JPH075498B2 - Process for producing alkenyl group-substituted aromatic phenols - Google Patents

Process for producing alkenyl group-substituted aromatic phenols

Info

Publication number
JPH075498B2
JPH075498B2 JP60134293A JP13429385A JPH075498B2 JP H075498 B2 JPH075498 B2 JP H075498B2 JP 60134293 A JP60134293 A JP 60134293A JP 13429385 A JP13429385 A JP 13429385A JP H075498 B2 JPH075498 B2 JP H075498B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
alkenyl group
present
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60134293A
Other languages
Japanese (ja)
Other versions
JPS61293942A (en
Inventor
捷生 谷口
茂樹 藤川
義人 蔵野
Original Assignee
三井石油化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井石油化学工業株式会社 filed Critical 三井石油化学工業株式会社
Priority to JP60134293A priority Critical patent/JPH075498B2/en
Priority to DE8686304303T priority patent/DE3661412D1/en
Priority to EP86304303A priority patent/EP0205317B1/en
Priority to CA000510915A priority patent/CA1260015A/en
Publication of JPS61293942A publication Critical patent/JPS61293942A/en
Priority to US07/376,929 priority patent/US4978789A/en
Publication of JPH075498B2 publication Critical patent/JPH075498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はアルキル基置換フエノール類を接触脱水素し
て、農薬原料又はポリカーボネート、エポキシ、ポリア
ミドなどの樹脂改質剤として用途のある2-ビス(ヒドロ
キシフエニル)プロパンを製造する際の原料として有用
なアルケニル基置換フエノール類の製造方法に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention is a 2-bis (catalyst raw material or 2-bis (catalyst) which has a use as a resin modifier for agrochemical raw materials or polycarbonate, epoxy, polyamide, etc. by catalytic dehydrogenation. The present invention relates to a method for producing alkenyl group-substituted phenols useful as a raw material for producing hydroxyphenyl) propane.

〔従来技術〕[Prior art]

アルケニル基置換フエノール類を得る従来の方法として
は、例えば、2-ヒドロキシ‐2-プロピルフエノール類を
酸触媒の存在下に脱水して得る方法があるが、収率はあ
まり良くない。これとは別の反応方法としては、アルキ
ル基置換フエノール類を接触脱水素してアルケニル基置
換フエノール類を得る反応についてはこれ迄にいくつか
の方法が報告されている。例えば特公昭53-43491号公報
には、触媒として酸化鉄を主活性成分としてこれを単独
あるいはこれに担体としてのアルカリ土類金属酸化物を
組み合わせた触媒を用いる方法が開示されているが原料
の転化率が低く目的物の収率が低いという問題点があ
る。また特開昭54-55529号公報及び特開昭55-154930号
公報には触媒として酸化クロムを主成分とする触媒を用
いる方法が開示されているが、これらの方法ではいずれ
も原料の転化率は40%以下で目的物の収率も低く問題が
ある。これら該公報の触媒組成について更に詳しくみて
みると、特開昭54-55529号公報の触媒は、酸化クロム単
独あるいは酸化クロムと亜鉛、マンガン、チタン、ジル
コニウムの酸化物とを組み合せた触媒であるが、その触
媒活性については目的物のビニルフエノール類の収率は
40%以下と低く問題がある。また該公報には比較例とし
て酸化鉄−酸化クロム−酸化カリウムを組み合せた市販
品の触媒を用いてp-エチルフエノールを脱水素する方法
が示されているが転化率は11.5%、p-エテニルフエノー
ル選択率29.4%と更に低い。なお、該市販触媒の金属酸
化物の組成比については該公報には明示されていない
が、該三成分に相当する触媒としてFe2O3(73.5%)−C
r2O3(1.9%)−K2CO3(21.6%)の日産ガードラーG64A
の市販触媒のあることは知られておることから、本発明
者等も該触媒について本発明の脱水素反応に対する活性
を調べた所、活性が低く実用に供せないことを認めた。
特開昭55-154930号公報の触媒は、酸化クロムを主成分
としてこれにスズ、鉄などの金属酸化物を組み合わせた
触媒を用いる方法である。該説明書中には触媒を構成す
る各金属酸化物の割合については何も記載されていない
が、例えばその実施例2に示された酸化クロム−酸化鉄
触媒についてみると組成割合は酸化クロム100重量部に
対して酸化鉄約50部と算出される酸化クロム主体の触媒
である。該触媒の活性は前述の如く低く実用上問題があ
る。
As a conventional method for obtaining an alkenyl group-substituted phenol, for example, there is a method in which 2-hydroxy-2-propylphenol is dehydrated in the presence of an acid catalyst, but the yield is not so good. As another reaction method, several reactions have been reported so far with respect to the reaction of catalytically dehydrogenating an alkyl group-substituted phenol to obtain an alkenyl group-substituted phenol. For example, Japanese Examined Patent Publication No. 53-43491 discloses a method of using iron oxide as a main active ingredient as a catalyst, alone or in combination with an alkaline earth metal oxide as a carrier. There is a problem that the conversion rate is low and the yield of the target product is low. Further, JP-A-54-55529 and JP-A-55-154930 disclose methods in which a catalyst containing chromium oxide as a main component is used as a catalyst. Is less than 40% and the yield of the desired product is low, which is problematic. When the catalyst composition of these publications is examined in more detail, the catalyst of JP-A-54-55529 is a catalyst containing chromium oxide alone or a combination of chromium oxide and oxides of zinc, manganese, titanium and zirconium. As for its catalytic activity, the yield of the target vinylphenols is
There is a problem as low as 40% or less. Also, as a comparative example, the publication discloses a method for dehydrogenating p-ethylphenol using a commercially available catalyst in which iron oxide-chromium oxide-potassium oxide is combined, but the conversion rate is 11.5%, p-ethanol. The tenylphenol selectivity is even lower at 29.4%. Although the composition ratio of the metal oxide of the commercially available catalyst is not specified in the publication, Fe 2 O 3 (73.5%)-C is used as a catalyst corresponding to the three components.
Nissan Gardler G64A with r 2 O 3 (1.9%)-K 2 CO 3 (21.6%)
Since it is known that there is a commercially available catalyst, the inventors of the present invention also investigated the activity of the catalyst for the dehydrogenation reaction of the present invention, and found that the activity was low and it could not be put to practical use.
The catalyst disclosed in JP-A-55-154930 is a method of using a catalyst in which chromium oxide is a main component and a metal oxide such as tin or iron is combined therewith. Although nothing is mentioned in the above description regarding the ratio of each metal oxide constituting the catalyst, for example, regarding the chromium oxide-iron oxide catalyst shown in Example 2, the composition ratio is 100% chromium oxide. It is a catalyst mainly composed of chromium oxide, which is calculated to be about 50 parts by weight of iron oxide. The activity of the catalyst is low as described above, which is a practical problem.

