JPH075434B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JPH075434B2
JPH075434B2 JP3811187A JP3811187A JPH075434B2 JP H075434 B2 JPH075434 B2 JP H075434B2 JP 3811187 A JP3811187 A JP 3811187A JP 3811187 A JP3811187 A JP 3811187A JP H075434 B2 JPH075434 B2 JP H075434B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
bab
viscosity
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3811187A
Other languages
Japanese (ja)
Other versions
JPS63206393A (en
Inventor
信太郎 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3811187A priority Critical patent/JPH075434B2/en
Publication of JPS63206393A publication Critical patent/JPS63206393A/en
Publication of JPH075434B2 publication Critical patent/JPH075434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特にBを構成元素の1つとして含む酸化物単
結晶を効率よく引上げ法で製造する方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a method for efficiently producing an oxide single crystal containing B as one of constituent elements by a pulling method.

(従来技術及び発明が解決しようとする問題点) 近年注目されている非線型光学結晶にβ‐BaB2O4があ
る。化学量論的組成BaB2O4で表わされる化合物は925℃
を境界温度として結晶学的な原子構造が変化する(いわ
ゆる相変態)。この場合925℃以上の高温相結晶をα型
(α‐BaB2O4と記す)、925℃以下の低温相結晶をβ型
(β‐BaB2O4と記す)と称し、上述のごとく光学的結晶
として有望視されているのは、このうちβ型である。な
ぜならば、高温相のα‐BaB2O4は対称中心を有するが、
β‐BaB2O4は原子の変位により対称中心が無くなり、従
って非線形特性が生じるからである。
(Problems to be Solved by Prior Art and Invention) β-BaB 2 O 4 is a nonlinear optical crystal that has been receiving attention in recent years. The compound represented by the stoichiometric composition BaB 2 O 4 is 925 ° C.
The crystallographic atomic structure changes at the boundary temperature (so-called phase transformation). In this case, the high temperature phase crystal of 925 ℃ or higher is called α type (α-BaB 2 O 4 ) and the low temperature phase crystal of 925 ℃ or lower is β type (β-BaB 2 O 4 ). Of these, the β type is regarded as a promising crystal. Because α-BaB 2 O 4 in the high temperature phase has a center of symmetry,
This is because the center of symmetry disappears in β-BaB 2 O 4 due to the displacement of the atoms, and thus the nonlinear characteristic occurs.

BaB2O4結晶を得るには、一般的には母原料となるBaCO3
とB2O3をモル比で1:1の割合で配合し、加熱溶融すると BaCO3+B2O3→BaB2O4+CO2↑ の反応により、BaB2O4溶融液を得る。次に、この溶融液
を引上げ法等により単結晶化を行いBaB2O4単結晶を得
る。
In order to obtain BaB 2 O 4 crystals, BaCO 3 which is a mother material is generally used.
1 and B 2 O 3 molar ratio: in proportions of 1, the BaCO 3 + B 2 O 3 → BaB 2 O 4 + CO 2 ↑ reaction when heated to melt to obtain a BaB 2 O 4 melt. Next, the melt is crystallized by a pulling method or the like to obtain a BaB 2 O 4 single crystal.

ところで、上述のごとくBaCO3とB2O3の比率を1:1にした
場合には、1095℃が母原料の溶融温度となり、逆に、こ
の温度以上に加熱した溶融液を冷却すると、1095℃で結
晶化が始まる。ただし、この場合の結晶は925℃以上で
結晶化しているので、必ずα‐BaB2O4として晶出する。
By the way, when the ratio of BaCO 3 and B 2 O 3 is set to 1: 1 as described above, 1095 ° C. becomes the melting temperature of the base material, and conversely, when the melt heated above this temperature is cooled to 1095 ° C. Crystallization begins at ° C. However, since the crystal in this case is crystallized at 925 ° C or higher, it is always crystallized as α-BaB 2 O 4 .

更に、この固化した結晶を冷却せしめ、結晶温度が925
℃以下になるとβ‐BaB2O4に相変態せんとするが、前述
したように構成原子の変化方向が場所によって異なって
くる。つまり「分域」が形成されるので、結晶全体にわ
たって一方向に原子が変位した均一なβ‐BaB2O4に変態
せしめることが困難で、変態したとしてもその均一性が
劣り、良質な単結晶を得ることができない。
Further, the solidified crystal is cooled, and the crystal temperature is 925.
When the temperature falls below ℃, β-BaB 2 O 4 undergoes a phase transformation, but as described above, the changing directions of the constituent atoms vary depending on the location. In other words, since “domains” are formed, it is difficult to transform into uniform β-BaB 2 O 4 with atoms displaced in one direction throughout the crystal, and even if transformed, the uniformity is poor and a high-quality single crystal is formed. I can't get crystals.

この場合の良質な単結晶とは、「分域のない」β‐BaB2
O4結晶である。この問題点を回避し、良質なβ‐BaB2O4
単結晶を得るには925℃以下の溶融液を用意し、これを
冷却することにより、直接β‐BaB2O4単結晶を晶出せし
める方法が考えられる。液体から固化への変化ゆえ全体
の原子構造が均一なβ‐BaB2O4単結晶を極めて容易に得
られるからである。
A good single crystal in this case is "domain-free" β-BaB 2
It is an O 4 crystal. Avoiding this problem, good quality β-BaB 2 O 4
In order to obtain a single crystal, a method in which a melt at 925 ° C or lower is prepared and cooled to directly crystallize a β-BaB 2 O 4 single crystal can be considered. This is because it is very easy to obtain a β-BaB 2 O 4 single crystal with a uniform atomic structure due to the change from liquid to solidification.

ところで、このように母原料の溶融液温度(結晶製造時
の溶融液温度)を下げる方法には、 (イ)母原料の配合比をずらす、いわゆるセルフ−フラ
ックス法(self−flux)と、 (ロ)母原料の他に全く違う融剤(flux)を添加するフ
ラックス法がある。
By the way, the method of lowering the melt temperature of the mother raw material (melt temperature at the time of crystal production) in this way is (a) shifting the compounding ratio of the mother raw material, so-called self-flux method (self-flux), B) There is a flux method in which a completely different flux is added in addition to the mother raw material.

BaB2O4の場合、セルフ−フラックス法を実現するには、
B2O3の配合比を増加すれば良いし、フラックス法を実現
するには、例えばNa2CO3を添加すれば良い。いずれにし
ても、925℃以下の温度で溶融液状態を実現できる。
In the case of BaB 2 O 4 , to realize the self-flux method,
The blending ratio of B 2 O 3 may be increased, and the flux method may be realized by adding Na 2 CO 3 , for example. In any case, a molten state can be realized at a temperature of 925 ° C or lower.

しかしながら、いずれの方法を用いても、溶融液の温度
を低下することにより、新たな重大な問題が生じる。
However, whichever method is used, lowering the temperature of the melt causes a new serious problem.

即ち、結晶が晶出する溶融液の母原料となるB2O3の粘性
は低温ほど高くなり900℃では230ポアズと大きいため、
溶融液の粘性も高く、従って熱伝導が悪くなるので効率
よく大型単結晶が得られなくなる。具体的にはこのよう
な溶融液から引上げ法(チョクラルスキーあるいはカイ
ロポーラス法)で行うと、毎時0.1〜0.5mmという極めて
遅い成長速度となり、結晶の大型化や、B2O3中に含まれ
る水分に起因する気泡等の介在物の無い良質結晶は得に
くいという問題である。
That is, the viscosity of B 2 O 3 , which is the mother material of the melt from which crystals are crystallized, becomes higher at lower temperatures and is as large as 230 poise at 900 ° C.
Since the viscosity of the melt is high and the heat conduction is poor, a large single crystal cannot be obtained efficiently. Specifically, when the pulling method (Czochralski or cairoporous method) is performed from such a melt, the growth rate becomes extremely slow at 0.1 to 0.5 mm per hour, which leads to an increase in crystal size and inclusion in B 2 O 3. The problem is that it is difficult to obtain a good quality crystal free from inclusions such as bubbles caused by the water content.

更に、他のBを含む化合物として圧電性を有するLi2B4O
7がある。この場合は、相変態との関係で溶融液温度を
低下させる必要は無いが、別の観点から大量のB2O3を必
要とする。即ち、母原料であるLi2CO3とB2O3をモル比1:
2で混合し、917℃以上で加熱することで Li2CO3+2B2O3→Li2B4O7+CO2↑ の反応でLi2B4O7溶融液を形成し、引上げ法等で単結晶
化する。
Further, as another B-containing compound, Li 2 B 4 O having piezoelectricity
There is 7 . In this case, it is not necessary to lower the melt temperature in relation to the phase transformation, but a large amount of B 2 O 3 is needed from another viewpoint. That is, the mother material Li 2 CO 3 and B 2 O 3 have a molar ratio of 1:
Were mixed with 2, Li 2 CO 3 + 2B 2 O 3 → Li 2 B 4 O 7 + CO 2 ↑ reaction with the form of Li 2 B 4 O 7 melt by heating at 917 ° C. or higher, with pull-up method or the like Single crystallize.

この場合、B2O3は他の母原料(Li2CO3)の2倍の量を要
し、しかも結晶引上げ時の温度は917℃直上であること
から、溶融液の粘性は200〜230ポアズと高い。実験によ
れば、気泡等の介在物を含まない大型結晶を得るには、
この程度の粘性溶融液であると毎時約0.3〜1.0mmと極め
て遅い引上げ速度を必要とし、極めて生産効率が悪かっ
た。
In this case, B 2 O 3 requires twice as much amount as other mother raw material (Li 2 CO 3 ), and since the temperature during crystal pulling is just above 917 ° C, the viscosity of the melt is 200-230. Poise and expensive. According to the experiment, in order to obtain a large crystal that does not include inclusions such as bubbles,
A viscous melt of this degree required a very slow pulling rate of about 0.3 to 1.0 mm per hour, resulting in extremely poor production efficiency.

以上の種々の例からわかるように、B2O3は温度に対して
粘性が大きく変化するので、結晶引上げ温度,引上げ速
度等の他の条件を規定してしまい、生産効率を含めた最
適条件を実現する上での制約要因になるという問題があ
った。
As can be seen from the various examples above, the viscosity of B 2 O 3 changes greatly with temperature, so other conditions such as the crystal pulling temperature and pulling rate are specified, and optimum conditions including production efficiency are determined. There was a problem that it would be a limiting factor in realizing.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもの
で、その目的は、Bを構成元素の1つとして含む酸化物
単結晶を育成する際の溶融液の高粘性である点を解決し
た、低粘性原料溶融液を実現し、高効率にB酸化物単結
晶を製造することにある。
(Object of the invention) The present invention was proposed in order to improve the above-mentioned drawbacks, and its object is to improve the high viscosity of the melt when growing an oxide single crystal containing B as one of the constituent elements. It is to realize a low-viscosity raw material melt that solves a certain point and to produce a B oxide single crystal with high efficiency.

(問題点を解決するための手段) 上記の目的を達成するため、本発明はホウ素を構成元素
の1つとして含む複合酸化物単結晶を製造する場合、前
記酸化物単結晶を製造する温度における、ホウ素を含む
複合酸化物溶融液の粘性を小さくする不純物として、P
b,Bi,As,Gaあるいはそれらの酸化物の中のいずれか1つ
または2つ以上を混合することを特徴とする単結晶の製
造方法を発明の要旨とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention, in the case of producing a composite oxide single crystal containing boron as one of the constituent elements, at the temperature for producing the oxide single crystal. As impurities that reduce the viscosity of the complex oxide melt containing boron, P
The gist of the invention is a method for producing a single crystal, which is characterized by mixing any one or two or more of b, Bi, As, Ga and oxides thereof.

本発明は該単結晶を製造する際の、B2O3を主成分とする
溶融液の結晶製造時の液相線温度Tgにおける粘性を特定
の不純物を添加することにより低下(従来の1/2〜1/1
0)させることを最も主要な特徴とし、従来では液相線
温度Tgおける該溶融液の粘性を低下させることに関して
公知方法はない。
The present invention reduces the viscosity at the liquidus temperature Tg at the time of producing a crystal of a melt containing B 2 O 3 as a main component in the production of the single crystal by adding a specific impurity (conventional 1 / 2 to 1/1
There is no known method for reducing the viscosity of the melt at the liquidus temperature Tg, which is the most important feature.

更に加えるならば、従来は得られる単結晶の特性を変え
るために特定な不純物元素を加えることはあつても、該
結晶が成長する溶融液の粘性を小さくするために特定な
不純物を添加することは報告がない。
If further added, it is conventionally necessary to add a specific impurity element in order to change the characteristics of the obtained single crystal, but to add a specific impurity in order to reduce the viscosity of the melt in which the crystal grows. Has no report.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲
で、種々の変更あるいは改良を行いうることは言うまで
もない。
Next, examples of the present invention will be described. Needless to say, the embodiment is merely an example, and various modifications and improvements can be made without departing from the spirit of the present invention.

〔実施例1〕 BaB2O4は、BaCO3とB2O3をモル比1:1に配合し、加熱する
と1095℃でコルグルエント溶融し、α‐BaB2O4として結
晶化し、約925℃以下で結晶構造が中心対称性を持た
ず、実用的に有意義な空間群R3に属するβ‐BaB2O4に相
変態する。ここで従来技術の項で説明した問題があるの
で、高品質なβ‐BaB2O4結晶を効率良く製造するには、
溶融液温度が925℃以下で行わなければならない。この
目的のため、前述のセルフ−フラックス法を用い、B2O3
を増加し溶融液温度の低温化を実現することができる。
しかしながら、B2O3の粘性は1000℃で〜100ポアズ、900
℃では〜230ポアズと高いためにB2O3を増加した低温の
溶融液の粘性は極めて大きくなり、結晶成長には不適と
なる。そこで、用いるB2O3にPbOを5モル%混合したB2O
3(Pb)を出発原料として用い、BaCO3とこのB2O3(Pb)
をモル比で1:1からB2O3(Pb)を増やして液相線温度Tg
を〜920℃にまで下げた。この結果、この場合の溶融液
の粘性は20〜25ポアズとPbO無添加の場合の粘性に比べ
約1/10小さくなり、熱伝導が大きくなる結果として単結
晶の製造は極めて容易となった。
[Example 1] BaB 2 O 4 was prepared by blending BaCO 3 and B 2 O 3 in a molar ratio of 1: 1 and when heated, it melted at 1095 ° C. to form a α-BaB 2 O 4 and crystallized to about 925 ° C. In the following, the crystal structure does not have centrosymmetry and undergoes a phase transformation into β-BaB 2 O 4 belonging to the practically meaningful space group R 3 . Since there is a problem described in the section of the prior art here, in order to efficiently produce a high quality β-BaB 2 O 4 crystal,
The melt temperature must be below 925 ° C. For this purpose, B 2 O 3
And the melt temperature can be lowered.
However, the viscosity of B 2 O 3 is ~ 100 poise, 900 at 1000 ° C.
Since it is as high as ~ 230 poise at ℃, the viscosity of the low temperature melt with increased B 2 O 3 becomes extremely large, which is not suitable for crystal growth. Accordingly, B 2 were mixed PbO 5 mole percent B 2 O 3 used O
Using 3 (Pb) as the starting material, BaCO 3 and this B 2 O 3 (Pb)
The liquidus temperature Tg by increasing B 2 O 3 (Pb) from 1: 1
Was lowered to ~ 920 ° C. As a result, the viscosity of the melt in this case was 20 to 25 poises, which was about 1/10 of the viscosity without PbO addition, and the heat conduction became large, resulting in the extremely easy production of single crystals.

〔実施例2〕 実施例1では母原料の一つの配合比をズラして溶融液に
して所望の結晶を得る、いわゆるセルフ−フラックス
(self−flux)法であるが、相変態後の結晶を得る方法
として融剤(flux)を用いて液相線温度を下げる方法が
ある。β‐BaB2O4の製造の為にはいくつかのフラックス
が考えられるが、ここではNa2CO3を用いて xBaCO3+yNa2CO3+zB2O3(Pb) の原料混合において27x32,17y22,z=50のモ
ル比とした溶液を、PbO5モル%混合したB2O3であるB2O3
(Pb)を用いて形成し、溶液温度920〜850℃にしてβ‐
BaB2O4単結晶を成長させることができた。このときの溶
液の稔性は無添加B2O3を用いたときに比べ1/2〜1/10ほ
ど小さく、従って容易に大形の単結晶が得られた。
Example 2 In Example 1, which is a so-called self-flux method in which one compounding ratio of the mother raw material is shifted to obtain a desired crystal in a melt, a crystal after phase transformation is used. As a method for obtaining it, there is a method of lowering the liquidus temperature by using a flux. Several fluxes can be considered for the production of β-BaB 2 O 4 , but here we use Na 2 CO 3 to mix xBaCO 3 + yNa 2 CO 3 + zB 2 O 3 (Pb) as a raw material. , z = 50 in a molar ratio, a mixture of PbO 5 mol% B 2 O 3 B 2 O 3
(Pb) to form β-
It was possible to grow a BaB 2 O 4 single crystal. The fertility of the solution at this time was about 1/2 to 1/10 smaller than that of the additive-free B 2 O 3 , and therefore large single crystals were easily obtained.

以上の実施例では、セルフ−フラックス法の場合につい
て説明したが、フラックス法でも同様に低温,低粘性化
できることは容易に理解できる。このように、母原料と
して用いるのB2O3に粘性を下げる他の元素を混合するこ
とにより(このようなB2O3をB2O3(X)と記す。先の実
施例ではX=Pbの場合について述べた。)、セルフ−フ
ラックス法,フラックス法を問わず低温においても低粘
性の溶融液が実現でき、従って高品質のβ‐BaB2O4単結
晶を容易に、効率よく得ることができる。
In the above embodiments, the case of the self-flux method has been described, but it can be easily understood that the low temperature and low viscosity can also be achieved by the flux method. In this way, B 2 O 3 used as a mother material is mixed with another element that lowers the viscosity (such B 2 O 3 is referred to as B 2 O 3 (X). = Pb)), a low-viscosity melt can be realized even at low temperatures regardless of the self-flux method or the flux method, and therefore a high-quality β-BaB 2 O 4 single crystal can be easily and efficiently produced. Obtainable.

〔実施例3〕 実施例1,2ではB2O3にPb(PbOの形で添加)を混合して低
温,低粘性の溶液を実現したが、このPbの代わりにBi
(またはBi2O3)を2.5モル%混合したB2O3を用いると92
0〜850℃の温度範囲で粘性が約100ポアズで、無添加B2O
3の粘性の約1/2に、As(またはAs2O3)を0.8モル%混合
したB2O3を用いると粘性は〜130ポアズであり、粘性は
約60%に低下し、実施例1,2と同じようにしてβ−BaB2O
4単結晶を効率よく得ることができた。
Example 3 cold by mixing Pb in Examples 1 and 2 in B 2 O 3 (added in the form of PbO), has been realized a solution of low viscosity, Bi instead of Pb
(Or Bi 2 O 3 ) mixed with 2.5 mol% B 2 O 3 92
Viscosity is about 100 poise in the temperature range of 0 ~ 850 ℃, additive-free B 2 O
When using B 2 O 3 in which As (or As 2 O 3 ) was mixed at 0.8 mol% to about 1/2 of the viscosity of 3, the viscosity was ˜130 poise, and the viscosity was reduced to about 60%. Β-BaB 2 O in the same way as 1,2
4 single crystals could be obtained efficiently.

Ga及びその酸化物をB2O3に加えた場合も同様の効果が得
られた。
Similar effects were obtained when Ga and its oxide were added to B 2 O 3 .

なお、添加物としてPb,Bi,As,Ga又はその酸化物の中の
2つ以上を併用することも可能である。
In addition, it is also possible to use two or more of Pb, Bi, As, Ga or an oxide thereof together as an additive.

(発明の効果) 以上説明したように、β‐BaB2O4単結晶を製造するには
925℃以下の溶融液が必要であるが、この溶融液の粘性
を極力小さくすることは、結晶成長に不可欠である。何
故ならば、高粘性ほど熱伝導が悪くなり結晶成長速度を
遅くする必要があり、この点を解決するために、溶融液
の低粘性化が結晶の効率的製造に重要であるからであ
る。本発明によれば、主原料であるB2O3に特定な添加元
素を混合することによって液の粘性が無添加の場合に比
べて1/2〜1/10小さくすることができる利点がある。
(Effect of the Invention) As described above, in order to produce a β-BaB 2 O 4 single crystal
A melt below 925 ° C is required, and it is essential for crystal growth to minimize the viscosity of this melt. This is because the higher the viscosity, the worse the heat conduction and the slower the crystal growth rate, and in order to solve this point, lowering the viscosity of the melt is important for efficient production of crystals. According to the present invention, there is an advantage that the viscosity of the liquid can be reduced by 1/2 to 1/10 as compared with the case of no addition by mixing a specific additive element with B 2 O 3 which is the main raw material. .

なお、実施例では特定添加元素としてPb(PbO),Bi(Bi
2O3),As(As2O3)を記載のようにモル%とした例を述
べたが、本発明ではこの混合割合を規定するものではな
い。要は特定元素を加えて溶融液の粘性を下げることに
ある。従って、実施例からも判るように、あらかじめ混
合したB2O3(X)を用いる代わりに、β‐BaB2O4単結晶
を製造し得る溶融液に特定元素を金属あるいは酸化物の
形で添加しても効果は同じである。更に付け加えれば、
このようにして得られたβ‐BaB2O4の光学屈折率は僅か
に増加するものの、他の特性は何ら変化はなかった。
In the examples, Pb (PbO), Bi (Bi
2 O 3 ), As (As 2 O 3 ) are set to mol% as described, but the present invention does not prescribe this mixing ratio. The point is to add a specific element to reduce the viscosity of the melt. Therefore, as can be seen from the examples, instead of using premixed B 2 O 3 (X), a specific element in the form of metal or oxide is added to a melt capable of producing a β-BaB 2 O 4 single crystal. Even if added, the effect is the same. If you add more,
Although the optical refractive index of β-BaB 2 O 4 thus obtained was slightly increased, other properties were not changed.

なお、β‐BaB2O4以外のB酸化物結晶(例えば、従来例
として示したLi2B4O7)についても本発明が適用できる
ことは容易に類推できる。すなわちLi2B4O7のように母
原料として大量のB2O3を用いる場合には、その溶融液の
粘性を低温で低下できることは、製造条件を最適化する
上での自由度が増し、実用上、更に有効であることは言
うまでもない。
It can be easily inferred that the present invention can be applied to B oxide crystals other than β-BaB 2 O 4 (for example, Li 2 B 4 O 7 shown as a conventional example). That is, when a large amount of B 2 O 3 is used as a base material such as Li 2 B 4 O 7 , the viscosity of the melt can be reduced at low temperature, which increases the degree of freedom in optimizing the manufacturing conditions. Needless to say, it is more effective in practical use.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ホウ素を構成元素の1つとして含む複合酸
化物単結晶を製造する場合、前記酸化物単結晶を製造す
る温度における、ホウ素を含む複合酸化物溶融液の粘性
を小さくする不純物として、Pb,Bi,As,Gaあるいはそれ
らの酸化物の中のいずれか1つまたは2つ以上を混合す
ることを特徴とする単結晶の製造方法
1. When producing a composite oxide single crystal containing boron as one of its constituent elements, as an impurity for reducing the viscosity of a boron-containing composite oxide melt at a temperature for producing the oxide single crystal. , Pb, Bi, As, Ga or any one of oxides thereof, or a mixture of two or more thereof, for producing a single crystal
【請求項2】B2O3に不純物として、Pb,Bi,As,Ga,PbO,Bi
2O3,As2O3,Ga2O3の中のいずれか1つあるいは2つ以上
混合したB2O3を原料として該単結晶を製造することを特
徴とする特許請求の範囲第1項記載の単結晶の製造方
法。
2. Pb, Bi, As, Ga, PbO, Bi as impurities in B 2 O 3.
The single crystal is produced using B 2 O 3 as a raw material, which is one of 2 O 3 , As 2 O 3 and Ga 2 O 3 or a mixture of two or more thereof. Item 6. A method for producing a single crystal according to item.
JP3811187A 1987-02-23 1987-02-23 Single crystal manufacturing method Expired - Fee Related JPH075434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3811187A JPH075434B2 (en) 1987-02-23 1987-02-23 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3811187A JPH075434B2 (en) 1987-02-23 1987-02-23 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPS63206393A JPS63206393A (en) 1988-08-25
JPH075434B2 true JPH075434B2 (en) 1995-01-25

Family

ID=12516363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3811187A Expired - Fee Related JPH075434B2 (en) 1987-02-23 1987-02-23 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JPH075434B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239691A (en) * 1993-02-12 1994-08-30 Japan Energy Corp Method for growing single crystal
JP2866924B2 (en) * 1996-08-02 1999-03-08 科学技術庁金属材料技術研究所長 Oxide single crystal and method for producing the same

Also Published As

Publication number Publication date
JPS63206393A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
US4231838A (en) Method for flux growth of KTiOPO4 and its analogues
US3079240A (en) Process of growing single crystals
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
CN101831706A (en) Growth method of low ultraviolet absorption YA13(BO3)4 crystal
JPH075434B2 (en) Single crystal manufacturing method
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
US4931133A (en) High temperature solution growth of barium borate (β-BaB2 O4)
JPS59164692A (en) Preparation of oxide single crystal
US3370963A (en) Growth of divalent metal aluminates
JPH01122998A (en) Production of cd zn te mixed crystal semiconductor
US4613495A (en) Growth of single crystal Cadmium-Indium-Telluride
Wanklyn et al. Growth and perfection of rare earth aluminate and DyFeO3 crystals with MoO3 as additive
CN101787558A (en) Fluxing agent growing method of K2Al2B2O7 crystal
US3674455A (en) Process for the synthesis of glass and single crystal germanates of identical composition
CN114808131B (en) GaAs single crystal and VGF preparation method thereof
JPH0753300A (en) Lithium niobate and its production
JPH10101494A (en) Production of oxide single crystal and oxide single crystal
JPS63215598A (en) Production of barium borate single crystal having low temperature phase
US2736659A (en) Method for preparation of highly refractive material
CN115233287A (en) beta-BBO crystal growth method using cesium fluoride as fluxing agent
CN114214722A (en) Preparation method of high-quality large-size LBO crystal
CN117535782A (en) Cs (cell lines) 3 Zn 6 B 9 O 21 Crystal growth fluxing agent and crystal growth method
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
Gier et al. Method for flux growth of KTiOPO4 and its analogues
JPH01138199A (en) Lead-tin-tellurium based semiconductor single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees