JPS5849328A - Preparation of ethenylphenol - Google Patents

Preparation of ethenylphenol

Info

Publication number
JPS5849328A
JPS5849328A JP56146867A JP14686781A JPS5849328A JP S5849328 A JPS5849328 A JP S5849328A JP 56146867 A JP56146867 A JP 56146867A JP 14686781 A JP14686781 A JP 14686781A JP S5849328 A JPS5849328 A JP S5849328A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
reaction
ethylphenol
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56146867A
Other languages
Japanese (ja)
Other versions
JPS6219409B2 (en
Inventor
Hiroshi Fujiwara
寛 藤原
Hiroaki Taniguchi
博昭 谷口
Hatsutaro Yamazaki
山崎 初太郎
Susumu Konishi
小西 進
Masaaki Sekiya
関谷 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Cosmo Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Cosmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd, Cosmo Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP56146867A priority Critical patent/JPS5849328A/en
Publication of JPS5849328A publication Critical patent/JPS5849328A/en
Publication of JPS6219409B2 publication Critical patent/JPS6219409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare the titled compound in high conversion and selectivity, keeping the activity of the reaction catalyst for a long period, by dehydrogenat ing an ethylphenol compound in the presence of a high performance oxide catalyst containing barium and tin and stable structurally even at a high temperature. CONSTITUTION:The objective compound is prepared by dehydrogenating an ethylphenol compound at 500-600 deg.C at a liquid hourly space velocity (LHSV)of 0.1-10hr under atmospheric pressure or a slight negative pressure in the presence of a catalyst comprising an oxide containing Ba and Sn or a combination of said oxide with one or more metal oxides selected from vanadium oxide, manganese oxide, iron oxide, copper oxide, zinc oxide, zirconium oxide, molybdenum oxide, antimony oxide, bismuth oxide and cerium oxide. The ratio of the oxide containing Ba and Sn to the metal oxides is preferably 0.1-10 in terms of atomic ratio of (Ba+Sn)/metal. The performance of the catalyst can be stabiliz ed by heat-treating the catalyst at 400-1,000 deg.C for 1-50hr prior to the reaction.

Description

【発明の詳細な説明】 本発明はエチルフェノール類を脱水素して相応するエチ
ニルフェノール類を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for dehydrogenating ethylphenols to produce the corresponding ethynylphenols.

従来、アルカンおよびアルキル側鎖を有する芳香族炭化
水素を脱水素して相応する不飽和化合物を得る方法、着
た、アルケンを脱水素してジエン類を製造する方法等は
広く研究さね1、これらの反応に有効な触媒も数多く見
出されて工業的にも広く利用されている。さらに、これ
らの触媒の中でも酸化クロム、酸化鉄、r−アルミナ、
酸化鋼を主体に酸化マグネシウム、酸化カリウムなどを
組み合わせた触媒は優れた性能を有するものであること
も良く知られている。
Conventionally, methods for dehydrogenating alkanes and aromatic hydrocarbons having alkyl side chains to obtain corresponding unsaturated compounds, methods for dehydrogenating alkenes to produce dienes, etc. have been widely studied1. Many catalysts effective for these reactions have been discovered and are widely used industrially. Furthermore, among these catalysts, chromium oxide, iron oxide, r-alumina,
It is also well known that a catalyst made of oxidized steel in combination with magnesium oxide, potassium oxide, etc. has excellent performance.

しかしながら、エチルフェノール類は分子内に活性なフ
ェノール性水酸基を有しているため、エチルベンゼンの
如きアル゛キルベンゼン類とは反応性が著しく異なシ(
ジャーナル・オブ・アゲライド・ケミストリー誌、7巻
、172〜182頁、1975年4月;ケミカノν・ア
ブストラクツ、70巻、28534w:初音書店出版「
大吉機化学j第14巻、83頁;ケミカル・アブストラ
クツ、64巻、15039g)、上記の炭化水素用脱水
素触媒をエチルフェノール類の脱水素に適用しても異性
化、不均化、脱アルキル化、分解、脱水縮合、触媒表面
へのコーキング、脱水素生成物の重合など望ましくない
飼反応が著しく進行する丸めに目的とするエチニルフェ
ノール類への反応の選択率が低く実用性に乏しい。
However, since ethylphenols have an active phenolic hydroxyl group in their molecules, their reactivity is significantly different from that of alkylbenzenes such as ethylbenzene.
Journal of Agelide Chemistry, Vol. 7, pp. 172-182, April 1975; Chemikano ν Abstracts, Vol. 70, 28534w: Hatsune Shoten Publishing.
Daikichi Ki Kagaku J Vol. 14, p. 83; Chemical Abstracts, Vol. 64, 15039g), Even if the above dehydrogenation catalyst for hydrocarbons is applied to the dehydrogenation of ethylphenols, there will be no isomerization, disproportionation, or dealkylation. Undesirable reactions such as oxidation, decomposition, dehydration condensation, coking on the catalyst surface, and polymerization of dehydrogenated products proceed significantly, and the selectivity of the reaction to the target ethynylphenols is low, making it impractical.

また、エチルフェノール類の脱水素触媒として、酸化す
ず単独もしくは酸化すずに金属すず、酸化マグネシウム
、酸化クロム、酸化亜鉛あるい有効であることもすでに
知られているl開昭55−28958)が、これらの触
媒の性能はなお十分満足し得る程度のものではない。
In addition, tin oxide alone or tin oxide combined with metal tin, magnesium oxide, chromium oxide, zinc oxide, etc. is already known to be effective as a dehydrogenation catalyst for ethylphenols. The performance of these catalysts is still not fully satisfactory.

本発明者らはエチルフェノール類のより浸れた脱水素反
応用触媒を得るべく鋭意研究を行なった結果、バリウム
とすすを含む酸化物あるいは該酸化物に酸化バナジウム
、酸化マンガン、酸化鉄、酸化鋼、酸化亜鉛、酸化ジル
コニウム、酸化モリブデン、酸化アンチモン、酸化ビス
マスおよび酸化セリウムより成る群から選ばれた1種以
上の金属酸化物を組み合わせた触媒がエチルフェノール
類の脱水素反応に極めて優れた性能を有し、長時間安定
な高い活性と高い選択性および長い触媒寿命を有すると
同時に、高温においても構造的に安定であることを見出
し本発明を完成した。
The present inventors conducted intensive research to obtain a catalyst for the dehydrogenation reaction of ethylphenols, and found that oxides containing barium and soot, or such oxides include vanadium oxide, manganese oxide, iron oxide, and steel oxide. A catalyst that combines one or more metal oxides selected from the group consisting of , zinc oxide, zirconium oxide, molybdenum oxide, antimony oxide, bismuth oxide, and cerium oxide has extremely excellent performance in the dehydrogenation reaction of ethylphenols. The present invention was completed based on the discovery that it has high activity, high selectivity, and long catalyst life that is stable for a long period of time, and is structurally stable even at high temperatures.

すなわち、本発明の要旨は、エチルフェノール類を脱水
素して相応するエチニルフェノール類を製造する方法に
おいて、バリウムおよびすすを含む酸化物あるいは該酸
化物に酸化バナジウム、酸化マンガン、酸、化鉄、酸化
鋼、酸化亜鉛、酸化ジルコニウム、酸化モリブデン、酸
化アンチモン、酸化ぐスマスおよび酸化セリウムか、ら
成る群から選ばれた1種以上の金属酸化物エチニルフェ
ノール類の製造方法に存する。
That is, the gist of the present invention is to provide a method for dehydrogenating ethylphenols to produce corresponding ethynylphenols, in which an oxide containing barium and soot, or vanadium oxide, manganese oxide, acid, iron oxide, A method for producing ethynylphenols containing one or more metal oxides selected from the group consisting of steel oxide, zinc oxide, zirconium oxide, molybdenum oxide, antimony oxide, soot oxide, and cerium oxide.

本発明において、バリウムとすすを含む酸化物とはバリ
ウム酸化物とすず酸化物との単なる混合物であってもよ
いし、また、その一部あるいは全部がすず酸バリウムの
如き複合酸化物の形態のものでもよい。
In the present invention, the oxide containing barium and soot may be a simple mixture of barium oxide and tin oxide, or a part or all of it may be in the form of a complex oxide such as barium stannate. It can be anything.

これらの酸化物の調製法としては、酸化バリウムと酸化
すずとを混合して加熱焼成する方法、しゅう酸バリウム
としゅう酸すずまたは酢酸バリウムと酢酸すずなどの有
機塩、あるいはバリウムとすすのその他の有機金属化合
物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩等の各種
の無機塩などを混合し加熱する方法、あるいはバリウム
とすすの各種無機塩または有機塩の水溶液を混合し、ア
ンモニアやアミンなどの塩基性化合物を加えて弱アルカ
リ性にすることにより生成するゲルをろ過、洗浄したの
ち乾燥、焼成する方法、バリウムまたはすすの一方の酸
化物に他方の金属塩の水溶液を含浸させ、乾燥、焼成す
る方法、その他一般に公知の方法が用いられる。これら
の方法で得られたバリウムとすすを含む酸化物はそのま
ま適当な大きさに粒度をそろえで触媒として用いること
もでき、また、ちるいは押出成形して用いることもでh
る0また、バリウムとすすを含む酸化物中のバリウムと
すすとの原子比は約0.03:1から1021、特に約
0.0γ〜i範囲が好ましく、さらに該酸化物中におけ
るバリウムの一部は過酸化バリウムまたは炭酸バリウム
等の通常の酸化物以外の形態であってもよい。
These oxides can be prepared by mixing barium oxide and tin oxide and heating and calcining the mixture, using organic salts such as barium oxalate and tin oxalate or barium acetate and tin acetate, or other methods of preparing barium and soot. A method of mixing and heating various inorganic salts such as organometallic compounds, hydroxides, halides, carbonates, nitrates, etc., or a method of mixing aqueous solutions of various inorganic or organic salts of barium and soot to produce ammonia, amines, etc. A method in which the gel produced by adding a basic compound to make it weakly alkaline is filtered, washed, dried, and fired.The oxide of either barium or soot is impregnated with an aqueous solution of the metal salt of the other, then dried and fired. or other generally known methods. The barium and soot-containing oxides obtained by these methods can be used as catalysts as they are by adjusting the particle size to an appropriate size, or they can be used by extrusion molding.
In addition, the atomic ratio of barium to soot in the oxide containing barium and soot is preferably in the range of about 0.03:1 to 1021, particularly about 0.0γ to i; Parts may be in forms other than conventional oxides such as barium peroxide or barium carbonate.

次に、バリウムとすすを含む酸化物に前述の他の金属酸
化物を組み合わせる場合には、一般の混合法、浸漬法、
共沈法、その他公知のいずれの方法にて調製]7てもよ
く、例えばバリウムとすすを含む酸化物にこれらの金属
酸化物をそのまま混合し成型する方法、これらの金属の
・・ロゲン化物、炭酸塩、硫酸塩、硝酸塩などの各種無
機塩あるいは有機塩の水溶液中に該酸化物を浸漬し、こ
れにアンモニアなどの塩基を加えて生じた沈殿とともに
乾燥、焼成する方法、バリウムとすすの各種無機または
有機塩水溶液と組み合わせるべき金属塩の水溶液とを混
合し、アンモニア水を加えて生成した沈殿を乾燥、焼成
する方法などが挙げられる。このようにして 6− 得られた触媒はバリウムとすすを含む酸化物単独の場合
と同様、粉砕して適当な粒度にそろえて反応に用いるこ
ともでき、あるいは押出または打錠成形して用いること
もできる。
Next, when combining the oxide containing barium and soot with other metal oxides mentioned above, use the general mixing method, dipping method,
Preparation by coprecipitation method or any other known method] 7. For example, a method in which these metal oxides are directly mixed with an oxide containing barium and soot and molded, a chloride of these metals, A method in which the oxide is immersed in an aqueous solution of various inorganic or organic salts such as carbonates, sulfates, and nitrates, and a base such as ammonia is added to the solution, followed by drying and firing along with the resulting precipitate. Examples include a method of mixing an aqueous solution of an inorganic or organic salt with an aqueous solution of a metal salt to be combined, adding aqueous ammonia, and drying and calcining the resulting precipitate. The catalyst obtained in this way can be used in the reaction by pulverizing it to an appropriate particle size, as in the case of the oxide containing barium and soot alone, or it can be used by extrusion or tableting. You can also do it.

バリウムとすすを含む酸化物とこれらの金属酸化物との
配合割合は特に制約されないが1(Ba+ Sn ) 
/金属の原子比で表わして約0.01〜100、特に約
0.1〜10の範囲が好ましい。
The blending ratio of oxides containing barium and soot and these metal oxides is not particularly limited, but may be 1 (Ba+Sn).
/metal atomic ratio of about 0.01 to 100, particularly about 0.1 to 10 is preferred.

また、本発明の方法で用いる触媒は通常強いて担体音用
φる必要はな9が、特別に大きな機械的強度を要求され
る場合など、必要な場合には担体と混合して使用するこ
ともできる。このi合の担体としてはα−アルミナ、シ
リコンカーバイド、けいそう土のような不活性な担体を
用いることが必要であって、r−アルミナ、シリカ等の
活性な担体を使用すると炭素質析出などの副反応が増大
するため好ましくない。さらに、本発明の方法で用いる
触媒は触媒性能を安定化させる目的であらかじめ約40
0′〜1000℃で約1〜50時間熱処理してもよい。
In addition, although the catalyst used in the method of the present invention does not normally need to be forced into a carrier, it may be used in combination with a carrier if necessary, such as when a particularly large mechanical strength is required. can. It is necessary to use an inert carrier such as α-alumina, silicon carbide, or diatomaceous earth as a carrier for this i-combination, and if an active carrier such as r-alumina or silica is used, carbonaceous precipitation may occur. This is not preferable because it increases side reactions. Furthermore, the catalyst used in the method of the present invention is preliminarily prepared with a
Heat treatment may be performed at 0' to 1000°C for about 1 to 50 hours.

次に、本発明において、反応原料であるエチルフェノー
ル類とは、フェノール性水酸基に対してオルト、メタま
たはパラ位にエチル基を有するエチルフェノール、なら
びにこれらのエチルフェールールの芳香核の1〜4個の
水素原子がメチル基あるいはメトキシ基で置換された化
合物、ないしは上記化合物のメチル基のα原子に結合し
ている水素の一つがメチル基で置換された化合物を意味
する。
Next, in the present invention, ethylphenols which are reaction raw materials are ethylphenols having an ethyl group at the ortho, meta or para position relative to the phenolic hydroxyl group, and 1 to 4 of the aromatic nuclei of these ethylferrules. This refers to a compound in which five hydrogen atoms have been substituted with a methyl group or a methoxy group, or a compound in which one of the hydrogen atoms bonded to the alpha atom of the methyl group in the above compound has been substituted with a methyl group.

反応温度は一般に約400〜750℃の間であり、好ま
しくは約500〜600℃の範囲が用いられる0反応原
料のエチルフェノール類の触媒層への供給速度は液空間
速度(LH8V )で表わして約O51〜10 hr’
の範囲が通常採用される。反応圧力は常圧、減圧、加圧
のいずれでもよいが、常圧から若干の減圧で反応を行な
うのが実際的である0脱水素反応は平衡論的には減圧下
の方が進行しやすいが、工業的には若干加圧の方が装置
の建設、運転において有利であるので、希釈剤等を用い
て反応原料の分圧を低7− 下させ、目的を達するのもよい。この場合、希釈剤とし
ては炭酸ガス、窒素、水蒸気、フェノール等を使用する
ことができるが、一般には炭素質析出を抑制し、且つ反
応熱の一部を供給する効果を有する水蒸気あるいは水蒸
気と窒素の混合物の使用が好ましい。反応系中に導入さ
れる希釈剤とエチルフェノールとのモル比としては通常
約2〜200、特に約2〜100の範囲が採用゛される
。また、反応は接触流通式で行なわれ、用いる触媒床の
形式は固定床、移動床、流動床などいずれでもよい。
The reaction temperature is generally between about 400 and 750°C, preferably between about 500 and 600°C. Approximately O51~10 hr'
A range of is usually adopted. The reaction pressure can be normal pressure, reduced pressure, or increased pressure, but it is practical to carry out the reaction at a slight reduction from normal pressure. From an equilibrium perspective, the dehydrogenation reaction is easier to proceed under reduced pressure. However, from an industrial perspective, it is advantageous to slightly increase the pressure in the construction and operation of the equipment, so it is also advisable to lower the partial pressure of the reaction raw materials using a diluent or the like to achieve the desired purpose. In this case, carbon dioxide, nitrogen, water vapor, phenol, etc. can be used as the diluent, but generally water vapor or water vapor and nitrogen are used, which have the effect of suppressing carbonaceous precipitation and supplying part of the reaction heat. Preference is given to using mixtures of. The molar ratio of the diluent and ethylphenol introduced into the reaction system is usually in the range of about 2 to 200, particularly about 2 to 100. Further, the reaction is carried out in a catalytic flow system, and the catalyst bed used may be of any type, such as a fixed bed, moving bed, or fluidized bed.

本発明によれば、これらのエチルフェノール類を前記触
媒に高温で接触させることにより相応するエチニルフェ
ノール類を高い転化率および選択率で製造することがで
き、しかも触媒の活性が長時間持続する特長を有する0 以下に実施例および比較例を挙げて本発明の方法を具体
的に説明する0 実施例1 酸化第二すず90重重量と炭酸ノ(リウム109− 8− 重量%をよ〈混合し、さらに5重蓋%の水を加えてよく
混合したのち120℃で1日間乾燥させた。次に、1重
量%のグラファイトを加えてよく混和し、直径3/16
インチ、長さ4 ’、mmQサイズに打錠成型した0こ
の成形物を空気中、650℃で8時間焼成し、次いで、
この焼成物を砕いて6〜10メツシユの粒度にそろえて
バ、リウムとすずを含む酸化物触媒を調製した0次に、
この触媒10−を石英製反応管中に充てんし、反応温度
550℃、LH8V 1. Ohr’でパラエチルフェ
ノールを10倍モル量の水とともに供給してほぼ5時間
反応を行なった。反応物をガスクロマトグラフィー、ゲ
ル浸透クロマトグラフィーおよびカールフィッシャーに
より分析した結果、パラエチルフェノールの転化率は3
7.5%であり、反応生成物の組成(モル%)ハ、各々
、バラエチニルフェノール96.3%、バラエチニルフ
ェノール2ffi体0.1%、31を体以上のオリゴマ
ー〇%、フェノールおよび/(ラフレゾール等のフェノ
ール!1J11.8%、その他の10− 分解物は1.8%であった。次に、この触媒を用いて脱
水素反応(550℃、5時間)と燃焼再生(550〜6
00℃、空時間)を15回以上くり返した結果、パラエ
チルフェノールの転化率は35〜38%、反応生成物の
組成(モル%)として、バラエチニルフェノールとその
2量体以上のオリゴマーの合計は96〜98%なる値が
定常的に得られた。
According to the present invention, the corresponding ethynylphenols can be produced at high conversion and selectivity by bringing these ethylphenols into contact with the catalyst at high temperatures, and the catalyst has the advantage that its activity lasts for a long time. The method of the present invention will be specifically explained below with reference to Examples and Comparative Examples.Example 1: 90% by weight of stannic oxide and 8% by weight of 109-8% by weight of stannic oxide were thoroughly mixed. Then, 5% by weight of water was added and mixed well, and then dried at 120°C for 1 day.Next, 1% by weight of graphite was added and mixed well, and a diameter of 3/16
This molded product was molded into tablets of inch, length 4', mmQ size, and was baked in air at 650°C for 8 hours, and then
This calcined product was crushed to a particle size of 6 to 10 mesh to prepare an oxide catalyst containing barium, lithium, and tin.
This catalyst 10- was filled in a quartz reaction tube, reaction temperature was 550°C, LH8V 1. Para-ethylphenol was supplied together with water in a 10-fold molar amount at Ohr', and the reaction was carried out for approximately 5 hours. As a result of analyzing the reaction product by gas chromatography, gel permeation chromatography and Karl Fischer, the conversion rate of para-ethylphenol was 3.
The composition (mol%) of the reaction product is 96.3% of varaethinylphenol, 0.1% of varaethinylphenol 2ffi, 0% of oligomer of 31 or more, phenol and/or (Phenol such as Raffresol!1J was 11.8%, and other 10-decomposed products were 1.8%.Next, using this catalyst, dehydrogenation reaction (550℃, 5 hours) and combustion regeneration (550℃, 5 hours) were performed. 6
The conversion rate of paraethylphenol was 35 to 38%, and the composition (mol%) of the reaction product was the total of paraethylphenol and its dimer or higher oligomer. A value of 96 to 98% was consistently obtained.

比較例1 酸化第二すず粉末に対して3重量%のパラフィンワック
スを加えてよく混和したのち、直径5 mm 、長さ’
4 mmに打錠成形を行ない、空気中、550℃で5時
間焼成し、これを砕いて6〜10メツシユに粒度なそろ
えた触媒を調製した。この触媒lO−を石英製反応管に
充てんし、実施例1と同一反応条件でパラエチルフェノ
ールの脱水素反応を行なった結果、パラエチルフェノー
ルの転化率は35.1%、反応生成物の組成(モル%)
ハ、各々バラエチニルフェノール87.8%、バラエチ
ニルフェノールの2量体以上のオリゴマーの合計5.1
%、フェノールおよびクレゾール等のフェノール類2.
3%、その他の分解物は4.8%であった。また、この
触媒を用いて実施例1と同様、反応、燃焼再生を15回
以上くり返した結果、パラエチルフェノールの転化率は
30〜35%、反応生成物の組成(モルX)として、バ
ラエチニルフェノールとその2量体以上のオリゴマーの
合計は93〜95%の値が定常的に得られた。
Comparative Example 1 After adding 3% by weight of paraffin wax to the stannic oxide powder and mixing well, the powder had a diameter of 5 mm and a length of '
The mixture was compressed into 4 mm tablets, calcined in air at 550°C for 5 hours, and crushed to prepare a catalyst with a uniform particle size of 6 to 10 meshes. A quartz reaction tube was filled with this catalyst lO-, and para-ethylphenol was dehydrogenated under the same reaction conditions as in Example 1. As a result, the conversion rate of para-ethylphenol was 35.1%, and the composition of the reaction product was (mol%)
C. 87.8% of each varaethinylphenol, total of oligomers of dimer or higher of varaethinylphenol 5.1%
%, phenols such as phenol and cresol2.
3%, and other decomposed products were 4.8%. In addition, as a result of repeating the reaction and combustion regeneration 15 times or more using this catalyst in the same manner as in Example 1, the conversion rate of paraethylphenol was 30 to 35%, and the composition (mol X) of the reaction product was A value of 93 to 95% was consistently obtained for the total amount of phenol and its dimer or higher oligomer.

この結果を実施例1−の結果と比較すれば、パラエチル
フェノールの転化率、バラエチニルフェノールの選択率
ともバリウムとすずを含む酸化物触媒を用いる場合の方
がはるかに優れていることが明らかである。
Comparing this result with the result of Example 1-, it is clear that both the conversion rate of paraethylphenol and the selectivity of paraethinylphenol are far superior when using an oxide catalyst containing barium and tin. It is.

実施例2 実施例1と同様の反応を100倍のスケール、つまり触
媒量ILをステンレス製反応装置に充てんして反応を行
なったところ、実験装置の大型化に伴なう差は認められ
ず、パラエチルフェノールの転化率は37.3%であり
、反応生成物11− 中のバラエチニルフェノールとそのオリゴマーの合計の
割合は96.4モル%であった。
Example 2 When the same reaction as in Example 1 was carried out on a 100 times scale, that is, by filling a stainless steel reactor with the catalyst amount IL, no difference was observed due to the increase in the size of the experimental apparatus. The conversion rate of paraethylphenol was 37.3%, and the total proportion of paraethinylphenol and its oligomer in the reaction product 11- was 96.4 mol%.

実施例3 反応時間を24時間とした以外は実施例1と同様にして
反応を行なった結果、パラエチルフェノールの転化率は
36.9%、バラエチニルフェノールおよびそのオリゴ
マーの合計の生成割合は96.5モル%であった。仁の
結果はバリウムとすずを含む酸化物触媒が連続反応にお
いて長時間活性を持続することを示すものである・実施
例4 実施例1で用いたものと同一のバリウムとすずを含む酸
化物触媒に通常の浸漬法で二酸化マンガン30重量%担
持せしめた触媒を用い、反応温度620℃、LJ(SV
 1. Ohr−” 、水とパラエチルフェノールのモ
ル比1oにおいて、実施例1と同様にして2時間反応を
行なった結果、パラエチルフェノールの転化率は68,
5%と極めて高く、反応生成物の組成(モル%)は、各
々、バラエチニルフェノール86.3%、パラエテニ1
3− 12− ルフェノールの2量体1,5%、si1体以上のオリゴ
マー2.4%、フェノールおよびバラクレゾール等のフ
ェノール類7.0%およびその他の分解物は2.85X
であった。
Example 3 The reaction was carried out in the same manner as in Example 1 except that the reaction time was 24 hours. As a result, the conversion rate of paraethylphenol was 36.9%, and the total production rate of paraethylphenol and its oligomer was 96%. It was .5 mol%. The results show that the oxide catalyst containing barium and tin maintains its activity for a long time in continuous reactions.Example 4 The same oxide catalyst containing barium and tin as used in Example 1 The reaction temperature was 620°C, LJ (SV
1. As a result of carrying out the reaction for 2 hours in the same manner as in Example 1 at a molar ratio of water and para-ethylphenol of 10, the conversion rate of para-ethylphenol was 68,
The compositions (mol%) of the reaction products are 86.3% of paraethinylphenol and 1% of paraethinylphenol.
1.5% dimer of 3-12-phenol, 2.4% oligomer of 1 or more SI, 7.0% phenols such as phenol and valaclesol, and 2.85X of other decomposition products.
Met.

実施例5 実施例4において、二酸化マンガンの代りに酸化第二鉄
を30重量%担持せしめた触媒を用い、実施例4と同様
にして実験を行なった結果、パ、ラエチルフェノールの
転化率は61.3%であり、反応生成物の組成(モル%
)は、各々バラエチニルフェノール89.θ%、パラエ
テニにフェノールの2量体1.3%、3量体以上のオリ
ゴ?−2,4%、フェノールおよびパラクレゾール等の
フェノール類5.2%およびその他の分解物は2.1%
であった。
Example 5 In Example 4, an experiment was carried out in the same manner as in Example 4 using a catalyst supported with 30% by weight of ferric oxide instead of manganese dioxide. As a result, the conversion rate of para-, la-ethylphenol was as follows. 61.3%, and the composition of the reaction product (mol%
) are respectively varaethinylphenol 89. θ%, phenol dimer 1.3% in paraethene, oligo trimer or higher? -2.4%, phenols such as phenol and para-cresol 5.2%, and other decomposition products 2.1%
Met.

実施例6 ・ 実施例1で用いたものと同一のバリウムとすずを含む酸
化物触媒に酸化アンチモンを30重量%担持せしめた触
媒を用い、・反応温度550C1LH8VI。0hr−
1、水とパラエチルフェノ〜14− ルのモル比10において、実施例1と同様にして5時間
反応を行なった結果、パラエチルフェノールの転化率は
41゜0%であり、反応生成物の組成(モル%)は、各
々バラエチニルフェノール92.2%、バラエチニルフ
ェノールの2量体0.6%、3量体以上のオリゴマー1
.8%、フェノールおよびパラクレゾール等のフェノー
ル類2.8%およびその他の分解物は2.6Xであった
Example 6 - A catalyst in which 30% by weight of antimony oxide was supported on the same oxide catalyst containing barium and tin as used in Example 1 was used, - Reaction temperature was 550C1LH8VI. 0hr-
1. At a molar ratio of water and para-ethylphenol to 14-10, the reaction was carried out for 5 hours in the same manner as in Example 1. As a result, the conversion rate of para-ethylphenol was 41.0%, and the reaction product The composition (mol%) is 92.2% of varaethinylphenol, 0.6% of dimer of varaethinylphenol, and 1% of oligomer of trimer or higher.
.. 8%, phenols such as phenol and para-cresol 2.8%, and other decomposition products were 2.6X.

実施例7 実施例4において、二酸化マンガンの代りに酸化セリウ
ム10重蓋%および酸化ビスマス15重t%を担持せし
めた触媒を用い、実施例4と同様にして実験を行なった
結果、パラエチルフェノールの転化率は70.INであ
り、反応生成物の組成(モル%)は、各々パラエテニル
フェ/ 7 ル84.3%、バラエチニルフェノールの
2量体1.8%、3量体以上のオリゴマー4.0X。
Example 7 In Example 4, an experiment was conducted in the same manner as in Example 4 using a catalyst supported with 10% by weight of cerium oxide and 15% by weight of bismuth oxide instead of manganese dioxide. The conversion rate is 70. The compositions (mol%) of the reaction products are 84.3% paraethenylphenol, 1.8% paraethinylphenol dimer, and 4.0X trimer or higher oligomer.

フェノールおよびバラクレゾール等のフェノール類7.
9%およびその他の分解物は2.ONであつた0 実施例、8 酸化第二鉄75重量%、酸化すず10重量%、炭酸バリ
ウム10重蓋%、セメント5重il′%の混合粉末に対
して、20重量%の蒸留水を加えて、エクストルーダー
によ、り直径3mm、長さ5 mmに押し出し成形を行
なった。これを3日間室温で熟成し、さらに半日130
℃にて乾燥した。これを650℃で5時間焼成すること
により、鉄、すす、バリウムを含む酸化物触媒を調製し
た。
Phenols such as phenol and valaclesol7.
9% and other decomposition products are 2. Example 8 20% by weight of distilled water was added to a mixed powder of 75% by weight of ferric oxide, 10% by weight of tin oxide, 10% by weight of barium carbonate, and 5% by weight of cement. In addition, extrusion molding was performed using an extruder to a diameter of 3 mm and a length of 5 mm. This was aged for 3 days at room temperature, and then for another half day at 130 ml.
Dry at ℃. By calcining this at 650° C. for 5 hours, an oxide catalyst containing iron, soot, and barium was prepared.

次に、゛この触媒10−を石英製反応管に充てんし11
反応温度550℃、LH8V 1. Ohr’で2.6
−’)メチル−4−エチルフェノールヲ10倍モル量の
水とともに′供給して、5時間反応を行なった。この結
果、2,6−シメチルー4−エチルフェノールの転化率
は33.1%1.反応生成物の組成(モルX)は各々2
,6−シメチルー4−゛エチニルフェノール94.8%
、2.6−シメチルー4−エチニルフェノールの2i体
0.x%、3量体以上のオリゴマー〇%、フェノール、
クレゾール、メチルエチルフェノール、2.4.6−ド
リメチルフエノール等のフェノール類2.7%およびそ
の他の分解物は2.4%であった〇実施例9 実施例1で調製したバリウムとすすを含む酸化物触媒を
用いて、反応温度550℃、バライソプロピルフェノー
ルのLH8V 1. Ohr’ 、バライソプロピルフ
ェノールと水とのモル比1/1゜にて実施例1と・同様
に反応を行なった結果、バライソプロピルフェノールの
転化率F135.2%であり、反応生成物の組成(モル
%)において、パラヒドロキシ−α−メチルスチレン9
2.8%、バラヒドロキシ−α−メチルスチレンの2i
体0.4%、afi体以上のオリゴマーは0%であった
0 実施例10 実施例1でgi#!t、た触媒を用いて実施例9と同一
の反応条件でメタエチルフェノールの脱水素反応を行・
なった結果、メタエチルフェノール17− の転化率は37.8%であシ、反応生成物の組成(モル
%)において、メタエチニルフェノールは°95.2%
、メタエチニルフェノールの2量体および3i体は各々
OXであった。
Next, ``This catalyst 10- is filled into a quartz reaction tube and 11
Reaction temperature: 550°C, LH8V 1. 2.6 in Ohr'
-') Methyl-4-ethylphenol was supplied together with 10 times the molar amount of water, and the reaction was carried out for 5 hours. As a result, the conversion rate of 2,6-dimethyl-4-ethylphenol was 33.1%1. The composition of the reaction products (mol X) is 2
, 6-dimethyl-4-ethynylphenol 94.8%
, 2i form of 2,6-dimethyl-4-ethynylphenol 0. x%, trimer or higher oligomer 〇%, phenol,
Phenols such as cresol, methylethylphenol, 2.4.6-drimethylphenol and other decomposition products were 2.7% and 2.4%. Example 9 The barium and soot prepared in Example 1 were Using an oxide catalyst containing 1. Ohr', the reaction was carried out in the same manner as in Example 1 at a molar ratio of valisopropylphenol and water of 1/1°. As a result, the conversion rate of valisopropylphenol was 135.2%, and the composition of the reaction product ( mole%), parahydroxy-α-methylstyrene 9
2.8% 2i of rose hydroxy-alpha-methylstyrene
Example 10 In Example 1, gi#! The dehydrogenation reaction of meta-ethylphenol was carried out under the same reaction conditions as in Example 9 using the same catalyst.
As a result, the conversion rate of metaethylphenol 17- was 37.8%, and in the composition (mol%) of the reaction product, metaethynylphenol was 95.2%.
, the dimer and 3i form of metaethynylphenol were each OX.

実施例’11〜15 実施例!で用いたものと同一のバリウムとすずを含む酸
化物触媒に、銅、亜鉛、ジルコニウム、モリブデンおよ
びビスマスの金属塩を1棟ずつ、これらの金属元素の含
有側・合がすす元素に一対して10%となるように、通
常の浸漬法で担持せしめ、たのち、空気中で500℃に
おいて4時間焼成し、金属塩の硝酸基もしくはアンモニ
ウム基を分解除去した。こ九らの触媒を用いて実施例4
と同様にしてパラエチルフェノールの脱水素反応を行な
っ“た結果を第1表に示す。
Examples '11-15 Examples! Metal salts of copper, zinc, zirconium, molybdenum, and bismuth were added one by one to the same oxide catalyst containing barium and tin as used in the above, and the containing side of these metal elements was added to the soot element. The metal salt was supported by a conventional dipping method to a concentration of 10%, and then calcined in air at 500° C. for 4 hours to decompose and remove the nitric acid group or ammonium group of the metal salt. Example 4 using the catalyst of Kokura et al.
The dehydrogenation reaction of para-ethylphenol was carried out in the same manner as in Table 1.

fs−fs-

Claims (2)

【特許請求の範囲】[Claims] (1)  エチルフェノール類を脱水素して相応するエ
チニルフェノール類を製造する方法において、バリウム
およびすすを含む酸化物から成る触媒を用いることを特
徴とするエチニルフェノール類の製造方法。
(1) A method for producing ethynylphenols by dehydrogenating ethylphenols, the method comprising using a catalyst comprising an oxide containing barium and soot.
(2) バリウムとすすを含む゛酸化物に、酸化バナジ
ウム、酸化マンガン、酸化鉄、酸化鋼、酸化亜鉛、酸化
ジルコニウム、酸化モリブデン、酸化アンチモン、酸化
ビスマスおよび酸化セリウムから成る群から選ばれた1
種以上の金属酸化物を組み合わせた触媒を用いることを
特徴とする特許請求゛の範囲第1項に記載の方法0
(2) An oxide containing barium and soot, selected from the group consisting of vanadium oxide, manganese oxide, iron oxide, steel oxide, zinc oxide, zirconium oxide, molybdenum oxide, antimony oxide, bismuth oxide, and cerium oxide.
Method 0 according to claim 1, characterized in that a catalyst comprising a combination of more than one metal oxide is used.
JP56146867A 1981-09-17 1981-09-17 Preparation of ethenylphenol Granted JPS5849328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146867A JPS5849328A (en) 1981-09-17 1981-09-17 Preparation of ethenylphenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146867A JPS5849328A (en) 1981-09-17 1981-09-17 Preparation of ethenylphenol

Publications (2)

Publication Number Publication Date
JPS5849328A true JPS5849328A (en) 1983-03-23
JPS6219409B2 JPS6219409B2 (en) 1987-04-28

Family

ID=15417356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146867A Granted JPS5849328A (en) 1981-09-17 1981-09-17 Preparation of ethenylphenol

Country Status (1)

Country Link
JP (1) JPS5849328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205317A1 (en) 1985-06-07 1986-12-17 Mitsui Petrochemical Industries, Ltd. Process for production of alkenyl substituted aromatic compound
JPS61293942A (en) * 1985-06-21 1986-12-24 Mitsui Petrochem Ind Ltd Production of alkenyl-substituted aromatic phenol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625751B2 (en) * 1987-08-31 1997-07-02 トヨタ自動車株式会社 Stabilizer control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205317A1 (en) 1985-06-07 1986-12-17 Mitsui Petrochemical Industries, Ltd. Process for production of alkenyl substituted aromatic compound
US4978789A (en) * 1985-06-07 1990-12-18 Katsuo Taniguchi Process for production of alkenyl substituted aromatic compound
JPS61293942A (en) * 1985-06-21 1986-12-24 Mitsui Petrochem Ind Ltd Production of alkenyl-substituted aromatic phenol

Also Published As

Publication number Publication date
JPS6219409B2 (en) 1987-04-28

Similar Documents

Publication Publication Date Title
EP0101111B1 (en) Process and catalytic composition for the preparation of aldehydes, and aldehydes thus prepared
JPH04277030A (en) Ethylbenzene dehydrogenation catalyst
EP2945738B1 (en) Dehydrogenation manganese-containing catalyst, its use and method of preparation
JPS6332769B2 (en)
US4368344A (en) Oxidative dehydrogenation of organic compounds with a zinc titanate catalyst
JPH0533211B2 (en)
US4036901A (en) Process for producing styrene
US4394297A (en) Zinc titanate catalyst
JPS6352612B2 (en)
US5084259A (en) Crystalline nickel aluminum borates
JPS5849328A (en) Preparation of ethenylphenol
JPH01165540A (en) Production of diaryl ether and diaryl sulfide
EP0146099A2 (en) A process for producing acrylic acid by oxidation of acrolein and a novel catalyst useful thereof
JPH0547265B2 (en)
JPS6316367B2 (en)
US5264407A (en) Crystalline metalloaluminum borates
JPS6048495B2 (en) Method for producing methacrylic acid
JPH01254633A (en) Isomerization of dichlorotoluene
JPH0222738B2 (en)
JPS59108775A (en) Preparation of benzofuranol
JPS5832835A (en) Preparation of phenols
JPH06199768A (en) Production of alpha,beta-unsaturated nitrile
JPH0242034A (en) Production of methacrylic acid and/or methacrolein
JPH0782178A (en) Production of monoalkenylbenzene
JPS6115850B2 (en)