また、特開昭58-49328号公報にはエチルフエノールをバ
リウムおよびスズを含む酸化物の存在下に反応させてエ
テニルフエノールを得る方法が開示されている。しかし
該方法では原料のエチルフエノールの転化率が低く、目
的とするエテニルフエノールの収率が低い。
Further, JP-A-58-49328 discloses a method of obtaining ethenylphenol by reacting ethylphenol in the presence of an oxide containing barium and tin. However, in this method, the conversion rate of the raw material ethylphenol is low, and the yield of the target ethenylphenol is low.

一般に触媒は例えばその構成成分がたとえ同じであつて
も、その含有比率を変えれば触媒活性を大きく変化させ
得る可能性のあることはよく知られていることであり、
触媒の構造と使用対象とする反応の活性との間の関係を
予測し難いことを考えると、従来の触媒を再度見直して
新たな検討を加えることにより従来以上の活性を有する
新しい触媒を見出せる可能性はあると思われる。
It is well known that, in general, for example, even if the catalyst has the same constituent components, there is a possibility that the catalyst activity can be greatly changed if the content ratio is changed,
Given that it is difficult to predict the relationship between the structure of the catalyst and the activity of the reaction to be used, it is possible to find a new catalyst with higher activity by reviewing the conventional catalyst and making new studies. There seems to be sex.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は該視点に立つてアルキル基置換フエノール
類を接触脱水素してアルケニル基置換フエノール類を製
造するに当たつて、アルケニル基置換フエノール類を従
来の方法に比べて高収率でかつ高い選択率で得ることが
出来、しかも寿命の長い触媒を開発すべく検討した。
From the viewpoint of the above, the inventors of the present invention, in producing an alkenyl group-substituted phenol by catalytic dehydrogenation of an alkyl group-substituted phenol, yield a higher yield of the alkenyl group-substituted phenol than that in the conventional method. In addition, we studied to develop a catalyst that can be obtained with high selectivity and has a long life.

〔問題点を解決するための手段と作用〕[Means and Actions for Solving Problems]

その結果、下記方法を採用すれば前記目的を達成できる
ことを見出し本発明を完成するに到つた。すなわち、本
発明の方法によれば、酸化鉄(a)を主成分とし、酸化珪
素、酸化ゲルマニウムおよび酸化ジルコニウムの少くと
も1種(b)を副成分として含有する触媒の存在下に、
アルキル基置換フエノール類を接触脱水素することを特
徴とするアルケニル基置換フエノール類の製法、が提供
される。
As a result, they have found that the above object can be achieved by adopting the following method, and completed the present invention. That is, according to the method of the present invention, in the presence of a catalyst containing iron oxide (a) as a main component and at least one kind (b) of silicon oxide, germanium oxide and zirconium oxide as a subcomponent,
A process for producing an alkenyl group-substituted phenol, which comprises catalytically dehydrogenating an alkyl group-substituted phenol.

〔触媒〕〔catalyst〕

本発明で使用される触媒は酸化鉄(a)を主成分として、
酸化珪素、酸化ゲルマニウムおよび酸化ジルコニウムの
少くとも1種(b)を副成分として含有する触媒であ
る。
The catalyst used in the present invention is mainly composed of iron oxide (a),
It is a catalyst containing at least one kind (b) of silicon oxide, germanium oxide and zirconium oxide as an accessory component.

本発明の触媒は、副成分(b)とし酸化珪素、酸化ゲル
マニウムおよび酸化ジルコニウムの少くとも1種を含有
することができる。これらの酸化物は組合せて使用する
こともできる。
The catalyst of the present invention may contain at least one of silicon oxide, germanium oxide and zirconium oxide as a subcomponent (b). These oxides can also be used in combination.

本発明の触媒は、酸化鉄(a)の触媒中に占める割合は触
媒中の全金属原子数100に対して鉄原子の数が通常50な
いし99、好ましくは60ないし90である。また本発明の触
媒を構成する成分として前記した酸化物(b)の触媒中に
占める割合は触媒中の全金属原子数100に対してケイ
素、ゲルマニウムおよびジルコニウム原子の数が通常0.
1ないし40、好ましくは1ないし30である。
In the catalyst of the present invention, the proportion of iron oxide (a) in the catalyst is usually 50 to 99, preferably 60 to 90, based on 100 total metal atoms in the catalyst. Further, the ratio of the oxide (b) in the catalyst as a component constituting the catalyst of the present invention is usually 0, with respect to 100 total metal atoms in the catalyst, the number of germanium and zirconium atoms is 0.
It is 1 to 40, preferably 1 to 30.

本発明では触媒の構成成分として、酸化鉄(a)および酸
化物(b)以外にも酸化クロムを必要に応じて添加するこ
とができ、触媒中に占める酸化クロム含有量としては触
媒中の全金属原子数100に対してクロム原子の数が通常
0.5ないし10である。酸化クロムを触媒の構成成分とし
て含有させた場合には、触媒の初期活性を低下させるこ
となく長期間にわたつて触媒活性が安定な、すなわち寿
命の長い触媒が得られるので好ましい。
In the present invention, as a constituent component of the catalyst, in addition to iron oxide (a) and oxide (b), chromium oxide can be added if necessary, and the content of chromium oxide in the catalyst is the total amount in the catalyst. The number of chromium atoms is usually 100 for 100 metal atoms
0.5 to 10. When chromium oxide is contained as a constituent component of the catalyst, a catalyst having stable catalytic activity over a long period of time without lowering the initial activity of the catalyst, that is, a catalyst having a long life, is preferable.

本発明の触媒を調製する方法としては、例えば鉄化合
物、ケイ素化合物、ゲルマニウム化合物およびジルコニ
ウム化合物の少くとも1種および必要に応じてクロム化
合物の混合物を後述の所定温度で焼成することにより本
発明の触媒を得る方法を示すことができる。ここで鉄化
合物、ケイ素化合物、ゲルマニウム化合物、ジルコニウ
ム化合物およびクロム化合物として具体的には、これら
該金属の酸化物、硝酸塩、塩酸塩、硫酸塩等の無機酸
塩、酢酸塩、シユウ酸塩等の有機酸塩、有機金属化合
物、金属水酸化物および金属アルコキシド等の焼成によ
つて金属酸化物に変化し得ることが知られている化合物
を例示することが出来る。本発明では該化合物として更
に具体的には、硝酸鉄、四塩化珪素、珪酸ソーダ、硝酸
ゲルマニウム、塩化ゲルマニウム、硝酸ジルコニウム、
塩化ジルコニウム、硝酸クロム、塩化クロム、クロム酸
カリウム等の無機酸塩、酢酸鉄、酢酸ゲルマニウム、酢
酸マグネシウム等の有機酸塩、ジエチルジクロルシラ
ン、ジベンゼンクロム等の有機金属化合物、水酸化ケイ
素等の水酸化物、オルトケイ酸エチル、t−ブチルアル
コキシジルコニウム等のアルコキシドを例示することが
出来る。本発明では前記した化合物の混合物を得る方法
としては、従来から知られている方法を採用することが
できる。該方法として具体的には、例えば前記混合塩水
溶液にアルカリを添加して混合水酸化物を得る方法、酸
化物に他の塩水溶液を含浸担持する方法、あるいは酸化
物を浸漬する方法、酸化物同志あるいは塩同志を混練し
て混合する方法等を挙げることが出来る。本発明ではこ
れらの中でも混合塩水溶液にアンモニウム水あるいはア
ルカリ金属を含む水溶液を添加する方法を用いるのが好
ましい。
As a method for preparing the catalyst of the present invention, for example, a mixture of at least one of an iron compound, a silicon compound, a germanium compound and a zirconium compound and, if necessary, a chromium compound is baked at a predetermined temperature described below to obtain a catalyst of the present invention. A method of obtaining the catalyst can be shown. Specific examples of the iron compound, silicon compound, germanium compound, zirconium compound, and chromium compound include oxides, nitrates, hydrochlorides, sulfates, and other inorganic acid salts of these metals, acetates, oxalates, and the like. Examples thereof include compounds known to be capable of being converted into metal oxides by firing such as organic acid salts, organic metal compounds, metal hydroxides and metal alkoxides. In the present invention, more specifically as the compound, iron nitrate, silicon tetrachloride, sodium silicate, germanium nitrate, germanium chloride, zirconium nitrate,
Inorganic acid salts such as zirconium chloride, chromium nitrate, chromium chloride, potassium chromate, organic acid salts such as iron acetate, germanium acetate, magnesium acetate, organometallic compounds such as diethyldichlorosilane, dibenzenechromium, silicon hydroxide, etc. Examples thereof include hydroxides, ethyl orthosilicate, alkoxides such as t-butylalkoxyzirconium. In the present invention, a conventionally known method can be adopted as a method for obtaining a mixture of the above-mentioned compounds. Specific examples of the method include a method of adding an alkali to the mixed salt aqueous solution to obtain a mixed hydroxide, a method of impregnating and supporting another salt aqueous solution in the oxide, or a method of immersing the oxide in the oxide. Examples include a method of kneading and mixing comrades or comrades salt. In the present invention, it is preferable to use the method of adding ammonium water or an aqueous solution containing an alkali metal to the mixed salt aqueous solution.

本発明では前記した種々のタイプの金属化合物の混合物
を焼成することによつて本発明の触媒が得られるわけで
あるが、この場合の条件として焼成温度は通常400〜100
0℃、好ましくは500ないし700℃である。焼成時間は焼
成温度によつても異なるが通常は0.5〜3時間である。
焼成は通常大気下で行なわれるが、チツ素等の不活性ガ
ス雰囲気下で行うこともできる。
In the present invention, the catalyst of the present invention can be obtained by calcining a mixture of the various types of metal compounds described above, and the calcining temperature is usually 400 to 100 as the condition in this case.
It is 0 ° C, preferably 500 to 700 ° C. The firing time varies depending on the firing temperature, but is usually 0.5 to 3 hours.
The firing is usually performed in the atmosphere, but it may be performed in an atmosphere of an inert gas such as titanium.

〔反応〕〔reaction〕

本発明では前記触媒の存在下にアルキル基置換フエノー
ル類を反応させて接触脱水素することによりアルケニル
基置換フエノール類が製造される。
In the present invention, an alkenyl group-substituted phenol is produced by reacting an alkyl group-substituted phenol in the presence of the catalyst and catalytically dehydrogenating the same.

本発明の原料となるアルキル基置換フエノール類として
は、アルキル基が1個又は2個以上を有する1価または
多価のフエノール類であつて、アルキル基の一つは炭素
数が2以上、好ましくは炭素数が2ないし5のものであ
り、より具体的にはエチルフエノール、n-プロピルフエ
ノール、イソプロピルフエノール、n-ブチルフエノー
ル、sec-ブチルフエノール、n-ペンチルフエノール、メ
チル(エチルフエノール)、メチル‐n-プロピルフエノ
ール、メチルイソプロピルフエノール、ジエチルフエノ
ール、ジメチルイソプロピルフエノール、エチルナフト
ール、イソプロピルナフトール等を例示できるが、この
中ではo-エチルフエノール、m-エチルフエノール、p-エ
チルフエノール、m-イソプロピルフエノール、p-イソプ
ロピルフエノール、m-n-プロピルフエノール、p-n-プロ
ピルフエノール、p-n-ブチルフエノールのような炭素数
が2ないし4のアルキル基を有するアルキル基置換フエ
ノール類が好ましい。
The alkyl group-substituted phenols as the raw material of the present invention are monovalent or polyvalent phenols having one or more alkyl groups, one of the alkyl groups having 2 or more carbon atoms, preferably Has 2 to 5 carbon atoms, and more specifically, ethylphenol, n-propylphenol, isopropylphenol, n-butylphenol, sec-butylphenol, n-pentylphenol, methyl (ethylphenol), methyl -N-propylphenol, methylisopropylphenol, diethylphenol, dimethylisopropylphenol, ethylnaphthol, isopropylnaphthol and the like can be exemplified. Among them, o-ethylphenol, m-ethylphenol, p-ethylphenol, m-isopropylphenol. , P-isopropylphenol, mn-propyi Alkyl-substituted phenols having an alkyl group having 2 to 4 carbon atoms such as ruphenol, pn-propylphenol, and pn-butylphenol are preferable.

本発明では接触脱水素反応を行う場合の反応条件として
は、反応温度は通常400〜700℃、好ましくは500〜600℃
の範囲にあり、該原料の触媒層への供給速度は液空間速
度(LHSV)で表わして通常は0.1〜10hr-1、好ましくは
0.1〜3hr-1の範囲にある。また本発明ではチツ素等の不
活性ガスおよび/又はスチーム等の希釈剤を必要に応じ
て用いることもできる。スチームを添加する場合には、
前記反応原料に対してスチームは通常3〜30倍モル、好
ましくは7〜20倍モル用いられる。スチームを添加した
場合には目的とするアルケニル基置換フエノール類の選
択率が向上し、又触媒の寿命も長くなるので好ましい。
In the present invention, as the reaction conditions for carrying out the catalytic dehydrogenation reaction, the reaction temperature is usually 400 to 700 ° C, preferably 500 to 600 ° C.
And the feed rate of the raw material to the catalyst layer is usually 0.1 to 10 hr -1 , expressed as liquid hourly space velocity (LHSV), preferably
It is in the range of 0.1 to 3 hr -1 . Further, in the present invention, an inert gas such as titanium and / or a diluent such as steam can be used as necessary. When adding steam,
The steam is usually used in an amount of 3 to 30 times, preferably 7 to 20 times the mol of the reaction raw material. The addition of steam is preferable because it improves the selectivity of the desired alkenyl group-substituted phenols and prolongs the life of the catalyst.

本発明では反応は通常は接触流通式で行われ、用いる触
媒床の形式は固定床、移動床、流動床などいずれでも良
い。
In the present invention, the reaction is usually carried out by a contact flow system, and the catalyst bed used may be a fixed bed, a moving bed, a fluidized bed, or the like.

本発明の方法によつて得られるアルケニル基置換フエノ
ール類は原料のアルキル基置換フエノール類に対応する
もので具体的には、エテニルフエノール、イソプロペニ
ルフエノール、1-プロペニルフエノール、2-プロペニル
フエノール、エテニルナフトール、イソプロペニルナフ
トール等を例示できる。
The alkenyl group-substituted phenols obtained by the method of the present invention correspond to the starting alkyl group-substituted phenols, and specifically, ethenylphenol, isopropenylphenol, 1-propenylphenol, 2-propenylphenol, Examples thereof include ethenylnaphthol and isopropenylnaphthol.

〔発明の効果〕〔The invention's effect〕

本発明の方法によればアルケニル基置換フエノール類を
高収率でかつ高い選択率で得ることが出来る。また触媒
の寿命も従来のものに比べて長い。
According to the method of the present invention, alkenyl group-substituted phenols can be obtained in high yield and high selectivity. Also, the life of the catalyst is longer than that of the conventional one.

〔実施例〕〔Example〕

以下、本発明の方法を実施例によつて具体的に説明す
る。
Hereinafter, the method of the present invention will be specifically described with reference to Examples.

実施例1 硝酸第2鉄〔Fe(NO3)3・9H2O〕303gおよび硝酸クロム
〔Cr(NO3)3・9H2O〕12.8gを約3lの蒸留水に溶解し、さ
らに日産化学(株)製の20重量%シリカゾル20.6gを加
え十分に混合した。この溶液に約25重量%の市販アンモ
ニア水250mlを室温下に強く攪拌しながら2〜3分の間
に加えた。溶液のpHは10.5であつた。約5分間攪拌を継
続した後生じた茶褐色のスラリーをデカンテーシヨンお
よび濾過を繰り返すことにより洗浄した後得られたケー
キを乾燥器で約90℃で20時間乾燥した。さらにこのケー
キを大気中で650℃で3時間焼成した。
Was dissolved Example 1 ferric nitrate [Fe (NO 3) 3 · 9H 2 O ] 303g and chromium nitrate [Cr (NO 3) 3 · 9H 2 O ] 12.8g of about 3l of distilled water, further Nissan Chemical 20.6 g of 20 wt% silica sol manufactured by Co., Ltd. was added and mixed thoroughly. To this solution, 250 ml of about 25% by weight of commercially available aqueous ammonia was added at room temperature with vigorous stirring during a few minutes. The pH of the solution was 10.5. After continuing stirring for about 5 minutes, the resulting brownish brown slurry was washed by repeating decantation and filtration, and the cake obtained was dried in a dryer at about 90 ° C. for 20 hours. Furthermore, this cake was baked in the air at 650 ° C. for 3 hours.

こうして得た複合酸化物の組成を原子吸光分析により測
定したところ、原子比%でFe:Si:Cr=87:9:4であつた。
塊状の触媒を20〜32メツシユに粉砕、篩分してこの20ml
を内径30mmΦの通常の石英製反応管に充填した。触媒床
の温度を560℃に設定し、これにm-イソプロピルフエノ
ールおよび水を約330℃に保つた予熱気化混合器を経由
して定量的に供給し、触媒層を通過させた。この際の供
給量はm-イソプロピルフエノールに対して液空間速度
(LHSV)は0.3hr-1であり、一方水のLHSVは0.4hr-1であ
つた。反応生成物をガスクロマトグラフイーで分析し、
原料であるm-イソプロピルフエノールの転化率並びに生
成物の選択性を求めた。約5時間反応を継続して定常の
反応成績が得られた時の結果を表1に示す。
When the composition of the composite oxide thus obtained was measured by atomic absorption spectrometry, it was found that the atomic ratio was Fe: Si: Cr = 87: 9: 4.
Agglomerate catalyst is crushed into 20 to 32 mesh, sieved to 20 ml
Was charged into a normal quartz reaction tube having an inner diameter of 30 mmΦ. The temperature of the catalyst bed was set to 560 ° C., and m-isopropylphenol and water were quantitatively supplied to the catalyst bed through a preheating vaporization mixer kept at about 330 ° C., and passed through the catalyst layer. In this case, the liquid hourly space velocity (LHSV) was 0.3 hr −1 with respect to m-isopropylphenol, while the water LHSV was 0.4 hr −1 . The reaction product is analyzed by gas chromatography,
The conversion rate of the raw material m-isopropylphenol and the selectivity of the product were determined. Table 1 shows the results when a steady reaction result was obtained by continuing the reaction for about 5 hours.

実施例2 硝酸第2鉄9水和物202g、硝酸クロム9水和物4.28gを
溶解させた水溶液2lに、酸化ゲルマニウム5.03gを溶解
させた水溶液0.5lを加えた後、25%アンモニア水を徐々
に加え、液のpHを7とした。生成した沈澱を水洗濾過
後、90℃で一昼夜乾燥し、次いで700℃で3時間焼成
し、Fe2O3・GeO2・Cr2O3触媒を調製した。この複合酸化
物の組成は、原子比でFe:Ge:Cr=88.8:9.1:2.1であつ
た。塊状の触媒を20〜32メツシユに粉砕し、20mlを通常
の石英製反応管に充填した。温度を560℃にしてこれにm
-エチルフエノールおよび水を反応させた。結果を表2
に示す。
Example 2 To 2 l of an aqueous solution in which 202 g of ferric nitrate nonahydrate and 4.28 g of chromium nitrate nonahydrate were dissolved, 0.5 l of an aqueous solution in which 5.03 g of germanium oxide was dissolved was added, and then 25% aqueous ammonia was added. The pH of the solution was adjusted to 7 by adding gradually. The precipitate formed was washed with water, filtered, dried at 90 ° C. for one day and then calcined at 700 ° C. for 3 hours to prepare a Fe 2 O 3 .GeO 2 .Cr 2 O 3 catalyst. The composition of this composite oxide was Fe: Ge: Cr = 88.8: 9.1: 2.1 in atomic ratio. The agglomerated catalyst was crushed to 20 to 32 mesh and 20 ml was filled in a usual quartz reaction tube. The temperature is 560 ℃ and m
-Ethylphenol and water were reacted. The results are shown in Table 2.
Shown in.

実施例3 実施例1の触媒調製において、シリカゾルを加えた後、
さらに水酸化カルシウム粉末を混合する以外はすべて実
施例1と同じ方法でFe2O3・SiO2・CaO・Cr2O3なる複合
金属酸化物を調製した。その組成は原子比%でFe:Si:C
a:Cr=86:8:2:4であつた。
Example 3 In the catalyst preparation of Example 1, after adding silica sol,
Further, a composite metal oxide of Fe 2 O 3 .SiO 2 .CaO.Cr 2 O 3 was prepared in the same manner as in Example 1 except that the calcium hydroxide powder was mixed. Its composition is atomic ratio% Fe: Si: C
It was a: Cr = 86: 8: 2: 4.

この触媒を用いて6-メチル‐3-イソプロピルフエノール
の脱水素反応を行つた。結果を表3に示す。
Dehydrogenation of 6-methyl-3-isopropylphenol was carried out using this catalyst. The results are shown in Table 3.

実施例4 実施例1において、シリカゾルを加えるかわりに、硝酸
ジルコニル[ZrO(NO3)2・2H2O]49.1gを加える以外はす
べて実施例1と同じ方法でFe2O3‐ZrO2‐Cr2O3なる複合
酸化物を調製したその組成は原子比で78:18:4であつ
た。これを触媒に用い、p-イソプロピルフエノールの脱
水素反応を行つた結果を表4に示す。
Example 4 In the same manner as in Example 1, except that 49.1 g of zirconyl nitrate [ZrO (NO 3 ) 2 .2H 2 O] was added instead of adding silica sol, Fe 2 O 3 —ZrO 2 — The composite oxide of Cr 2 O 3 was prepared and its composition was 78: 18: 4 in atomic ratio. Table 4 shows the results of carrying out a dehydrogenation reaction of p-isopropylphenol using this as a catalyst.

比較例1 酸化鉄を主成分とする日産ガードラー社製触媒G64Aを20
〜32メツシユに粉砕篩分して使用した。この触媒組成は
概ね次の通りであつた。Fe2O3は73.5wt%、Cr2O3は1.9w
t%、K2CO3は21.6wt%。
COMPARATIVE EXAMPLE 1 20 catalysts G64A manufactured by Nissan Gardler Co., which contains iron oxide as a main component, are used.
Approximately 32 mesh was used after crushing and sieving. The catalyst composition was roughly as follows. Fe 2 O 3 is 73.5 wt%, Cr 2 O 3 is 1.9 w
t%, K 2 CO 3 is 21.6 wt%.

実施例と同じ方法でm-イソプロピルフエノールの脱水素
反応を行つた。結果を表5に示す。
The dehydrogenation reaction of m-isopropylphenol was carried out in the same manner as in the example. The results are shown in Table 5.

比較例2 実施例1において、シリカゾルを加えない以外はすべて
実施例1と同じ方法で酸化鉄および酸化クロムからなる
触媒を調製した。その構成は原子比%でFe:Cr=94:6で
あつた。この触媒を用いて実施例1と同じ方法でm-イソ
プロピルフエノールの脱水素反応を行つた。その結果m-
イソプロピルフエノールの転化率が13%、m-イソプロペ
ニルフエノール選択率67%と触媒性能が低かつた。
Comparative Example 2 A catalyst composed of iron oxide and chromium oxide was prepared in the same manner as in Example 1 except that silica sol was not added. The composition was atomic ratio of Fe: Cr = 94: 6. Using this catalyst, the dehydrogenation reaction of m-isopropylphenol was carried out in the same manner as in Example 1. As a result m-
The conversion rate of isopropylphenol was 13%, and the selectivity of m-isopropenylphenol was 67%, showing low catalytic performance.

比較例3 硝酸第2鉄および硝酸ストロンチウムを原料に用いて得
た酸化鉄−酸化ストロンチウム(組成は原子比%でFe:S
r=92:8を用いて実施例1と同じ方法でm-イソプロピル
フエノールの雑水素反応を行つた。単通収率は17.5%、
m-イソプロペニルフエノール選択率は65%であつた。
Comparative Example 3 Iron oxide-strontium oxide obtained by using ferric nitrate and strontium nitrate as raw materials (composition: atomic ratio: Fe: S
Using r = 92: 8, the miscellaneous hydrogen reaction of m-isopropylphenol was carried out in the same manner as in Example 1. Single yield is 17.5%,
The selectivity of m-isopropenylphenol was 65%.

比較例4 実施例1で使用した日産化学製シリカゾルから調製した
酸化珪素単独を触媒に用いてm-イソプロピルフエノール
の脱水素反応を行つた結果を表6に示す。
Comparative Example 4 Table 6 shows the results of carrying out a dehydrogenation reaction of m-isopropylphenol using silicon oxide alone prepared from the silica sol manufactured by Nissan Chemical Industries, Ltd. used in Example 1 as a catalyst.

比較例5 硝酸ジルコニルから調製した酸化ジルコニウムを用いて
m-エチルフエノールの脱水素反応を行つた。結果を表7
に示す。
Comparative Example 5 Using zirconium oxide prepared from zirconyl nitrate
The dehydrogenation reaction of m-ethylphenol was performed. The results are shown in Table 7.
Shown in.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C07B 61/00 300

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)酸化鉄を主成分とし、(b)酸化珪
素、酸化ゲルマニウムおよび酸化ジルコニウムの少くと
も1種を副成分として含有する触媒の存在下に、アルキ
ル基置換フエノール類を接触脱水素することを特徴とす
るアルケニル基置換フエノール類の製法。
1. An alkyl group-substituted phenol is contacted in the presence of a catalyst containing (a) iron oxide as a main component and (b) at least one of silicon oxide, germanium oxide and zirconium oxide as an auxiliary component. A method for producing an alkenyl group-substituted phenol, which is characterized by dehydrogenation.
【請求項2】触媒が酸化鉄(a)および酸化珪素、酸化
ゲルマニウムおよび酸化ジルコニウムの少くとも1種
(b)以外に酸化クロムを含有する特許請求の範囲第1
項に記載の方法。
2. A catalyst containing chromium oxide in addition to iron oxide (a) and at least one of silicon oxide, germanium oxide and zirconium oxide (b).
The method described in the section.
JP60134293A 1985-06-07 1985-06-21 Process for producing alkenyl group-substituted aromatic phenols Expired - Fee Related JPH075498B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60134293A JPH075498B2 (en) 1985-06-21 1985-06-21 Process for producing alkenyl group-substituted aromatic phenols
DE8686304303T DE3661412D1 (en) 1985-06-07 1986-06-05 Process for production of alkenyl substituted aromatic compound
EP86304303A EP0205317B1 (en) 1985-06-07 1986-06-05 Process for production of alkenyl substituted aromatic compound
CA000510915A CA1260015A (en) 1985-06-07 1986-06-05 Process for production of alkenyl substituted aromatic compound
US07/376,929 US4978789A (en) 1985-06-07 1989-07-10 Process for production of alkenyl substituted aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134293A JPH075498B2 (en) 1985-06-21 1985-06-21 Process for producing alkenyl group-substituted aromatic phenols

Publications (2)

Publication Number Publication Date
JPS61293942A JPS61293942A (en) 1986-12-24
JPH075498B2 true JPH075498B2 (en) 1995-01-25

Family

ID=15124896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134293A Expired - Fee Related JPH075498B2 (en) 1985-06-07 1985-06-21 Process for producing alkenyl group-substituted aromatic phenols

Country Status (1)

Country Link
JP (1) JPH075498B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154930A (en) * 1979-05-24 1980-12-02 Mitsui Toatsu Chem Inc Preparation of alkenylphenol
JPS57203022A (en) * 1981-06-08 1982-12-13 Cosmo Co Ltd Preparation of ethenylphenol
JPS5849328A (en) * 1981-09-17 1983-03-23 Cosmo Co Ltd Preparation of ethenylphenol
JPS601146A (en) * 1983-06-15 1985-01-07 Cosmo Co Ltd Production of p-vinylphenol by dehydrogenation of p-ethylphenol

Also Published As

Publication number Publication date
JPS61293942A (en) 1986-12-24

Similar Documents

Publication Publication Date Title
JPH0470946B2 (en)
JP2003506342A (en) Method for producing phenol and acetone
JPS642574B2 (en)
KR100407416B1 (en) Copper-based catalyst used in the production method of α-phenylethyl alcohol and the corresponding method
JPS647974B2 (en)
JP2685130B2 (en) Ethanol production method
US4764499A (en) Method for producing dual colloid catalyst composition
JPH075498B2 (en) Process for producing alkenyl group-substituted aromatic phenols
EP0205317B1 (en) Process for production of alkenyl substituted aromatic compound
JPS615036A (en) Production of alcohol
JP3159010B2 (en) Method for producing α-phenylethyl alcohol
US4620016A (en) Preparation of butyrolactone by catalytic hydrogenation of succinic anhydride
JP3132359B2 (en) Method for producing α-phenylethyl alcohol
JPH0763625B2 (en) Method for producing iron molybdate catalyst for oxidation
JP3517696B2 (en) Solid acid catalyst and method for producing the same
CA1243043A (en) Process for preparing oxygen-containing organic compounds
EP0452695B1 (en) Production of a catalyst and its use for producing phenol
US5098879A (en) Catalyst for preparation of ortho-alkylated phenols
US5175377A (en) Process for preparing an ortho-alkylated phenol
JPS58186439A (en) Catalyst for hydrogenation of aldehyde
JP2925812B2 (en) Alcohol production
JPH0259534A (en) Production of ortho-alkylphenol
JPH05337371A (en) Catalyst for producing amino compound, production thereof and production of amino compound using the catalyst
JPS61282349A (en) Production of alkenyl group-substituted aniline
JPH0734866B2 (en) Catalyst for reducing carbonyl compound, method for producing the catalyst, and method for producing alcohol using the catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees