JPH0763625B2 - Method for producing iron molybdate catalyst for oxidation - Google Patents
Method for producing iron molybdate catalyst for oxidationInfo
- Publication number
- JPH0763625B2 JPH0763625B2 JP61165234A JP16523486A JPH0763625B2 JP H0763625 B2 JPH0763625 B2 JP H0763625B2 JP 61165234 A JP61165234 A JP 61165234A JP 16523486 A JP16523486 A JP 16523486A JP H0763625 B2 JPH0763625 B2 JP H0763625B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- catalyst
- molybdate
- reaction
- molybdenum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Compounds Of Iron (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はモリブデン酸鉄からなる、又はモリブデン酸鉄
を活性成分とする酸化用触媒の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing an oxidation catalyst comprising iron molybdate or containing iron molybdate as an active ingredient.
酸化反応、例えば、メタノールを酸化してホルムアルデ
ヒドを得る方法としては、従来より金属特に金属銀を触
媒として用いる方法と、金属酸化物を用いる方法とが知
られており、両法とも工業的に実施されている。後者の
触媒として金属酸化物を用いる方法は、金属銀を用いる
方法に比べ、ホルムアルデヒドの収率が高く、またメタ
ノールの転化率が高いので実質上メタノールを含まない
ホルムアルデヒド水溶液が得られる点などですぐれてい
る。As the oxidation reaction, for example, a method of oxidizing methanol to obtain formaldehyde, a method of using a metal, particularly metal silver as a catalyst, and a method of using a metal oxide are conventionally known, and both methods are industrially performed. Has been done. The latter method using a metal oxide as a catalyst is superior to the method using metallic silver in that the yield of formaldehyde is high and the conversion of methanol is high, so that a formaldehyde aqueous solution containing virtually no methanol can be obtained. ing.
この目的で好ましい金属酸化物は鉄とモリブデンの酸化
物である。鉄の酸化物は、活性は高いが殆ど選択性がな
く、一方モリブデンの酸化物は、選択性は良いものの活
性が極めて低いため、鉄又はモリブデンの酸化物を単独
で使うことは好ましくない。メタノールのホルムアルデ
ヒドへの酸化において活性な触媒種は、モリブデン酸鉄
(Fe2(MoO4)3)であることは良く知られており、従
つて、モリブデンと鉄の原子比は1.5である。しかしな
がら、実際に工業上用いられている触媒は、常にかなり
高い割合で過剰の三酸化モリブデンを含んでいる。この
理由は、メタノールをホルムアルデヒドへ酸化する際に
選択性の悪い、モリブデンの欠乏した触媒の形成を防ぐ
ためであるといわれている。また、三酸化モリブデンの
存在は、最終生成触媒の、機械的特性を保つ上でも、必
要といわれている。The preferred metal oxides for this purpose are iron and molybdenum oxides. Iron oxides have high activity but little selectivity, while molybdenum oxides have good selectivity but extremely low activity, so it is not preferable to use iron or molybdenum oxides alone. It is well known that the catalytic species active in the oxidation of methanol to formaldehyde is iron molybdate (Fe 2 (MoO 4 ) 3 ), and thus the atomic ratio of molybdenum to iron is 1.5. However, the catalysts actually used in industry always contain a fairly high proportion of excess molybdenum trioxide. The reason for this is said to be to prevent the formation of molybdenum-deficient catalyst, which has poor selectivity when oxidizing methanol to formaldehyde. Also, the presence of molybdenum trioxide is said to be necessary in order to maintain the mechanical properties of the final catalyst.
このような過剰の三酸化モリブデンを含む触媒の問題点
は、反応条件下で三酸化モリブデンが気化し触媒床下部
に沈着することで、これにより触媒の活性及び選択性が
低下し、また触媒の崩壊や触媒床の閉塞が起こり、事実
上反応の継続が困難となることである。また、反応に余
り関与しない高価な三酸化モリブデンを多量に含むこと
自体経済的に好ましいことではない。The problem with such a catalyst containing excess molybdenum trioxide is that the molybdenum trioxide vaporizes under the reaction conditions and deposits at the bottom of the catalyst bed, which reduces the activity and selectivity of the catalyst, and Disintegration and clogging of the catalyst bed occur, making it practically difficult to continue the reaction. In addition, it is not economically preferable to include a large amount of expensive molybdenum trioxide that does not participate in the reaction.
特公昭39−10304号によれば、追加的にクロムを含む触
媒が開示されている。これによれば、触媒の安定性が増
すことが示されているが、触媒の基本的組成は変わら
ず、上記の問題点を十分解決してはいない。尚、これら
従来の触媒の調製方法は、鉄及びモリブデンの可溶性塩
を含む溶液から複合塩の沈澱を形成させ、成形後高温で
焼成する方法である。この場合の生成沈澱は実質上無定
形の固体であり、これを焼成することにより、メタノー
ルのホルムアルデヒドへの酸化に活性なモリブデン酸鉄
を含む触媒が形成される。Japanese Patent Publication No. 39-10304 discloses a catalyst additionally containing chromium. This shows that the stability of the catalyst is increased, but the basic composition of the catalyst remains unchanged, and the above problems have not been sufficiently solved. The conventional method for preparing these catalysts is a method in which a complex salt precipitate is formed from a solution containing soluble salts of iron and molybdenum, and the mixture is fired at a high temperature after molding. The precipitate formed in this case is a substantially amorphous solid, which is calcined to form a catalyst containing iron molybdate which is active in the oxidation of methanol to formaldehyde.
一方、特開昭51−35690号には、モリブデンの鉄に対す
る原子比が1.5−1.7であるモリブデン酸鉄を水溶液中で
生成させる方法が開示されている。これによれば、触媒
は以下の方法により製造される: a) pH1.5−5.5の可溶性モリブデン酸塩溶液と可溶性
第二鉄塩溶液をモリブデンの鉄に対する原子比が少なく
とも1.5となるような割合で20−80℃の温度で混合する
ことにより無定形沈澱物を得、 b) この懸濁液を70℃から沸点までの温度で少なくと
も30分加熱して、無定形の沈澱物を少なくとも90%の結
晶化度を有するモリブデン酸鉄に変成させ、 c) 得られた沈澱物を洗浄して固体分のモリブデンの
鉄に対する原子比を1.5−1.7とし、 d) 該洗浄物を120℃を超えない温度で少なくとも30
分間乾燥する。On the other hand, JP-A-51-35690 discloses a method of producing iron molybdate in which an atomic ratio of molybdenum to iron is 1.5 to 1.7 in an aqueous solution. According to this, the catalyst is produced by the following method: a) a ratio of a soluble molybdate solution of pH 1.5-5.5 and a soluble ferric salt solution such that the atomic ratio of molybdenum to iron is at least 1.5. An amorphous precipitate is obtained by mixing at a temperature of 20-80 ° C., b) heating the suspension at a temperature of 70 ° C. to boiling for at least 30 minutes to obtain at least 90% of the amorphous precipitate. C) the precipitate obtained is washed to obtain an atomic ratio of molybdenum to iron of solids of 1.5-1.7, and d) the washed product does not exceed 120 ° C. At least 30 at temperature
Dry for minutes.
このような方法で得られる触媒は、遊離の三酸化モリブ
デンを殆ど含まず実質的にモリブデン酸鉄から成り立つ
ている点で従来の触媒とは異なる。The catalyst obtained by such a method is different from conventional catalysts in that it contains almost no free molybdenum trioxide and is substantially composed of iron molybdate.
しかしながら、上記に示されたように、触媒を調製する
ための実施態様は極めて煩雑であるばかりでなく、原料
となる可溶性モリブデン酸塩及び第二鉄塩溶液のpHは、
それぞれ1.5−2.8、1.1−1.5のように限定される。However, as shown above, the embodiment for preparing the catalyst is not only very complicated, but the pH of the raw material soluble molybdate and ferric salt solutions,
Limited to 1.5-2.8 and 1.1-1.5 respectively.
また、生成した無定形沈澱物をモリブデン酸鉄に変成す
るに際しては、pH値や温度の他、モリブデンと鉄の比、
水の分量や水の還流比などが影響を与え、場合により目
的とするモリブデン酸鉄が生成しないこともあり、この
操作は限定条件が多く煩雑であり、かつ再現性に乏しい
ものであつた。In addition, when converting the formed amorphous precipitate to iron molybdate, in addition to pH value and temperature, the ratio of molybdenum to iron,
Since the amount of water and the reflux ratio of water may affect the desired iron molybdate in some cases, this operation has many limiting conditions, is complicated, and has poor reproducibility.
本発明者等は、上記問題点に鑑み種々検討した結果、モ
リブデン化合物及び鉄化合物を水熱合成することによ
り、容易にかつ再現性良くモリブデン酸鉄が得られ、か
つこのモリブデン酸鉄は酸化用触媒として適しているこ
とを見出し本発明に到達した。The present inventors have made various studies in view of the above problems, and as a result of hydrothermally synthesizing a molybdenum compound and an iron compound, iron molybdate can be easily and reproducibly obtained, and the iron molybdate is used for oxidation. The inventors have found that they are suitable as catalysts and have reached the present invention.
すなわち、本発明の要旨は、モリブデン化合物及び鉄化
合物から酸化用モリブデン酸鉄触媒を製造する方法にお
いて、モリブデン化合物及び鉄化合物を、100℃を越え
る温度及び加圧下で水熱合成することによりモリブデン
酸鉄を生成せしめることを特徴とする酸化用モリブデン
酸鉄触媒の製造方法に存する。That is, the gist of the present invention is to provide a method for producing an iron oxide molybdate catalyst for oxidation from a molybdenum compound and an iron compound. A method for producing an iron oxide molybdate catalyst for oxidation is characterized by producing iron.
以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
本発明におけるモリブデン酸鉄の合成の原料としては、
モリブデン及び鉄の化合物が用いられる。モリブデン化
合物としては、パラモリブデン酸アンモニウムやジモリ
ブデン酸アンモニウムのような水溶性モリブデン酸塩が
好適に用いられるが、その他の水溶性または不溶性のモ
リブデン化合物、例えば三酸化モリブデンのようなもの
もまた使用可能であり、これは本法の大きな利点の一つ
である。As a raw material for the synthesis of iron molybdate in the present invention,
Compounds of molybdenum and iron are used. As the molybdenum compound, water-soluble molybdates such as ammonium paramolybdate and ammonium dimolybdate are preferably used, but other water-soluble or insoluble molybdenum compounds such as molybdenum trioxide are also used. Yes, this is one of the major advantages of this method.
鉄化合物としては、これも特にその種類を限定するもの
ではないが、通常、硝酸第二鉄、塩化第二鉄等の可溶性
塩から選ばれる。The iron compound is not particularly limited in its kind, but is usually selected from soluble salts such as ferric nitrate and ferric chloride.
原料におけるモリブデン化合物と鉄化合物の使用量は、
通常、モリブデンの鉄に対する原子比1から2の間で選
択される。モリブデン酸鉄の原子比は1.5であるので、
好ましくは1.3から1.7である。原子比がこれより大きく
ても水熱法では、モリブデン酸鉄の生成が妨げられる訳
ではないがモリブデン酸鉄の他に三酸化モリブデンなど
が共存する結果となる。The amounts of molybdenum compound and iron compound used in the raw materials are
Usually, an atomic ratio of molybdenum to iron of between 1 and 2 is selected. Since the atomic ratio of iron molybdate is 1.5,
It is preferably 1.3 to 1.7. Even if the atomic ratio is larger than this, the hydrothermal method does not prevent the production of iron molybdate, but results in the presence of molybdenum trioxide and the like in addition to iron molybdate.
上記モリブデン化合物及び鉄化合物を水熱合成し、モリ
ブデン酸鉄を生成せしめる。The molybdenum compound and iron compound are hydrothermally synthesized to produce iron molybdate.
モリブデン化合物及び鉄化合物は、通常、水性溶液とし
て反応に供給するが、この溶液の調製方法は特に限定さ
れない。例えばモリブデン化合物及び鉄の化合物の各々
の水溶液をつくり、これらを混合して不溶性の沈澱物を
得、この懸濁液を原料としてもよい。あるいは、両方の
化合物の混合物に水を加えて懸濁液を得てもよい。一方
の化合物が不溶性であれば、他方の化合物の水溶液にこ
れを加えてそのまま用いうる。これら化合物に加える水
の量には特に制限はない。また、水溶液あるいは、懸濁
液に例えば鉱酸等を加え所望のpHに調節してもよいが、
これは必ずしも必須ではない。The molybdenum compound and iron compound are usually supplied to the reaction as an aqueous solution, but the method for preparing this solution is not particularly limited. For example, an aqueous solution of each of a molybdenum compound and an iron compound may be prepared and mixed to obtain an insoluble precipitate, and this suspension may be used as a raw material. Alternatively, water may be added to a mixture of both compounds to give a suspension. If one compound is insoluble, it can be used as it is by adding it to an aqueous solution of the other compound. The amount of water added to these compounds is not particularly limited. In addition, an aqueous solution or suspension may be adjusted to a desired pH by adding, for example, mineral acid or the like,
This is not absolutely necessary.
水熱合成の温度は100℃を越える温度とし、通常200℃以
下の温度で行なう。反応は加圧下に行なうが、これは通
常自生圧、即ち水の蒸気圧分で十分である。水熱合成の
際、撹拌は必ずしも必須ではないが、モリブデン酸鉄の
生成速度を速めるうえで好ましい。また、反応時間は、
約30分程度から数日間のあいだで適宜選択される。The temperature of hydrothermal synthesis is higher than 100 ° C, and usually 200 ° C or lower. The reaction is carried out under pressure, although autogenous pressure, ie the vapor pressure of water, is usually sufficient. During hydrothermal synthesis, stirring is not always essential, but it is preferable in order to accelerate the production rate of iron molybdate. Also, the reaction time is
It is appropriately selected from about 30 minutes to several days.
水熱合成から得られる固形物はモリブデン酸鉄を主成分
とし、これに対して次に水洗を十分におこなう。必要な
らば酸性の水あるいは熱水を用いるのも良い方法であ
る。洗浄された固形物は次いで約100℃から200℃程度で
乾燥され、最終的にモリブデン酸鉄の結晶からなる固体
がえられる。このものがモリブデン酸鉄(Fe2(MoO4)
3)であることはX線解析により確認される。The solid obtained from the hydrothermal synthesis contains iron molybdate as the main component, to which the water is then thoroughly washed. It is also a good idea to use acidic water or hot water if necessary. The washed solid is then dried at about 100 to 200 ° C to finally obtain a solid composed of iron molybdate crystals. This is iron molybdate (Fe 2 (MoO 4 ))
3 ) is confirmed by X-ray analysis.
このようにして合成されたモリブデン酸鉄は、これをこ
のまま、あるいは成形して触媒として使用しうる。ある
いはこれを300℃から600℃程度の温度で焼成してから使
用しても良い。特に好ましい焼成温度は350℃から450℃
である。The iron molybdate thus synthesized can be used as it is or after being molded as a catalyst. Alternatively, it may be used after firing at a temperature of about 300 ° C to 600 ° C. Particularly preferred firing temperature is 350 ° C to 450 ° C
Is.
合成されたモリブデン酸鉄に反応に不活性な担体成分を
加えて成形し、適当な粒径として反応に供するのは、反
応のコントロール、触媒粒子への機械的強度賦与、経済
的見地などから云つて好ましいことである。From the viewpoint of controlling the reaction, imparting mechanical strength to the catalyst particles, economic reasons, etc., the synthesized iron molybdate is mixed with a carrier component which is inactive to the reaction and molded into a suitable particle size for the reaction. Is preferable.
担体成分としては、アルミナ、シリカ、シリカ−アルミ
ナ、チタニア、ジルコニア、珪藻土、天然粘土、合成粘
土あるいはゼオライトなどが好適に使用できる。珪藻土
は特に好ましい担体成分である。担体成分の触媒全体に
対する添加量は特に限定されないが、10%ないし90%程
度から選ばれる。モリブデン酸鉄に担体成分を加えるに
あたつては、更に追加的に結合剤や滑剤などを加えても
良い。また、成形方法としては打錠、押出しなど各種の
公知の方法がとりうる。As the carrier component, alumina, silica, silica-alumina, titania, zirconia, diatomaceous earth, natural clay, synthetic clay or zeolite can be preferably used. Diatomaceous earth is a particularly preferred carrier component. The amount of the carrier component added to the whole catalyst is not particularly limited, but is selected from about 10% to 90%. When adding the carrier component to the iron molybdate, a binder and a lubricant may be additionally added. As a molding method, various known methods such as tableting and extrusion can be used.
担体成分と混合せられた触媒を調製するに当たつて、担
体となるべき成分を予め加えた形で水熱合成を行うこと
もまた可能である。このような方法は触媒製造工程を短
縮できるという意味でも有利なことである。In preparing the catalyst mixed with the carrier component, it is also possible to carry out the hydrothermal synthesis in the form in which the component to be the carrier is added in advance. Such a method is also advantageous in the sense that the catalyst manufacturing process can be shortened.
また、水熱合成時、あるいはその後の過程で触媒として
有効な第三の成分例えばクロムの化合物などを小量添加
しても良い。A small amount of a third component effective as a catalyst, such as a chromium compound, may be added during hydrothermal synthesis or in the subsequent process.
本発明の触媒は、酸化反応、特にメタノールの接触酸化
によるホルムアルデヒドの製造に極めて有効である。反
応に当たつては、まず触媒を上記した手法により所望の
大きさの粒子にするのが好ましい。反応形式としては、
通常固定床が用いられる。また反応が発熱反応であるの
で、除熱の為通常外部に循環流体を配した管状反応器を
用いるのが好ましい。The catalyst of the present invention is extremely effective in the production of formaldehyde by the oxidation reaction, particularly the catalytic oxidation of methanol. In the reaction, it is preferable to first form the catalyst into particles having a desired size by the above-mentioned method. The reaction format is
Usually a fixed bed is used. Further, since the reaction is an exothermic reaction, it is preferable to use a tubular reactor in which a circulating fluid is usually disposed outside for heat removal.
反応に際しては、メタノール、酸素、窒素を含むガス状
混合物を、普通、触媒1mlに対し毎時5〜15N程度の割
合で本発明の触媒に供給する。本反応は、通常酸素過剰
の条件下で行うが、爆発の危険を避ける為爆発限界外で
操作する必要がある。During the reaction, a gaseous mixture containing methanol, oxygen and nitrogen is usually supplied to the catalyst of the present invention at a rate of about 5 to 15 N per hour per 1 ml of the catalyst. This reaction is usually carried out under oxygen excess conditions, but it is necessary to operate outside the explosion limit to avoid the danger of explosion.
反応温度は、200℃から450℃、好ましくは250℃から400
℃の間で行なわれる。The reaction temperature is 200 ° C to 450 ° C, preferably 250 ° C to 400 ° C.
It is carried out between ℃.
本発明方法で酸化用触媒としてのモリブデン酸鉄生成に
効果がある理由は必ずしも明らかではないが、水熱条件
が平衡的にモリブデン酸鉄生成に有利である為と思われ
る。The reason why the method of the present invention is effective for producing iron molybdate as an oxidation catalyst is not necessarily clear, but it is considered that hydrothermal conditions are equilibrium and advantageous for producing iron molybdate.
本発明における触媒の製造方法は、従来の技術に較べ著
しく簡単である。また、得られた触媒の機械的強度も大
きく、余分な三酸化モリブデンを含まないので反応中の
モリブデンの気化沈着が起こらず、従つて触媒の粉化や
反応器の閉塞と云つた問題が避けられ、長期間安定した
運転が続けられ、優れた触媒が得られる。The method for producing the catalyst in the present invention is remarkably simple as compared with the conventional techniques. In addition, the obtained catalyst has a high mechanical strength and does not contain excess molybdenum trioxide, so vaporization and deposition of molybdenum during the reaction does not occur, thus avoiding problems such as catalyst pulverization and reactor clogging. Therefore, stable operation can be continued for a long time, and an excellent catalyst can be obtained.
特に、メタノールの酸化によるホルムアルデヒドの製造
に用いた場合、メタノールの転化率が高く同時にホルム
アルデヒドへの選択率が高いので、工業的に優れたもの
である。In particular, when it is used for the production of formaldehyde by oxidation of methanol, it is industrially excellent because the conversion rate of methanol is high and the selectivity to formaldehyde is high at the same time.
以下、実施例をあげて本発明を更に詳しく説明するが、
これによつて本発明の範囲を限定するものではない。Hereinafter, the present invention will be described in more detail with reference to Examples.
This does not limit the scope of the invention.
実施例1 市販のパラモリブデン酸アンモニウム((NH4)6Mo7O24
・4H2O)9.45gを脱イオン水100mlに溶解し、水溶液を調
製する、この水溶液に硝酸を加えてpHを1.7とした。別
の硝酸第二鉄(Fe(NO3)3・9H2O)15.0gを脱イオン水
100mlに溶解し、更に硝酸を加えてpHを1.15とした。Example 1 Commercially available ammonium paramolybdate ((NH 4 ) 6 Mo 7 O 24
4H 2 O) 9.45 g is dissolved in 100 ml of deionized water to prepare an aqueous solution. Nitric acid is added to this aqueous solution to adjust the pH to 1.7. Another ferric nitrate (Fe (NO 3) 3 · 9H 2 O) and 15.0g deionized water
It was dissolved in 100 ml, and nitric acid was further added to adjust the pH to 1.15.
このモリブデンの水溶液に、鉄の水溶液を室温で撹拌下
ゆつくり添加し、更に30分撹拌を続けた。この操作で黄
色の沈澱物が生じた。この時の原料のMo/Fe比は1.44で
あり、またpHは1.55であつた。An aqueous solution of iron was slowly added to this aqueous solution of molybdenum with stirring at room temperature, and stirring was continued for another 30 minutes. This operation produced a yellow precipitate. At this time, the raw material had a Mo / Fe ratio of 1.44 and a pH of 1.55.
この沈澱物を含む懸濁液を撹拌機を備えたチタン製の1
オートクレーブに入れ密閉し、電気炉中で昇温、撹拌
下150℃、3時間水熱合成を行つた。The suspension containing this precipitate is made of titanium 1 with a stirrer.
The mixture was placed in an autoclave, sealed, and heated in an electric furnace with stirring at 150 ° C. for 3 hours for hydrothermal synthesis.
反応を停止後、室温に戻し、固形分をろ過により取得
し、これを熱水で洗浄ろ過を数回繰り返した。After stopping the reaction, the temperature was returned to room temperature, the solid content was obtained by filtration, and this was washed and filtered with hot water several times.
このようにして得られた固形分を100℃で一昼夜乾燥し
た。収量は8.85gであつた。The solid content thus obtained was dried at 100 ° C. overnight. The yield was 8.85 g.
また、これのX線回折を測定したところ、モリブデン酸
鉄(Fe2(MoO4)3)であり、実質上三酸化モリブデン
(MoO3)を含んでいないことがわかつた。In addition, when X-ray diffraction of this was measured, it was found to be iron molybdate (Fe 2 (MoO 4 ) 3 ), which did not substantially contain molybdenum trioxide (MoO 3 ).
実施例2 モリブデン及び鉄の水溶液の硝酸によるpH調節をおこな
わなかつた以外は、実施例1と同様にして水熱合成及び
その後の処理をおこなつた。収量は7.53gであつた。Example 2 Hydrothermal synthesis and the subsequent treatment were carried out in the same manner as in Example 1 except that pH adjustment of an aqueous solution of molybdenum and iron was not performed with nitric acid. The yield was 7.53 g.
このもののX線回折を測定したところ、モリブデン酸鉄
であり、三酸化モリブデンは含んでいなかつた。When X-ray diffraction of this product was measured, it was found to be iron molybdate and did not contain molybdenum trioxide.
実施例3 硝酸によるpH調節は行わない以外は実施例1と同様にし
て、モリブデン及び鉄の水溶液を作り、これを混合して
懸濁液とした。次にこれを実施例1と同様にしてオート
クレーブで150℃、5時間水熱合成を行つた。但し、反
応中撹拌は行わなかつた。Example 3 An aqueous solution of molybdenum and iron was prepared in the same manner as in Example 1 except that the pH was not adjusted with nitric acid, and this was mixed to give a suspension. Next, this was hydrothermally synthesized in the same manner as in Example 1 in an autoclave at 150 ° C. for 5 hours. However, stirring was not performed during the reaction.
得られた固定物を実施例1と同様に処理して、9.77gの
固定を得た。The obtained fixed product was treated in the same manner as in Example 1 to obtain 9.77 g of fixed product.
この固体物質は、外見の色調から不均一であつたがX線
回折からもモリブデン酸鉄以外にも小量の三酸化モリブ
デン等が認められた。This solid substance was not uniform in appearance, but X-ray diffraction also confirmed small amounts of molybdenum trioxide and the like in addition to iron molybdate.
実施例4 水熱合成を50時間とした以外は実施例3と同様にして水
熱合成を行つた。Example 4 Hydrothermal synthesis was performed in the same manner as in Example 3 except that hydrothermal synthesis was carried out for 50 hours.
得られたもの(収量8.50g)のX線回折測定結果は、モ
リブデン酸鉄であり実質上三酸化モリブデンが含まれて
いないことを示した。The X-ray diffraction measurement result of the obtained product (yield 8.50 g) showed that it was iron molybdate and contained substantially no molybdenum trioxide.
無撹拌下であつても、時間を十分にとればモリブデン酸
鉄が容易に生成することがわかる。It can be seen that iron molybdate is easily formed if sufficient time is taken even without stirring.
実施例5 実施例3と同様に懸濁液を作つた。次に、これに市販の
珪藻土を37.3g加えてからオートクレーブに仕込み、150
℃、15時間水熱合成を行つた。Example 5 A suspension was prepared in the same manner as in Example 3. Next, add 37.3 g of commercially available diatomaceous earth to this and charge it in an autoclave.
Hydrothermal synthesis was carried out at ℃ for 15 hours.
これを実施例1と同様に処理して得られたもののX線回
折を行なつたところ、珪藻土以外にはモリブデン酸鉄の
みであつた。When this was treated in the same manner as in Example 1 and subjected to X-ray diffraction, only iron molybdate was found in addition to diatomaceous earth.
実施例6 硝酸第二鉄15.0gを水200mlに溶解した水溶液を作つた。
これに三酸化モリブデン7.73g(Mo/Fe=1.44)を加えて
からオートクレーブに仕込み、撹拌下150℃で24時間水
熱合成を行つた。以下同様に処理して得られたもの(収
量7.33g)のX線回折は、これがモリブデン酸鉄であり
実質的に三酸化モリブデンが含まれていないことを示し
た。Example 6 An aqueous solution was prepared by dissolving 15.0 g of ferric nitrate in 200 ml of water.
After adding 7.73 g of molybdenum trioxide (Mo / Fe = 1.44) to this, it was charged into an autoclave and hydrothermally synthesized at 150 ° C. for 24 hours with stirring. X-ray diffraction of the same product (yield 7.33 g) shown below showed that it was iron molybdate and was substantially free of molybdenum trioxide.
実施例7 パラモリブデン酸アンモニウム10.16gを脱イオン水100m
lに溶解した水溶液に硝酸第二鉄15.00gを脱イオン水100
mlに溶解した水溶液を加え懸濁液を得た。この時のMo/F
e比は1.55であつた。Example 7 10.16 g of ammonium paramolybdate was added to 100 m of deionized water.
15.00 g of ferric nitrate in an aqueous solution dissolved in 1 l of deionized water
An aqueous solution dissolved in ml was added to obtain a suspension. Mo / F at this time
The e ratio was 1.55.
この懸濁液を1のチタン製オートクレーブに仕込み、
撹拌下、150℃、3時間水熱合成を行つた。反応停止後
室温に戻し、沈澱物をろ過し、更にこれを熱水で洗浄ろ
過を数回繰り返したのち、100℃で一昼夜乾燥した。収
量は9.50gであつた。Charge this suspension into a titanium autoclave of 1,
Hydrothermal synthesis was carried out at 150 ° C. for 3 hours with stirring. After stopping the reaction, the temperature was returned to room temperature, the precipitate was filtered, and this was washed and filtered several times with hot water, and then dried at 100 ° C. for 24 hours. The yield was 9.50 g.
このもののX線回折測定結果はこれがモリブデン酸鉄で
あり、実質的に三酸化モリブデンを含まないことを示し
た。The X-ray diffraction measurement result of this product showed that it was iron molybdate and contained substantially no molybdenum trioxide.
実施例8 パラモリブデン酸アンモニウムが10.50gであり、硝酸第
二鉄が15.00gであること以外は実施例7と同様にして懸
濁液を作つた。この時のMo/Fe比は1.60であつた。この
懸濁液を実施例7と同様にして水熱合成とその後の処理
を行い10.15gの固体粉末物質を得た。Example 8 A suspension was prepared in the same manner as in Example 7 except that ammonium paramolybdate was 10.50 g and ferric nitrate was 15.00 g. At this time, the Mo / Fe ratio was 1.60. This suspension was subjected to hydrothermal synthesis and subsequent treatment in the same manner as in Example 7 to obtain 10.15 g of a solid powder substance.
このものはX線回折によると大部分がモリブデン酸鉄で
あつたが、小量の三酸化モリブデンを含んでいることが
わかつた。It was found by X-ray diffraction that this was mostly iron molybdate, but it contained a small amount of molybdenum trioxide.
実施例9 パラモリブデン酸アンモニウム10.16gを脱イオン水100m
lに溶解し、更に硝酸を加えてpHを1.80にした。一方、
塩化第二鉄(FeCl3・6H2O)10.03gを脱イオン水100mlに
溶解し、アンモニア水でpHを1.30とした。この二つの液
を併せて懸濁液を作つた。この時のMo/Fe比は1.55であ
つた。Example 9 10.16 g of ammonium paramolybdate was added to 100 m of deionized water.
It was dissolved in 1 and nitric acid was further added to adjust the pH to 1.80. on the other hand,
Ferric chloride (FeCl 3 .6H 2 O) 10.03 g was dissolved in 100 ml of deionized water, and the pH was adjusted to 1.30 with aqueous ammonia. The two liquids were combined to form a suspension. At this time, the Mo / Fe ratio was 1.55.
以下この懸濁液を実施例7と全く同様にして水熱合成及
びその後の処理を行い10.18gの固体粉末物質を得た。Thereafter, this suspension was subjected to hydrothermal synthesis and subsequent treatment in exactly the same manner as in Example 7 to obtain 10.18 g of a solid powder substance.
このもののX線回折結果はモリブデン酸鉄であり、実質
的に三酸化モリブデンを含んでいなかつた。The X-ray diffraction result of this product was iron molybdate, which contained substantially no molybdenum trioxide.
参考例1 実施例2で得られたモリブデン酸鉄からなる触媒を打錠
成形し、空気流中で400℃、2時間焼成した。これを破
砕して粒径を約2mmに揃えた。この触媒5.2ml(4.16g)
に、ほぼ等量のガラスビース(3mm径)をまぜて希釈し
た後、これを内径22mmのガラス製反応器に配置した。反
応器にメタノール、空気及び窒素を各々4.3g/hr、15.6N
/hr、17.9N/hrの流量で供給した。混合ガス中のメ
タノール及び酸素のモル分率は各々8及び9%であり、
またガス空間速度(GHSV)は7000/hrであつた。Reference Example 1 The catalyst made of iron molybdate obtained in Example 2 was tablet-molded and calcined at 400 ° C. for 2 hours in an air stream. This was crushed and the particle size was adjusted to about 2 mm. 5.2 ml (4.16 g) of this catalyst
Almost the same amount of glass beads (3 mm diameter) were mixed and diluted to obtain a glass reactor having an inner diameter of 22 mm. Methanol, air and nitrogen were added to the reactor at 4.3g / hr and 15.6N respectively.
It was supplied at a flow rate of / hr, 17.9 N / hr. The mole fractions of methanol and oxygen in the mixed gas are 8 and 9% respectively,
The gas hourly space velocity (GHSV) was 7,000 / hr.
電気炉にて所定温度まで昇温し反応を開始した。生成物
はガスクロマトグラフイーにより分析した。The temperature was raised to a predetermined temperature in an electric furnace to start the reaction. The products were analyzed by gas chromatography.
反応開始後70時間における成績は次の通りであつた。The results at 70 hours after the start of the reaction were as follows.
(反応器入口温度:290℃ 触媒床最高温度:360℃) メタノール転化率:89% 転化したメタノールからホルムアルデヒドへの選択率:9
4% 参考例2 実施例7で得られたモリブデン酸鉄からなる触媒を参考
例1と同様に成形、焼成、破砕し、この触媒5.2mlを等
量のガラスビーズで希釈後反応器に充填した。次いで参
考例1と同様な反応条件で反応を行つた。(Reactor inlet temperature: 290 ℃, catalyst bed maximum temperature: 360 ℃) Methanol conversion: 89% Selectivity of converted methanol to formaldehyde: 9
4% Reference Example 2 The catalyst made of iron molybdate obtained in Example 7 was molded, fired and crushed in the same manner as in Reference Example 1, and 5.2 ml of this catalyst was diluted with an equal amount of glass beads and charged into a reactor. . Then, the reaction was carried out under the same reaction conditions as in Reference Example 1.
反応開始後70時間での成績は次の通りであつた。The results at 70 hours after the start of the reaction were as follows.
(反応器入口温度:250℃ 触媒床最高温度:340℃) メタノール転化率:96% ホルムアルデヒド選択率:89% 参考例3 実施例9で得られたモリブデン酸鉄からなる触媒を参考
例1と同様に成形、焼成、破砕し、この触媒5.2mlを等
量のガラスビーズで希釈後反応器に充填した。次いで参
考例1と同様な反応条件で反応を行つた。(Reactor inlet temperature: 250 ° C., catalyst bed maximum temperature: 340 ° C.) Methanol conversion: 96% Formaldehyde selectivity: 89% Reference Example 3 The catalyst made of iron molybdate obtained in Example 9 was the same as in Reference Example 1. After molding, firing and crushing, 5.2 ml of this catalyst was diluted with an equal amount of glass beads and charged into a reactor. Then, the reaction was carried out under the same reaction conditions as in Reference Example 1.
反応開始後12時間での成績は次の通りであつた。The results at 12 hours after the start of the reaction were as follows.
(反応器入口温度:260℃ 触媒床最高温度:373℃) メタノール転化率:98% ホルムアルデヒド選択率:93% 参考例4 実施例9で得られたモリブデン酸鉄からなる触媒80部と
市販の珪藻土20部とを良く混合したのち、参考例1と同
様に成形、焼成、破砕を行い、この触媒5.2mlを等量の
ガラスビーズで希釈後反応器に充填した。次いで参考例
1と同様な反応条件で反応を行つた。(Reactor inlet temperature: 260 ° C. Catalyst bed maximum temperature: 373 ° C.) Methanol conversion: 98% Formaldehyde selectivity: 93% Reference Example 4 80 parts of the catalyst composed of iron molybdate obtained in Example 9 and commercially available diatomaceous earth After mixing well with 20 parts, molding, firing and crushing were carried out in the same manner as in Reference Example 1, and 5.2 ml of this catalyst was diluted with an equal amount of glass beads and charged into a reactor. Then, the reaction was carried out under the same reaction conditions as in Reference Example 1.
反応成績は次の通りであつた。The reaction results were as follows.
反応時間 36時間(入口温度:260℃ 最高温度:350℃) メタノール転化率:90% ホルムアルデヒド選択率:89% 反応時間 65時間(入口温度:290℃ 最高温度:380℃) メタノール転化率:99% ホルムアルデヒド選択率:91% 参考例5 実施例9で得られたモリブデン酸鉄を参考例3と同様な
手法で触媒化した後、この1mlを内径6mmのガラス製反応
器に充填した。これに2%のn−ブタンと空気とを供給
して反応を行つた。空間速度(GHSV)は2000/hrとし
た。450℃でのn−ブタン転化率は9.1%、500℃でのn
−ブタン転化率は32.0%であつた。生成物は一酸化炭素
及び二酸化炭素であつた。Reaction time 36 hours (Inlet temperature: 260 ℃ Maximum temperature: 350 ℃) Methanol conversion: 90% Formaldehyde selectivity: 89% Reaction time 65 hours (Inlet temperature: 290 ℃ Maximum temperature: 380 ℃) Methanol conversion: 99% Formaldehyde selectivity: 91% Reference Example 5 The iron molybdate obtained in Example 9 was catalyzed in the same manner as in Reference Example 3, and 1 ml of this was charged into a glass reactor having an inner diameter of 6 mm. The reaction was carried out by supplying 2% of n-butane and air thereto. The space velocity (GHSV) was 2000 / hr. The n-butane conversion at 450 ° C is 9.1%, and the n-butane conversion at 500 ° C is n.
-The butane conversion was 32.0%. The products were carbon monoxide and carbon dioxide.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 45/29 9049−4H 47/052 9049−4H // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C07C 45/29 9049-4H 47/052 9049-4H // C07B 61/00 300
Claims (5)
モリブデン酸鉄触媒を製造する方法において、モリブデ
ン化合物及び鉄化合物を、100℃を越える温度及び加圧
下で水熱合成することによりモリブデン酸鉄を生成せし
めることを特徴とする、酸化用モリブデン酸鉄触媒の製
造方法。1. A method for producing an iron molybdate catalyst for oxidation from a molybdenum compound and an iron compound, wherein iron molybdate is produced by hydrothermally synthesizing the molybdenum compound and the iron compound at a temperature exceeding 100 ° C. and under pressure. A method for producing an iron oxide molybdate catalyst for oxidation, characterized by comprising:
混合することを特徴とする特許請求の範囲第1項記載の
方法。2. The method according to claim 1, wherein the iron molybdate thus produced is mixed with a carrier component.
せしめることを特徴とする特許請求の範囲第1項記載の
方法。3. The method according to claim 1, wherein iron molybdate is produced in the presence of a carrier component.
アルミナ、チタニア、ジルコニア、珪藻土、天然粘土、
合成粘土及びゼオライトからなる群から選ばれた一種以
上であることを特徴とする特許請求の範囲第2項又は第
3項記載の方法。4. The carrier component is alumina, silica, silica-
Alumina, titania, zirconia, diatomaceous earth, natural clay,
The method according to claim 2 or 3, wherein the method is one or more selected from the group consisting of synthetic clay and zeolite.
特許請求の範囲第2項ないし第4項のいずれかに記載の
方法。5. A method according to any one of claims 2 to 4, wherein the carrier component is diatomaceous earth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165234A JPH0763625B2 (en) | 1986-07-14 | 1986-07-14 | Method for producing iron molybdate catalyst for oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61165234A JPH0763625B2 (en) | 1986-07-14 | 1986-07-14 | Method for producing iron molybdate catalyst for oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6320037A JPS6320037A (en) | 1988-01-27 |
JPH0763625B2 true JPH0763625B2 (en) | 1995-07-12 |
Family
ID=15808407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61165234A Expired - Fee Related JPH0763625B2 (en) | 1986-07-14 | 1986-07-14 | Method for producing iron molybdate catalyst for oxidation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0763625B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108114744B (en) * | 2016-11-26 | 2020-07-21 | 中国科学院大连化学物理研究所 | Supported iron-molybdenum-based catalyst and preparation and application thereof |
CN112850788B (en) * | 2021-01-25 | 2022-03-29 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Monoclinic structure Fe2(MoO4)3Nanowire and preparation method and application thereof |
CN114618509A (en) * | 2022-03-21 | 2022-06-14 | 上海尼普敦环境科技有限公司 | Carbon dioxide hydrogenation reduction catalyst and preparation method thereof |
CN115072791B (en) * | 2022-06-24 | 2024-03-01 | 南京和知科技有限公司 | FeMoO 4 Superfine nano particle, preparation method and application |
CN115487816B (en) * | 2022-08-16 | 2023-08-04 | 中国地质大学(武汉) | Vermiculite-based ferric molybdate nano enzyme and preparation method and application thereof |
CN115818722B (en) * | 2022-12-30 | 2024-06-07 | 浙江工业大学 | Preparation method of square flaky ferric molybdate |
-
1986
- 1986-07-14 JP JP61165234A patent/JPH0763625B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6320037A (en) | 1988-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3435069A (en) | Oxidation of acrolein and methacrolein with a molybdenum polyvalent metaloxygen catalyst | |
US4168246A (en) | Production of (amm)oxidation catalyst | |
US4280928A (en) | Catalyst compositions and their use for the preparation of methacrolein | |
JP2841324B2 (en) | Method for producing methacrolein | |
US4306090A (en) | Catalyst compositions and their use for the preparation of methacrolein | |
JP3534431B2 (en) | Production of unsaturated nitrile | |
JPS5951848B2 (en) | Method for producing catalysts based on oxides of molybdenum and retungsten and oxides of other metals | |
US3983073A (en) | Process for preparing a catalyst for the oxidation of methanol to formaldehyde | |
JPS6123020B2 (en) | ||
JPH0763625B2 (en) | Method for producing iron molybdate catalyst for oxidation | |
JPH0210695B2 (en) | ||
CA1089432A (en) | Process for the preparation of a catalyst for use in the oxidation in the vapour phase of unsaturated aldehydes to the corresponding acids | |
JP2001114726A (en) | Production process for methacrylic acid | |
JPH0232017B2 (en) | ||
JPS6322536A (en) | Production of formaldehyde | |
JPH05237388A (en) | Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid | |
JPS6033539B2 (en) | Oxidation catalyst and its preparation method | |
JP2657693B2 (en) | Preparation of catalysts for the production of methacrolein and methacrylic acid | |
US3525701A (en) | Oxidation catalyst of an oxide composition of antimony,tin and copper | |
JPH0517392A (en) | Production of acrylic acid | |
JP2520279B2 (en) | Method for producing acrylonitrile | |
JPS5951849B2 (en) | Method for producing catalysts based on oxides of molybdenum and oxides of other metals | |
JP3316880B2 (en) | Method for producing catalyst for producing methacrylic acid | |
US4055511A (en) | Catalyst for preparation of 4-cyanothiazole | |
US4341659A (en) | Catalytic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |