所定
の間隔で各圧縮機の密閉容器内の圧力に差を生じさせる
特定の運転を挿入することを特徴とする空気調和機の運
転制御方法。
(1). In an operation control method of an air conditioner in which a plurality of compressors are connected in parallel to one refrigerant system and each compressor is connected by an oil equalizing pipe, a hermetically sealed container for each compressor at predetermined intervals during normal operation. An operation control method for an air conditioner, which comprises inserting a specific operation that causes a difference in internal pressure.

【0025】(2).上記(1)記載の空気調和機の運
転制御方法において、通常の運転中に所定の間隔で油を
補充したい圧縮機の能力を他の圧縮機の能力より大きく
する特定の運転を挿入することを特徴とする空気調和機
の運転制御方法。
(2). In the operation control method for an air conditioner according to (1) above, it is possible to insert a specific operation for increasing the capacity of a compressor to be replenished with oil at predetermined intervals during normal operation, which is larger than the capacity of other compressors. A characteristic air conditioner operation control method.

【0026】なお、上記(1),(2)中、「特定の運
転」とは均油運転を言う。即ち、複数台の圧縮機のうち
の任意の圧縮機の潤滑油レベルを均油管を介して他の圧
縮機と均一に近づけるための運転を言う。
In the above (1) and (2), the "specific operation" means an oil-equalizing operation. That is, it refers to an operation for bringing the lubricating oil level of an arbitrary compressor of the plurality of compressors close to that of other compressors uniformly via the oil equalizing pipe.

【0027】[0027]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0028】(1).上記(1)の構成にあっては通常
の運転中に所定の間隔で各圧縮機の密閉容器内の圧力に
差を生じさせる特定の運転を挿入するので、通常運転中
に生ずる各圧縮機の密閉容器内の油面のアンバランスが
進行し、或る圧縮機の密閉容器内の油面が危険油面に達
する前に、挿入された特定の運転、即ち、均油運転によ
って、油面が低下し油を補充したい圧縮機の密閉容器内
の圧力が他の圧縮機の密閉容器内の圧力より低下する。
この結果、油面が低下している圧縮機の密閉容器内に他
の圧縮機の密閉容器内の油が均油管を通って流入し、該
圧縮機内の油面が回復する。
(1). In the configuration of the above (1), since a specific operation that causes a difference in the pressure inside the hermetically sealed container of each compressor is inserted at a predetermined interval during the normal operation, each compressor generated during the normal operation is inserted. Before the oil level in the closed container of a compressor reaches the dangerous oil level due to the progress of the imbalance of the oil level in the closed container, the oil level is changed by the specific operation inserted, that is, the oil leveling operation. The pressure in the airtight container of the compressor which is lowered and the oil is desired to be replenished becomes lower than the pressure in the airtight container of another compressor.
As a result, the oil in the airtight container of another compressor flows into the airtight container of the compressor whose oil level is lowered through the oil equalizing pipe, and the oil level in the compressor is restored.

【0029】(2).上記(2)の構成にあっては上記
(1)の構成に加え、油を補充したい圧縮機の能力を他
の圧縮機の能力より大きくする特定の運転を挿入するの
で油を補充したい圧縮機の密閉容器内を選択的に他の圧
縮機より低圧とすることができ、上記(1)と同様、油
面が回復する。
(2). In the configuration of (2) above, in addition to the configuration of (1) above, a compressor for which oil is to be replenished is inserted because a specific operation for making the ability of the compressor to be replenished with oil larger than the ability of another compressor is inserted. The pressure inside the closed container can be selectively made lower than that of the other compressors, and the oil level is restored as in the case of (1) above.

【0030】[0030]

【実施例】本発明の一実施例の方法について図1、図2
により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A method according to an embodiment of the present invention will be described with reference to FIGS.
Will be described.

【0031】図1は本実施例の方法に用いる空気調和機
の制御ブロック図、図2はその均油運転プログラムの図
である。冷媒配管系統図は図3の、圧縮機制御線図は図
5の各従来例と同様である。
FIG. 1 is a control block diagram of an air conditioner used in the method of this embodiment, and FIG. 2 is a diagram of its oil-leveling operation program. The refrigerant piping system diagram is the same as that of the conventional example of FIG. 3, and the compressor control diagram is the same as that of each conventional example of FIG.

【0032】なお、説明中、インバータ制御圧縮機1、
オン・オフ制御圧縮機2及び同3は機能を特に明瞭に示
す必要があると思われる場合以外は冗長を避けるため、
単にたとえば「圧縮機1」、「圧縮機2」と呼ぶ。
In the description, the inverter-controlled compressor 1,
The on / off control compressors 2 and 3 should avoid redundancy unless it is necessary to clearly indicate their functions.
They are simply called, for example, "compressor 1" and "compressor 2".

【0033】図1において、室外制御装置50には均油
運転決定手段90が内蔵されている。均油運転決定手段
90には、各圧縮機1,2,3の運転時間を検出するタ
イマ91,92,93が接続されている。又、出力側
は、出力手段56,57,58を介してインバータ52
及びオン・オフスイッチ53,54と接続されている。
In FIG. 1, the outdoor controller 50 has a built-in oil leveling operation determining means 90. Timers 91, 92, 93 for detecting the operating time of each compressor 1, 2, 3 are connected to the oil-equalization operation determining means 90. Further, the output side is provided with an inverter 52 via output means 56, 57, 58.
And on / off switches 53 and 54.

【0034】その他の構成、作用は図4に示す従来のも
のと同様であり、対応する部材には同じ符号を付し、説
明を省略する。
Other configurations and operations are the same as those of the conventional one shown in FIG. 4, and corresponding members are designated by the same reference numerals and the description thereof will be omitted.

【0035】均油運転決定手段90にタイマ91,9
2,93より各圧縮機1,2,3の運転時間が入力され
ると、均油運転決定手段90に記憶された各圧縮機1,
2,3の運転継続時間の条件と比較し、運転継続時間が
この記憶された条件となった場合、例えば圧縮機1,
2,3の何れか2台以上運転されている累積時間が2時
間になると、通常の運転を中断し、均油運転に切換えを
決定する。
Timers 91, 9 are provided in the oil-equalizing operation determining means 90.
When the operating times of the compressors 1, 2, 3 are input from the compressors 2, 93, the compressors 1, 1 stored in the oil-equalizing operation determining means 90 are stored.
Compared with the conditions of the operation duration of 2 and 3, when the operation duration becomes the stored condition, for example, the compressor 1,
When the cumulative time during which two or more of the two or three units are operated reaches 2 hours, the normal operation is interrupted and it is decided to switch to the oil equalizing operation.

【0036】この均油運転切換え決定指令は、圧縮機能
力決定手段55に入力され、これから出力手段56,5
7,58を介して出力されるインバータ52、オン・オ
フスイッチ53,54への通常運転指令を停止する。
This oil-oil operation switching determination command is input to the compression function force determination means 55, and is then output means 56, 5.
The normal operation command to the inverter 52 and the on / off switches 53 and 54 output via 7, 58 is stopped.

【0037】同時に、均油運転決定手段90は圧縮機
1,2,3のうち油を補充したい圧縮機の能力を他の圧
縮機の能力より大きくする運転をさせるような所定の均
油運転プログラムにより、インバータ制御圧縮機1の運
転周波数指令を、オン・オフ制御圧縮機2,3のオン・
オフ指令を、各々の出力手段56,57,58を介し
て、インバータ52、及びオン・オフスイッチ53,5
4に出力する。
At the same time, the oil leveling operation determining means 90 causes a predetermined oil leveling operation program to make the capacity of one of the compressors 1, 2 and 3 to be replenished with oil larger than the capacity of another compressor. To output the operating frequency command of the inverter control compressor 1 to the on / off control compressors 2 and 3
The OFF command is sent via the output means 56, 57, 58 to the inverter 52 and the ON / OFF switches 53, 5 respectively.
Output to 4.

【0038】この結果、各圧縮機1,2,3は所定の均
油運転プログラムに基いた運転が行われる。
As a result, the compressors 1, 2 and 3 are operated according to a predetermined oil leveling operation program.

【0039】所定の均油運転プログラムによる各圧縮機
1,2,3の運転が終了すると、この終了信号が圧縮機
能力決定手段55に入力され、通常運転に復帰する。
When the operation of each of the compressors 1, 2 and 3 according to the predetermined oil leveling operation program is completed, this end signal is input to the compression function force determining means 55 and the normal operation is restored.

【0040】所定の均油運転プログラムの一例が図2に
示されている。ステップ1は、インバータ制御圧縮機1
のみ最高運転周波数例えば95Hzで3分間運転する。
他の圧縮機2,3は共に停止しており、インバータ制御
圧縮機1の能力が最も大きくなるので該圧縮機1の密閉
容器内の圧力は他の圧縮機2,3の密閉容器内の圧力よ
り低下し、他の圧縮機2,3より油を吸引するので該圧
縮機1の密閉容器内の油面の回復がなされる。
An example of a predetermined oil leveling operation program is shown in FIG. Step 1 is the inverter control compressor 1
Only the highest operating frequency, for example 95 Hz, is run for 3 minutes.
Since the other compressors 2 and 3 are both stopped, the capacity of the inverter-controlled compressor 1 is maximized, so that the pressure in the closed container of the compressor 1 is the pressure in the closed container of the other compressors 2 and 3. The oil level is further lowered and oil is sucked from the other compressors 2 and 3, so that the oil level in the closed container of the compressor 1 is recovered.

【0041】ステップ2はインバータ制御圧縮機1を例
えば55Hzで、オン・オフ制御圧縮機2のみ3分間運
転する。この時、オン・オフ制御圧縮機2の能力がイン
バータ制御圧縮機1の能力よりも大きくなるので、該圧
縮機2の密閉容器内の圧力は他の圧縮機1,3の密閉容
器内の圧力より低下し該圧縮機2の密閉容器内の油面の
回復がなされる。
In step 2, the inverter control compressor 1 is operated at, for example, 55 Hz, and only the on / off control compressor 2 is operated for 3 minutes. At this time, since the capacity of the on / off control compressor 2 becomes larger than the capacity of the inverter control compressor 1, the pressure in the closed container of the compressor 2 is the pressure in the closed containers of the other compressors 1 and 3. It is further lowered, and the oil level in the closed container of the compressor 2 is recovered.

【0042】同様にしてステップ3でもオン・オフ制御
圧縮機3の密閉容器内の油面の回復がされ、均油運転が
終了する。
Similarly, in step 3, the oil level in the closed container of the on / off control compressor 3 is restored, and the oil equalizing operation ends.

【0043】なお、本実施例では室内ユニットが3台、
圧縮機の台数が3台、うち1台がインバータ制御圧縮
機、2台がオン・オフ制御圧縮機の場合を例に説明した
がこれら台数、圧縮機制御方式に限定はない。
In this embodiment, there are three indoor units,
The number of compressors is three, of which one is an inverter control compressor and two are on / off control compressors. However, the number of compressors and the compressor control method are not limited.

【0044】また、図2の均油運転プログラムにおける
インバータ制御圧縮機1の運転周波数は本実施例におけ
る数値を示しており、3台の圧縮機の冷媒押しのけ量
(1回転当りの)が本実施例と変れば、各ステップで油
面を回復したい圧縮機の能力を他の圧縮機の能力よりも
大きくすべきでインバータ制御圧縮機の運転周波数は当
然設定し直すことになる。
Further, the operating frequency of the inverter-controlled compressor 1 in the oil-leveling operation program of FIG. 2 shows the numerical value in this embodiment, and the refrigerant displacement (per rotation) of the three compressors is the present embodiment. If different from the example, the capacity of the compressor whose oil level is to be restored should be made larger than the capacity of other compressors at each step, and the operating frequency of the inverter-controlled compressor will be reset naturally.

【0045】また、本実施例ではステップは1→2→3
の順序としたが、この順序に限定はない。
In this embodiment, the steps are 1 → 2 → 3.
However, the order is not limited.

【0046】以上の通り、本実施例によれば圧縮機1,
2,3のうちの何れが油の不足を来たしても、その圧縮
機の能力を選択的に他の圧縮機より大きくすることがで
きるので、該圧縮機の密閉容器内の圧力が他の圧縮機よ
りも低下し、他の圧縮機の油が均油管を通って該圧縮機
に流入し、油面が回復し、潤滑不良やそれに基づく故障
の懸念が解消するという利点がある。
As described above, according to this embodiment, the compressor 1,
Regardless of which of the two or three becomes short of oil, the capacity of the compressor can be selectively made larger than that of the other compressors, so that the pressure in the hermetically sealed container of the compressor is different from that of the other compressors. There is an advantage that the oil level of the other compressor is lowered, the oil of another compressor flows into the compressor through the oil equalizing pipe, the oil level is recovered, and the concern of poor lubrication or failure due to it is eliminated.

【0047】[0047]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
Since the present invention is constructed as described above, it has the following effects.

【0048】即ち、本発明によれば、通常運転継続によ
って生ずる各圧縮機の密閉容器内の油面のアンバランス
が進行し、或る圧縮機の密閉容器内の油面が危険油面に
達する前に、通常運転から特定の運転、即ち、均油運転
に切換えるため、均油運転により油面が低下し、油を補
充したい圧縮機の密閉容器内の圧力を他の圧縮機の密閉
容器内の圧力より低下させることができる。
That is, according to the present invention, the imbalance of the oil level in the closed container of each compressor caused by the normal operation continuation progresses, and the oil level in the closed container of a certain compressor reaches the dangerous oil level. Before the normal operation is switched to a specific operation, that is, the oil-equalizing operation, the oil level is lowered by the oil-equalizing operation, and the pressure in the closed container of the compressor to which oil is to be replenished is kept in the closed container of another compressor The pressure can be lower than the pressure.

【0049】この結果、油面が低下している圧縮機の密
閉容器内に比較的に圧力の高い他の圧縮機の密閉容器内
の油が均油管を通って流入し、該圧縮機内の油面が回復
するので、該圧縮機の油面低下による潤滑不良又はこれ
に基く故障を回避することができる。
As a result, the oil in the airtight container of another compressor having a relatively high pressure flows into the airtight container of the compressor whose oil level is lowered through the oil equalizing pipe, and the oil in the air compressor Since the surface is restored, it is possible to avoid poor lubrication due to a decrease in the oil level of the compressor or a failure based on this.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の方法に係る制御ブロック
図、
FIG. 1 is a control block diagram according to a method of an embodiment of the present invention,

【図2】上記実施例の均油運転プログラムの図、FIG. 2 is a diagram of an oil leveling operation program of the above embodiment,

【図3】従来の空気調和機の冷媒回路図、FIG. 3 is a refrigerant circuit diagram of a conventional air conditioner,

【図4】従来の空気調和機の制御ブロック図、FIG. 4 is a control block diagram of a conventional air conditioner,

【図5】従来の空気調和機の負荷と圧縮能力との関係に
よる圧縮機の制御を示す線図である。
FIG. 5 is a diagram showing control of a compressor according to a relationship between a load and a compression capacity of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 インバータ制御圧縮機 2,3 オン・オフ制御圧縮機 9 均油管 90 均油運転決定手段 91,92,93 タイマ 1 Inverter control compressor 2, 3 ON / OFF control compressor 9 Oil leveling pipe 90 Oil leveling operation determining means 91, 92, 93 Timer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数台の圧縮機を1冷媒系統に並列に接
続すると共に各圧縮機を均油管で接続してなる空気調和
機の運転制御方法において、通常の運転中に所定の間隔
で各圧縮機の密閉容器内の圧力に差を生じさせる特定の
運転を挿入することを特徴とする空気調和機の運転制御
方法。
1. An operation control method for an air conditioner, comprising a plurality of compressors connected in parallel to one refrigerant system and each compressor connected by an oil equalizing pipe. An operation control method for an air conditioner, characterized by inserting a specific operation that causes a difference in pressure in a closed container of a compressor.
【請求項2】 請求項1記載の空気調和機の運転制御方
法において、通常の運転中に所定の間隔で油を補充した
い圧縮機の能力を他の圧縮機の能力より大きくする特定
の運転を挿入することを特徴とする空気調和機の運転制
御方法。
2. The operation control method for an air conditioner according to claim 1, wherein a specific operation for increasing the capacity of the compressor to be replenished with oil at a predetermined interval during normal operation is made larger than the capacity of other compressors. An operation control method for an air conditioner, which is characterized in that the air conditioner is inserted.
JP5203244A 1993-08-17 1993-08-17 Operating control method of air conditioner Pending JPH0755269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5203244A JPH0755269A (en) 1993-08-17 1993-08-17 Operating control method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5203244A JPH0755269A (en) 1993-08-17 1993-08-17 Operating control method of air conditioner

Publications (1)

Publication Number Publication Date
JPH0755269A true JPH0755269A (en) 1995-03-03

Family

ID=16470825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5203244A Pending JPH0755269A (en) 1993-08-17 1993-08-17 Operating control method of air conditioner

Country Status (1)

Country Link
JP (1) JPH0755269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021137A1 (en) * 2008-08-22 2010-02-25 パナソニック株式会社 Freeze cycling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021137A1 (en) * 2008-08-22 2010-02-25 パナソニック株式会社 Freeze cycling device
CN102124285A (en) * 2008-08-22 2011-07-13 松下电器产业株式会社 Freeze cycling device
JPWO2010021137A1 (en) * 2008-08-22 2012-01-26 パナソニック株式会社 Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP2557903B2 (en) Air conditioner
EP0410570B1 (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
CN1181303C (en) Refrigerator
JP2664740B2 (en) Air conditioner
JP6628911B1 (en) Refrigeration cycle device
JP2503633B2 (en) Refrigeration system operation controller
JPH11142001A (en) Air conditioner
JPH05288438A (en) Refrigerant filled amount detector of refrigerating plant
JPH0571822A (en) Air-conditioner
JPH0755269A (en) Operating control method of air conditioner
KR20190081837A (en) air-conditioning system
JP3197768B2 (en) Refrigeration equipment
JP3830611B2 (en) Showcase cooling system
JP2730398B2 (en) Multi-room air conditioning system
JPH03251661A (en) Heat pump system
JPH01305267A (en) Refrigerator
JPH0571832A (en) Air-conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JP2541172B2 (en) Operation control device for air conditioner
JP2664703B2 (en) Air conditioner
JP3068314B2 (en) Operation control method of heat pump
JPH0960991A (en) Air-conditioner and operation method thereof
JP2003042505A (en) Air conditioner and method of controlling its operation
JPH0972636A (en) Accumulator and air conditioner utilizing this accumulator
JP2002106991A (en) Helium compressor unit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011106