JPS6219409B2 - - Google Patents

Info

Publication number
JPS6219409B2
JPS6219409B2 JP56146867A JP14686781A JPS6219409B2 JP S6219409 B2 JPS6219409 B2 JP S6219409B2 JP 56146867 A JP56146867 A JP 56146867A JP 14686781 A JP14686781 A JP 14686781A JP S6219409 B2 JPS6219409 B2 JP S6219409B2
Authority
JP
Japan
Prior art keywords
oxide
reaction
catalyst
tin
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56146867A
Other languages
Japanese (ja)
Other versions
JPS5849328A (en
Inventor
Hiroshi Fujiwara
Hiroaki Taniguchi
Hatsutaro Yamazaki
Susumu Konishi
Masaaki Sekya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP56146867A priority Critical patent/JPS5849328A/en
Publication of JPS5849328A publication Critical patent/JPS5849328A/en
Publication of JPS6219409B2 publication Critical patent/JPS6219409B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】 本発明ぱチルプノヌル類を脱氎玠しお盞応
する゚テニルプノヌル類を補造する方法に関す
るものである。 埓来、アルカンおよびアルキル偎鎖を有する芳
銙族炭化氎玠を脱氎玠しお盞応する䞍飜和化合物
を埗る方法、たた、アルケンを脱氎玠しおゞ゚ン
類を補造する方法等は広く研究され、これらの反
応に有効な觊媒も数倚く芋出されお工業的にも広
く利甚されおいる。さらに、これらの觊媒の䞭で
も酞化クロム、酞化鉄、γ−アルミナ、酞化銅を
䞻䜓に酞化マグネシりム、酞化カリりムなどを組
み合わせた觊媒は優れた性胜を有するものである
こずも良く知られおいる。しかしながら、゚チル
プノヌル類は分子内に掻性なプノヌル性氎酞
基を有しおいるため、゚チルベンれンの劂きアル
キルベンれン類ずは反応性が著しく異なりゞダ
ヌナル・オブ・アプラむド・ケミストリヌ誌、
巻、172〜182頁、1975幎月ケミカル・アブス
トラクツ、70巻、28534w朝倉曞店出版「倧有
機化孊」第14巻、83頁ケミカル・アブストラク
ツ、64巻、15039、䞊蚘の炭化氎玠甚脱氎玠觊
媒を゚チルプノヌル類の脱氎玠に適甚しおも異
性化、䞍均化、脱アルキル化、分解、脱氎瞮合、
觊媒衚面ぞのコヌキング、脱氎玠生成物の重合な
ど望たしくない副反応が著しく進行するために目
的ずする゚テニルプノヌル類ぞの反応の遞択率
が䜎く実甚性に乏しい。たた、゚チルプノヌル
類の脱氎玠觊媒ずしお、酞化すず単独もしくは酞
化すずに金属すず、酞化マグネシりム、酞化クロ
ム、酞化亜鉛あるいは酞化マンガン等を組み合わ
せた觊媒が比范的有効であるこずもすでに知られ
おいる特開昭55−28958が、これらの觊媒の
性胜はなお十分満足し埗る皋床のものではない。 本発明者らぱチルプノヌル類のより優れた
脱氎玠反応甚觊媒を埗るべく鋭意研究を行な぀た
結果、バリりムずすずを含む酞化物あるいは該酞
化物に酞化マンガン、酞化鉄、酞化銅、酞化亜
鉛、酞化ゞルコニりム、酞化モリブデン、酞化ア
ンチモンおよび酞化ビスマスより成る矀から遞ば
れた皮以䞊の金属酞化物、たたは酞化ビスマス
ず酞化セリりムを組み合わせた觊媒が゚チルプ
ノヌル類の脱氎玠反応に極めお優れた性胜を有
し、長時間安定な高い掻性ず高い遞択性および長
い觊媒寿呜を有するず同時に、高枩においおも構
造的に安定であるこずを芋出し本発明を完成し
た。 すなわち、本発明の芁旚は、゚チルプノヌル
類を脱氎玠しお盞応する゚テニルプノヌル類を
補造する方法においお、バリりムおよびすずを含
む酞化物あるいは該酞化物に、酞化マンガン、酞
化鉄、酞化銅、酞化亜鉛、酞化ゞルコニりム、酞
化モリブデン、酞化アンチモンおよび酞化ビスマ
スより成る矀から遞ばれた皮以䞊の金属酞化
物、たたは酞化ビスマスず酞化セリりムを組み合
わせた觊媒を甚いるこずを特城ずする゚テニルフ
゚ノヌル類の補造方法に存する。 本発明においお、バリりムずすずを含む酞化物
ずはバリりム酞化物ずすず酞化物ずの単なる混合
物であ぀おもよいし、たた、その䞀郚あるいは党
郚がすず酞バリりムの劂き耇合酞化物の圢態のも
のでもよい。 これらの酞化物の調補法ずしおは、酞化バリり
ムず酞化すずずを混合しお加熱焌成する方法、し
ゆう酞バリりムずしゆう酞すずたたは酢酞バリり
ムず酢酞すずなどの有機塩、あるいはバリりムず
すずのその他の有機金属化合物、氎酞化物、ハロ
ゲン化物、炭酞塩、硝酞塩等の各皮の無機塩など
を混合し加熱する方法、あるいはバリりムずすず
の各皮無機塩たたは有機塩の氎溶液を混合し、ア
ンモニアやアミンなどの塩基性化合物を加えお匱
アルカリ性にするこずにより生成するゲルをろ
過、掗浄したのち也燥、焌成する方法、バリりム
たたはすずの䞀方の酞化物に他方の金属塩の氎溶
液を含浞させ、也燥、焌成する方法、その他䞀般
に公知の方法が甚いられる。これらの方法で埗ら
れたバリりムずすずを含む酞化物はそのたた適圓
な倧きさに粒床をそろえお觊媒ずしお甚いるこず
もでき、たた、打錠あるいは抌出成圢しお甚いる
こずもできる。 たた、バリりムずすずを含む酞化物䞭のバリり
ムずすずずの原子比は玄0.03から10、特
に玄0.05〜の範囲が奜たしく、さらに
該酞化物䞭におけるバリりムの䞀郚は過酞化バリ
りムたたは炭酞バリりム等の通垞の酞化物以倖の
圢態であ぀おもよい。 次に、バリりムずすずを含む酞化物に前述の他
の金属酞化物を組み合わせる堎合には、䞀般の混
合法、浞挬法、共沈法、その他公知のいずれの方
法にお調補しおもよく、䟋えばバリりムずすずを
含む酞化物にこれらの金属酞化物をそのたた混合
し成型する方法、これらの金属のハロゲン化物、
炭酞塩、硫酞塩、硝酞塩などの各皮無機塩あるい
は有機塩の氎溶液䞭に該酞化物を浞挬し、これに
アンモニアなどの塩基を加えお生じた沈殿ずずも
に也燥、焌成する方法、バリりムずすずの各皮無
機たたは有機塩氎溶液ず組み合わせるべき金属塩
の氎溶液ずを混合し、アンモニア氎を加えお生成
した沈殿を也燥、焌成する方法などが挙げられ
る。このようにしお埗られた觊媒はバリりムずす
ずを含む酞化物単独の堎合ず同様、粉砕しお適圓
な粒床にそろえお反応に甚いるこずもでき、ある
いは抌出たたは打錠成圢しお甚いるこずもでき
る。 バリりムずすずを含む酞化物ずこれらの金属酞
化物ずの配合割合は特に制玄されないが、Ba
Sn金属の原子比で衚わしお玄0.01〜100、特
に玄0.1〜10の範囲が奜たしい。 たた、本発明の方法で甚いる觊媒は通垞匷いお
担䜓を甚いる必芁はないが、特別に倧きな機械的
匷床を芁求される堎合など、必芁な堎合には担䜓
ず混合しお䜿甚するこずもできる。この堎合の担
䜓ずしおはα−アルミナ、シリコンカヌバむド、
けいそう土のような䞍掻性な担䜓を甚いるこずが
必芁であ぀お、γ−アルミナ、シリカ等の掻性な
担䜓を䜿甚するず炭玠質析出などの副反応が増倧
するため奜たしくない。さらに、本発明の方法で
甚いる觊媒は觊媒性胜を安定化させる目的であら
かじめ玄400〜1000℃で玄〜50時間熱凊理しお
もよい。 次に、本発明においお、反応原料である゚チル
プノヌル類ずは、プノヌル性氎酞基に察しお
オルト、メタたたはパル䜍に゚チル基を有する゚
チルプノヌル、ならびにこれらの゚チルプノ
ヌルの芳銙栞の〜個の氎玠原子がメチル基あ
るいはメトキシ基で眮換された化合物、ないしは
䞊蚘化合物の゚チル基のα原子に結合しおいる氎
玠の䞀぀がメチル基で眮換された化合物を意味す
る。 反応枩床は䞀般に玄400〜750℃の間であり、奜
たしくは玄500〜600℃の範囲が甚いられる。反応
原料の゚チルプノヌル類の觊媒局ぞの䟛絊速床
は液空間速床LHSVで衚わしお玄0.1〜10hr-1
の範囲が通垞採甚される。反応圧力は垞圧、枛
圧、加圧のいずれでもよいが、垞圧から若干の枛
圧で反応を行なうのが実際的である。脱氎玠反応
は平衡論的には枛圧䞋の方が進行しやすいが、工
業的には若干加圧の方が装眮の建蚭、運転におい
お有利であるので、垌釈剀等を甚いお反応原料の
分圧を䜎䞋させ、目的を達するのもよい。この堎
合、垌釈剀ずしおは炭酞ガス、窒玠、氎蒞気、フ
゚ノヌル等を䜿甚するこずができるが、䞀般には
炭玠質析出を抑制し、䞔぀反応熱の䞀郚を䟛絊す
る効果を有する氎蒞気あるいは氎蒞気ず窒玠の混
合物の䜿甚が奜たしい。反応系䞭に導入される垌
釈剀ず゚チルプノヌルずのモル比ずしおは通垞
玄〜200、特に玄〜100の範囲が採甚される。
たた、反応は接觊流通匏で行なわれ、甚いる觊媒
床の圢匏は固定床、移動床、流動床などいずれで
もよい。 本発明によれば、これらの゚チルプノヌル類
を前蚘觊媒に高枩で接觊させるこずにより盞応す
る゚テニルプノヌル類を高い転化率および遞択
率で補造するこずができ、しかも觊媒の掻性が長
時間持続する特長を有する。 以䞋に実斜䟋および比范䟋を挙げお本発明の方
法を具䜓的に説明する。 実斜䟋  酞化第二すず90重量ず炭酞バリりム10重量
をよく混合し、さらに重量の氎を加えおよく
混合したのち120℃で日間也燥させた。次に、
重量のグラフアむトを加えおよく混和し、盎
埄3/16むンチ、長さmmのサむズに打錠成型し
た。この成圢物を空気䞭、650℃で時間焌成
し、次いで、この焌成物を砕いお〜10メツシナ
の粒床にそろえおバリりムずすずを含む酞化物觊
媒を調補した。 次に、この觊媒10mlを石英補反応管䞭に充おん
し、反応枩床550℃、LHSV1.0hr-1でパラ゚チル
プノヌルを10倍モル量の氎ずずもに䟛絊しおほ
が時間反応を行な぀た。反応物をガスクロマト
グラフむヌ、ゲル浞透クロマトグラフむヌおよび
カヌルフむツシダヌにより分析した結果、パラ゚
チルプノヌルの転化率は37.5であり、反応生
成物の組成モルは、各々、パラ゚テニルフ
゚ノヌル96.3、パラ゚テニルプノヌル量䜓
0.1、量䜓以䞊のオリゎマヌ、プノヌ
ルおよびパラクレゟヌル等のプノヌル類1.8
、その他の分解物は1.8であ぀た。次に、こ
の觊媒を甚いお脱氎玠反応550℃、時間ず
燃焌再生550〜600℃、時間を15回以䞊くり
返した結果、パラ゚チルプノヌルの転化率は35
〜38、反応生成物の組成モルずしお、パ
ラ゚テニルプノヌルずその量䜓以䞊のオリゎ
マヌの合蚈は96〜98なる倀が定垞的に埗られ
た。 比范䟋  酞化第二すず粉末に察しお重量のパラフむ
ンワツクスを加えおよく混和したのち、盎埄
mm、長さmmに打錠成圢を行ない、空気䞭、550
℃で時間焌成し、これを砕いお〜10メツシナ
に粒床をそろえた觊媒を調補した。この觊媒10ml
を石英補反応管に充おんし、実斜䟋ず同䞀反応
条件でパラ゚チルプノヌルの脱氎玠反応を行な
぀た結果、パラ゚チルプノヌルの転化率は35.1
、反応生成物の組成モルは、各々パラ゚
テニルプノヌル87.8、パラ゚テニルプノヌ
ルの量䜓以䞊のオリゎマヌの合蚈5.1、プ
ノヌルおよびクレゟヌル等のプノヌル類2.3
、その他の分解物は4.8であ぀た。たた、こ
の觊媒を甚いお実斜䟋ず同様、反応、燃焌再生
を15回以䞊くり返した結果、パラ゚チルプノヌ
ルの転化率は30〜35、反応生成物の組成モル
ずしお、パラ゚テニルプノヌルずその量
䜓以䞊のオリゎマヌの合蚈は93〜95の倀が定垞
的に埗られた。 この結果を実斜䟋の結果ず比范すれば、パラ
゚チルプノヌルの転化率、パラ゚テニルプノ
ヌルの遞択率ずもバリりムずすずを含む酞化物觊
媒を甚いる堎合の方がはるかに優れおいるこずが
明らかである。 実斜䟋  実斜䟋ず同様の反応を100倍のスケヌル、぀
たり觊媒量をステンレス補反応装眮に充おん
しお反応を行な぀たずころ、実隓装眮の倧型化に
䌎なう差は認められず、パラ゚チルプノヌルの
転化率は37.3であり、反応生成物䞭のパラ゚テ
ニルプノヌルずそのオリゎマヌの合蚈の割合は
96.4モルであ぀た。 実斜䟋  反応時間を24時間ずした以倖は実斜䟋ず同様
にしお反応を行な぀た結果、パラ゚チルプノヌ
ルの転化率は36.9、パラ゚テニルプノヌルお
よびそのオリゎマヌの合蚈の生成割合は96.5モル
であ぀た。この結果はバリりムずすずを含む酞
化物觊媒が連続反応においお長時間掻性を持続す
るこずを瀺すものである。 実斜䟋  実斜䟋で甚いたものず同䞀のバリりムずすず
を含む酞化物觊媒に通垞の浞挬法で二酞化マンガ
ン30重量担持せしめた觊媒を甚い、反応枩床
620℃、LHSV1.0hr-1、氎ずパラ゚チルプノヌ
ルのモル比10においお、実斜䟋ず同様にしお
時間反応を行な぀た結果、パラ゚チルプノヌル
の転化率は68.5ず極めお高く、反応生成物の組
成モルは、各々、パラ゚テニルプノヌル
86.3、パラ゚テニルプノヌルの量䜓1.5
、量䜓以䞊のオリゎマヌ2.4、プノヌル
およびパラクレゟヌル等のプノヌル類7.0お
よびその他の分解物は2.8であ぀た。 実斜䟋  実斜䟋においお、二酞化マンガンの代りに酞
化第二鉄を30重量担持せしめた觊媒を甚い、実
斜䟋ず同様にしお実隓を行な぀た結果、パラ゚
チルプノヌルの転化率は61.3であり、反応生
成物の組成モルは、各々パラ゚テニルプ
ノヌル89.0、パラ゚テニルプノヌルの量䜓
1.3、量䜓以䞊のオリゎマヌ2.4、プノヌ
ルおよびパラクレゟヌル等のプノヌル類5.2
およびその他の分解物は2.1であ぀た。 実斜䟋  実斜䟋で甚いたものず同䞀のバリりムずすず
を含む酞化物觊媒に酞化アンチモンを30重量担
持せしめた觊媒を甚い、反応枩床550℃、
LHSV1.0hr-1、氎ずパラ゚チルプノヌルのモル
比10においお、実斜䟋ず同様にしお時間反応
を行な぀た結果、パラ゚チルプノヌルの転化率
は41.0であり、反応生成物の組成モル
は、各々パラ゚テニルプノヌル92.2、パラ゚
テニルプノヌルの量䜓0.6、量䜓以䞊の
オリゎマヌ1.8、プノヌルおよびパラクレゟ
ヌル等のプノヌル類2.8およびその他の分解
物は2.6であ぀た。 実斜䟋  実斜䟋においお、二酞化マンガンの代りに酞
化セリりム10重量および酞化ビスマス15重量
を担持せしめた觊媒を甚い、実斜䟋ず同様にし
お実隓を行な぀た結果、パラ゚チルプノヌルの
転化率は70.1であり、反応生成物の組成モル
は、各々パラ゚テニルプノヌル84.3、パ
ラ゚テニルプノヌルの量䜓1.8、量䜓以
䞊のオリゎマヌ4.0、プノヌルおよびパラク
レゟヌル等のプノヌル類7.9およびその他の
分解物は2.0であ぀た。 実斜䟋  酞化第二鉄75重量、酞化すず10重量、炭酞
バリりム10重量、セメント重量の混合粉末
に察しお、20重量の蒞留氎を加えお、゚クスト
ルヌダヌにより盎埄mm、長さmmに抌し出し成
圢を行な぀た。これを日間宀枩で熟成し、さら
に半日130℃にお也燥した。これを650℃で時間
焌成するこずにより、鉄、すず、バリりムを含む
酞化物觊媒を調補した。 次に、この觊媒10mlを石英補反応管に充おん
し、反応枩床550℃、LHSV1.0hr-1で・−ゞ
メチル−−゚チルプノヌルを10倍モル量の氎
ずずもに䟛絊しお、時間反応を行な぀た。この
結果、・−ゞメチル−−゚チルプノヌル
の転化率は33.1、反応生成物の組成モル
は各々・−ゞメチル−−゚テニルプノヌ
ル94.8、・−ゞメチル−−゚テニルプ
ノヌルの量䜓0.1、量䜓以䞊のオリゎマヌ
、プノヌル、クレゟヌル、メチル゚チルフ
゚ノヌル、・・−トリメチルプノヌル等
のプノヌル類2.7およびその他の分解物は2.4
であ぀た。 実斜䟋  実斜䟋で調補したバリりムずすずを含む酞化
物觊媒を甚いお、反応枩床550℃、パラむ゜プロ
ピルプノヌルのLHSV1.0hr-1、パラむ゜プロピ
ルプノヌルず氎ずのモル比10にお実斜䟋
ず同様に反応を行な぀た結果、パラむ゜プロピル
プノヌルの転化率は35.2であり、反応生成物
の組成モルにおいお、パラヒドロキシ−α
−メチルスチレン92.8、パラヒドロキシ−α−
メチルスチレンの量䜓0.4、量䜓以䞊のオ
リゎマヌはであ぀た。 実斜䟋 10 実斜䟋で調補した觊媒を甚いお実斜䟋ず同
䞀の反応条件でメタ゚チルプノヌルの脱氎玠反
応を行な぀た結果、メタ゚チルプノヌルの転化
率は37.8であり、反応生成物の組成モル
においお、メタ゚テニルプノヌルは95.2、メ
タ゚テニルプノヌルの量䜓および量䜓は
各々であ぀た。 実斜䟋 11〜15 実斜䟋で甚いたものず同䞀のバリりムずすず
を含む酞化物觊媒に、銅、亜鉛、ゞルコニりム、
モリブデンおよびビスマスの金属塩を皮ず぀、
これらの金属元玠の含有割合がすず元玠に察しお
10ずなるように、通垞の浞挬法で担持せしめた
のち、空気䞭で500℃においお時間焌成し、金
属塩の硝酞基もしくはアンモニりム基を分解陀去
した。これらの觊媒を甚いお実斜䟋ず同様にし
おパラ゚チルプノヌルの脱氎玠反応を行な぀た
結果を第衚に瀺す。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dehydrogenating ethylphenols to produce the corresponding ethenylphenols. Conventionally, methods for dehydrogenating alkanes and aromatic hydrocarbons having alkyl side chains to obtain corresponding unsaturated compounds, and methods for dehydrogenating alkenes to produce dienes, etc., have been widely studied, and these reactions have been widely studied. Many effective catalysts have been discovered and are widely used industrially. Furthermore, among these catalysts, it is well known that catalysts consisting mainly of chromium oxide, iron oxide, γ-alumina, and copper oxide in combination with magnesium oxide, potassium oxide, and the like have excellent performance. However, since ethylphenols have active phenolic hydroxyl groups in their molecules, their reactivity is significantly different from that of alkylbenzenes such as ethylbenzene (Journal of Applied Chemistry, 7).
Vol., pp. 172-182, April 1975; Chemical Abstracts, Vol. 70, 28534w; Asakura Shoten Publishing "Big Organic Chemistry" Vol. 14, p. 83; Chemical Abstracts, Vol. 64, 15039g), the above hydrocarbons Even if this dehydrogenation catalyst is applied to the dehydrogenation of ethylphenols, it will not cause isomerization, disproportionation, dealkylation, decomposition, dehydration condensation,
Since undesirable side reactions such as coking on the catalyst surface and polymerization of dehydrogenated products proceed significantly, the selectivity of the reaction to the target ethenylphenols is low and it is impractical. Additionally, it is already known that tin oxide alone or a combination of tin oxide with metal tin, magnesium oxide, chromium oxide, zinc oxide, manganese oxide, etc. is relatively effective as a dehydrogenation catalyst for ethylphenols. (Japanese Unexamined Patent Publication No. 55-28958), however, the performance of these catalysts is still not sufficiently satisfactory. The present inventors have conducted extensive research to obtain a better catalyst for the dehydrogenation reaction of ethylphenols, and have found that oxides containing barium and tin, or such oxides include manganese oxide, iron oxide, copper oxide, A catalyst consisting of one or more metal oxides selected from the group consisting of zinc, zirconium oxide, molybdenum oxide, antimony oxide, and bismuth oxide, or a combination of bismuth oxide and cerium oxide is extremely effective in the dehydrogenation reaction of ethylphenols. The present invention was completed based on the discovery that the catalyst has high performance, stable long-term activity, high selectivity, and long catalyst life, as well as being structurally stable even at high temperatures. That is, the gist of the present invention is to provide a method for dehydrogenating ethylphenols to produce corresponding ethenylphenols, in which an oxide containing barium and tin or an oxide containing manganese oxide, iron oxide, copper oxide, Ethenylphenols characterized by using a catalyst containing one or more metal oxides selected from the group consisting of zinc oxide, zirconium oxide, molybdenum oxide, antimony oxide, and bismuth oxide, or a combination of bismuth oxide and cerium oxide. It consists in the manufacturing method. In the present invention, the oxide containing barium and tin may be a simple mixture of barium oxide and tin oxide, or a part or all of it may be in the form of a complex oxide such as barium stannate. It can be anything. These oxides can be prepared by mixing barium oxide and tin oxide and heating and calcining the mixture, using organic salts such as barium oxalate and tin oxalate, or barium acetate and tin acetate, or other methods of preparing barium and tin oxide. A method of mixing and heating various inorganic salts such as organometallic compounds, hydroxides, halides, carbonates, and nitrates, or a method of mixing aqueous solutions of various inorganic salts or organic salts of barium and tin, and adding ammonia, amines, etc. A method in which the gel produced by adding a basic compound to make it weakly alkaline is filtered, washed, dried, and fired; A method in which the oxide of either barium or tin is impregnated with an aqueous solution of the other metal salt, then dried and fired. , and other generally known methods may be used. The barium and tin-containing oxides obtained by these methods can be used as catalysts as they are after adjusting the particle size to an appropriate size, or can be used after being compressed into tablets or extruded. Further, the atomic ratio of barium to tin in the oxide containing barium and tin is preferably in the range of about 0.03:1 to 10:1, particularly about 0.05:1 to 2:1, and A portion may be in a form other than normal oxides such as barium peroxide or barium carbonate. Next, when combining the above-mentioned other metal oxides with the oxide containing barium and tin, it may be prepared by a general mixing method, immersion method, coprecipitation method, or any other known method. For example, methods of mixing these metal oxides as they are with oxides containing barium and tin and molding them, halides of these metals,
A method in which the oxide is immersed in an aqueous solution of various inorganic or organic salts such as carbonates, sulfates, and nitrates, and a base such as ammonia is added to the aqueous solution, followed by drying and firing together with the resulting precipitate. Another method includes mixing an aqueous solution of an organic salt and an aqueous solution of a metal salt to be combined, adding aqueous ammonia, and drying and calcining the resulting precipitate. The catalyst obtained in this way can be used for the reaction by pulverizing it to an appropriate particle size, or it can be extruded or compressed into tablets, as in the case of oxides containing barium and tin alone. . The blending ratio of barium and tin-containing oxides with these metal oxides is not particularly limited, but (Ba+
A preferred range is from about 0.01 to 100, particularly from about 0.1 to 10, expressed as an atomic ratio Sn)/metal. Further, the catalyst used in the method of the present invention does not usually require the use of a carrier, but it can be used in combination with a carrier if necessary, such as when particularly high mechanical strength is required. In this case, the carrier is α-alumina, silicon carbide,
It is necessary to use an inert carrier such as diatomaceous earth; use of an active carrier such as γ-alumina or silica is not preferred because side reactions such as carbonaceous precipitation increase. Further, the catalyst used in the method of the present invention may be heat-treated in advance at about 400 to 1000°C for about 1 to 50 hours in order to stabilize the catalyst performance. Next, in the present invention, ethylphenols which are reaction raw materials are ethylphenols having an ethyl group in the ortho, meta or pal position relative to the phenolic hydroxyl group, and 1 to 4 aromatic nuclei of these ethylphenols. It means a compound in which the hydrogen atom of is substituted with a methyl group or a methoxy group, or a compound in which one of the hydrogen atoms bonded to the alpha atom of the ethyl group of the above compound is substituted with a methyl group. The reaction temperature is generally between about 400-750°C, preferably a range of about 500-600°C is used. The feed rate of ethylphenols, which are reaction raw materials, to the catalyst layer is approximately 0.1 to 10 hr -1 expressed in liquid hourly space velocity (LHSV).
range is usually adopted. The reaction pressure may be normal pressure, reduced pressure, or increased pressure, but it is practical to carry out the reaction at normal pressure to slightly reduced pressure. The dehydrogenation reaction progresses more easily under reduced pressure from an equilibrium perspective, but from an industrial perspective, slightly elevated pressure is advantageous in equipment construction and operation, so the reaction raw materials can be separated using diluents, etc. It is also a good idea to lower the pressure and achieve your goals. In this case, carbon dioxide, nitrogen, water vapor, phenol, etc. can be used as the diluent, but in general, water vapor or water vapor and nitrogen are used, which have the effect of suppressing carbonaceous precipitation and supplying part of the reaction heat. Preference is given to using mixtures of. The molar ratio of the diluent and ethylphenol introduced into the reaction system is usually in the range of about 2 to 200, particularly about 2 to 100.
Further, the reaction is carried out in a catalytic flow system, and the catalyst bed used may be of any type, such as a fixed bed, moving bed, or fluidized bed. According to the present invention, by bringing these ethylphenols into contact with the catalyst at high temperature, the corresponding ethenylphenols can be produced with high conversion and selectivity, and the activity of the catalyst continues for a long time. It has characteristics. The method of the present invention will be specifically explained below with reference to Examples and Comparative Examples. Example 1 90% by weight of stannic oxide and 10% by weight of barium carbonate
The mixture was thoroughly mixed, 5% by weight of water was added thereto, and the mixture was thoroughly mixed, followed by drying at 120°C for 1 day. next,
1% by weight of graphite was added and mixed well, and the mixture was molded into tablets with a diameter of 3/16 inches and a length of 4 mm. This molded product was fired in air at 650°C for 8 hours, and then the fired product was crushed to a particle size of 6 to 10 meshes to prepare an oxide catalyst containing barium and tin. Next, 10 ml of this catalyst was filled into a quartz reaction tube, and the reaction was carried out for approximately 5 hours at a reaction temperature of 550° C. and a LHSV of 1.0 hr −1 by supplying para-ethylphenol together with water in a 10-fold molar amount. As a result of analyzing the reaction product by gas chromatography, gel permeation chromatography, and Karl Fischer, the conversion rate of paraethylphenol was 37.5%, and the composition (mol%) of the reaction product was paraethylphenol. 96.3%, paraethenylphenol dimer
0.1%, oligomers of trimer or higher 0%, phenols such as phenol and para-cresol 1.8
%, and other decomposed products were 1.8%. Next, using this catalyst, dehydrogenation reaction (550℃, 5 hours) and combustion regeneration (550-600℃, 3 hours) were repeated over 15 times, and the conversion rate of para-ethylphenol was 35.
~38%, and the total composition (mol %) of the reaction product of paraethenylphenol and its dimer or higher oligomers was consistently 96~98%. Comparative Example 1 After adding 3% by weight of paraffin wax to the stannic oxide powder and mixing well,
mm, length 4 mm, in air, 550
The catalyst was calcined at ℃ for 5 hours and crushed to prepare a catalyst with a uniform particle size of 6 to 10 meshes. 10ml of this catalyst
was filled into a quartz reaction tube and the dehydrogenation reaction of para-ethylphenol was carried out under the same reaction conditions as in Example 1. As a result, the conversion rate of para-ethylphenol was 35.1.
%, the composition (mol %) of the reaction products is 87.8% paraethenylphenol, 5.1% total of oligomers of dimer or higher paraethenylphenol, and 2.3% of phenols such as phenol and cresol.
%, and other decomposed products were 4.8%. In addition, as a result of repeating the reaction and combustion regeneration 15 times or more using this catalyst in the same manner as in Example 1, the conversion rate of para-ethylphenol was 30 to 35%, and the composition (mol%) of the reaction product was The total amount of thenylphenol and its dimer or higher oligomers was consistently 93-95%. Comparing this result with the results of Example 1, it is clear that both the conversion rate of para-ethyl phenol and the selectivity of para-ethyl phenol are far superior when using an oxide catalyst containing barium and tin. It is. Example 2 When the same reaction as in Example 1 was carried out on a 100 times scale, that is, a stainless steel reactor was filled with 1 catalyst, no difference was observed due to the increased size of the experimental apparatus. , the conversion rate of paraethylphenol is 37.3%, and the total proportion of paraethylphenol and its oligomers in the reaction product is
It was 96.4 mol%. Example 3 The reaction was carried out in the same manner as in Example 1 except that the reaction time was 24 hours. As a result, the conversion rate of paraethylphenol was 36.9%, and the total production rate of paraethylphenol and its oligomer was 96.5. It was in mol%. This result shows that the oxide catalyst containing barium and tin maintains its activity for a long time in continuous reactions. Example 4 The same oxide catalyst containing barium and tin used in Example 1 was loaded with 30% by weight of manganese dioxide using the usual immersion method, and the reaction temperature was
2 in the same manner as in Example 1 at 620°C, LHSV 1.0hr -1 , and a molar ratio of water and paraethylphenol of 10.
As a result of the time reaction, the conversion rate of paraethylphenol was extremely high at 68.5%, and the composition (mol%) of the reaction products was that of paraethylphenol.
86.3%, dimer of paraethenylphenol 1.5
%, oligomers of trimer or higher were 2.4%, phenols such as phenol and para-cresol were 7.0%, and other decomposition products were 2.8%. Example 5 In Example 4, an experiment was conducted in the same manner as in Example 4 using a catalyst carrying 30% by weight of ferric oxide instead of manganese dioxide. As a result, the conversion rate of paraethylphenol was 61.3. %, and the composition (mol%) of the reaction product is 89.0% paraethenylphenol and dimer of paraethenylphenol, respectively.
1.3%, oligomers (trimer or higher) 2.4%, phenols such as phenol and para-cresol 5.2%
and other decomposition products were 2.1%. Example 6 Using the same oxide catalyst containing barium and tin as used in Example 1 and carrying 30% by weight of antimony oxide, the reaction temperature was 550°C.
The reaction was carried out in the same manner as in Example 1 for 5 hours at a LHSV of 1.0 hr -1 and a molar ratio of water to para-ethylphenol of 10. As a result, the conversion rate of para-ethylphenol was 41.0%, and the composition of the reaction product was (mol%)
92.2% paraethenylphenol, 0.6% paraethenylphenol dimer, 1.8% trimer or higher oligomer, 2.8% phenols such as phenol and paracresol, and 2.6% other decomposition products. Ta. Example 7 In Example 4, 10% by weight of cerium oxide and 15% by weight of bismuth oxide were used instead of manganese dioxide.
As a result of conducting an experiment in the same manner as in Example 4 using a catalyst supported with para-ethyl phenol, the conversion rate of para-ethyl phenol was 70.1%, and the composition (mol%) of the reaction products was 84.3%, para-ethenyl phenol dimer 1.8%, trimer or higher oligomer 4.0%, phenols such as phenol and para-cresol 7.9%, and other decomposition products 2.0%. Example 8 20% by weight of distilled water was added to a mixed powder of 75% by weight of ferric oxide, 10% by weight of tin oxide, 10% by weight of barium carbonate, and 5% by weight of cement, and the mixture was made into a powder with a diameter of 3 mm using an extruder. Extrusion molding was performed to a length of 5 mm. This was aged for 3 days at room temperature and further dried at 130°C for half a day. By calcining this at 650°C for 5 hours, an oxide catalyst containing iron, tin, and barium was prepared. Next, 10 ml of this catalyst was filled into a quartz reaction tube, and 2,6-dimethyl-4-ethylphenol was supplied together with 10 times the molar amount of water at a reaction temperature of 550°C and a LHSV of 1.0 hr -1 for 5 hours. The reaction was carried out. As a result, the conversion rate of 2,6-dimethyl-4-ethylphenol was 33.1%, and the composition of the reaction product (mol%)
are 2,6-dimethyl-4-ethenylphenol 94.8%, 2,6-dimethyl-4-ethenylphenol dimer 0.1%, trimer or higher oligomer 0%, phenol, cresol, methylethylphenol , 2.7% of phenols such as 2,4,6-trimethylphenol and 2.4% of other decomposition products.
It was %. Example 9 Using the oxide catalyst containing barium and tin prepared in Example 1, the reaction temperature was 550°C, the LHSV of paraisopropylphenol was 1.0hr -1 , and the molar ratio of paraisopropylphenol to water was 1/10. Example 1
As a result of carrying out the reaction in the same manner as above, the conversion rate of paraisopropylphenol was 35.2%, and in the composition (mol%) of the reaction product, parahydroxy-α
-Methylstyrene 92.8%, parahydroxy-α-
The amount of methylstyrene dimer was 0.4%, and the amount of trimer or higher oligomer was 0%. Example 10 The dehydrogenation reaction of metaethylphenol was carried out using the catalyst prepared in Example 1 under the same reaction conditions as in Example 9. As a result, the conversion rate of metaethylphenol was 37.8%, and the reaction product Composition (mol%)
The content of metaethenylphenol was 95.2%, and the dimer and trimer of metaethenylphenol were each 0%. Examples 11-15 Copper, zinc, zirconium,
One metal salt each of molybdenum and bismuth,
The content ratio of these metal elements relative to tin element is
After supporting the metal salt by a conventional immersion method to a concentration of 10%, it was calcined in air at 500°C for 4 hours to decompose and remove the nitric acid groups or ammonium groups of the metal salt. Table 1 shows the results of dehydrogenation of para-ethylphenol using these catalysts in the same manner as in Example 4. 【table】

Claims (1)

【特蚱請求の範囲】  ゚チルプノヌル類を脱氎玠しお盞応する゚
テニルプノヌル類を補造する方法においお、バ
リりムおよびすずを含む酞化物から成る觊媒を甚
いるこずを特城ずする゚テニルプノヌル類の補
造方法。  ゚チルプノヌル類を脱氎玠しお盞応する゚
テニルプノヌル類を補造する方法においお、バ
リりムおよびすずを含む酞化物に、酞化マンガ
ン、酞化鉄、酞化銅、酞化亜鉛、酞化ゞルコニり
ム、酞化モリブデン、酞化アンチモンおよび酞化
ビスマスからなる矀から遞ばれた皮以䞊の金属
酞化物、たたは酞化ビスマスず酞化セリりムを組
み合わせた觊媒を甚いるこずを特城ずする゚テニ
ルプノヌル類の補造方法。
[Claims] 1. A method for producing the corresponding ethenylphenols by dehydrogenating ethylphenols, characterized in that a catalyst comprising an oxide containing barium and tin is used. Method. 2. In a method for producing the corresponding ethenylphenols by dehydrogenating ethylphenols, manganese oxide, iron oxide, copper oxide, zinc oxide, zirconium oxide, molybdenum oxide, antimony oxide is added to the oxide containing barium and tin. and bismuth oxide, or a catalyst containing a combination of bismuth oxide and cerium oxide.
JP56146867A 1981-09-17 1981-09-17 Preparation of ethenylphenol Granted JPS5849328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146867A JPS5849328A (en) 1981-09-17 1981-09-17 Preparation of ethenylphenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146867A JPS5849328A (en) 1981-09-17 1981-09-17 Preparation of ethenylphenol

Publications (2)

Publication Number Publication Date
JPS5849328A JPS5849328A (en) 1983-03-23
JPS6219409B2 true JPS6219409B2 (en) 1987-04-28

Family

ID=15417356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146867A Granted JPS5849328A (en) 1981-09-17 1981-09-17 Preparation of ethenylphenol

Country Status (1)

Country Link
JP (1) JPS5849328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625751B2 (en) * 1987-08-31 1997-07-02 トペタ自動車株匏䌚瀟 Stabilizer control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075498B2 (en) * 1985-06-21 1995-01-25 䞉井石油化孊工業株匏䌚瀟 Process for producing alkenyl group-substituted aromatic phenols
CA1260015A (en) * 1985-06-07 1989-09-26 Katsuo Taniguchi Process for production of alkenyl substituted aromatic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625751B2 (en) * 1987-08-31 1997-07-02 トペタ自動車株匏䌚瀟 Stabilizer control device

Also Published As

Publication number Publication date
JPS5849328A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
EP0101111B1 (en) Process and catalytic composition for the preparation of aldehydes, and aldehydes thus prepared
EP0323115B1 (en) Process for the steam dehydrogenation of dehydrogenatable hydrocarbons with simultaneous oxidative reheating
US3126426A (en) Hydrogfcnation
JP3041442B2 (en) Process for producing liquid hydrocarbons from natural gas in the presence of zeolite and gallium based catalysts
US4247730A (en) Hydrodealkylation of alkylaromatic hydrocarbons
EP2945738B1 (en) Dehydrogenation manganese-containing catalyst, its use and method of preparation
US9452421B2 (en) Method for manufacture of an alkane dehydrogenation catalyst
US4227023A (en) Process for the selective ortho-alkylation of phenolic compounds
US4368344A (en) Oxidative dehydrogenation of organic compounds with a zinc titanate catalyst
US4812597A (en) Dehydrogenation of dehydrogenatable hydrocarbons
US5084259A (en) Crystalline nickel aluminum borates
JPS6352612B2 (en)
JPS6219409B2 (en)
US5095166A (en) Process for cracking paraffins to olefins
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
JP3786437B2 (en) Ethylbenzene dehydrogenation catalyst and production method thereof
JPH01165540A (en) Production of diaryl ether and diaryl sulfide
JPS6316367B2 (en)
JP2853720B2 (en) Method for producing monoalkenylbenzenes
US4533767A (en) Catalytic hydrodealkylation of alkylated phenols
US5093540A (en) Process for selectively converting linear paraffins to linear alpha olefins
US5264407A (en) Crystalline metalloaluminum borates
US4370259A (en) Oxidative dehydrogenation catalyst
WO2001047843A1 (en) Process for the production of olefins
CA1157889A (en) Ethyltoluene isomer mixtures