JPS63206393A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS63206393A
JPS63206393A JP3811187A JP3811187A JPS63206393A JP S63206393 A JPS63206393 A JP S63206393A JP 3811187 A JP3811187 A JP 3811187A JP 3811187 A JP3811187 A JP 3811187A JP S63206393 A JPS63206393 A JP S63206393A
Authority
JP
Japan
Prior art keywords
single crystal
viscosity
melt
temperature
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3811187A
Other languages
Japanese (ja)
Other versions
JPH075434B2 (en
Inventor
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3811187A priority Critical patent/JPH075434B2/en
Publication of JPS63206393A publication Critical patent/JPS63206393A/en
Publication of JPH075434B2 publication Critical patent/JPH075434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve the production efficiency of single crystal in the production of a compound oxide single crystal containing boron as a constituent element by pulling up process, by adding a specific impurity to decrease the viscosity of molten liquid. CONSTITUTION:In the production of a compound oxide single crystal containing boron as one of constituent elements, the crystallization raw material is added with a specific impurity to decrease the viscosity of molten liquid of the boron- containing compound oxide at the production temperature of the above oxide single crystal. The specific impurity is preferably Pb, Bi, As, Ga, their oxides or their arbitrary mixture.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特にBを構成元素の1つとして含む酸化物−
単結晶を効率よく引上げ法で製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention particularly relates to an oxide containing B as one of its constituent elements.
This invention relates to a method for efficiently producing single crystals by a pulling method.

(従来技術及び発明が解決しようとする問題点)近年注
目されている非線型光学結晶にβ−BaBtO4がある
。化学量論的組成りaBtO4で表わされる化合物は9
25℃を境界温度として結晶学的な原子構造が変化する
(いわゆる相変態)、この場合925℃以上の高温相結
晶をα型(α−BaBaOaと記す)、925℃以下の
低温相結晶をβ型(β−BaBxOnと記す)と称し、
上述のごとく光学的結晶として有望視されているのは、
このうちβ型である。なぜならば、高温相のα−Bat
te4は対称中心を有するが、β−BaB、04は原子
の変位により対称中心が無くなり、従って非線形特性が
生じるからである。
(Prior Art and Problems to be Solved by the Invention) β-BaBtO4 is a nonlinear optical crystal that has attracted attention in recent years. The compound with the stoichiometric composition aBtO4 is 9
The crystallographic atomic structure changes with a boundary temperature of 25°C (so-called phase transformation). In this case, the high-temperature phase crystal at 925°C or higher is α type (denoted as α-BaBaOa), and the low-temperature phase crystal at 925°C or lower is β type. type (denoted as β-BaBxOn),
As mentioned above, the promising optical crystals are:
Among these, it is the β type. This is because the high-temperature phase α-Bat
This is because te4 has a center of symmetry, but β-BaB, 04 has no center of symmetry due to atomic displacement, and therefore nonlinear characteristics occur.

Ba8gO4結晶を得るには、一般的には母原料となる
!1acO*とB2O.をモル比で1:1の割合で配合
し、加熱溶融すると BaCO3+ BgOs →BaBgOn  + Co
!↑の反応により、BaBtOn溶融液を得る0次に、
この溶融液を引上げ法等により単結晶化を行いBaBz
O4単結晶を得る。
To obtain Ba8gO4 crystals, it is generally used as the base material! 1acO* and B2O. are mixed in a molar ratio of 1:1 and heated and melted to form BaCO3+ BgOs → BaBgOn + Co
! By the reaction ↑, a BaBtOn melt is obtained.
This melt is single-crystalized by a pulling method etc. to obtain BaBz
Obtain an O4 single crystal.

ところで、上述のごと< BaCO3とB、0.の比率
をl:1にした場合には、1095℃が母原料の溶融温
度となり、逆に、この温度以上に加熱した溶融液を冷却
すると、1095℃で結晶化が始まる。ただし、この場
合の結晶は925℃以上で結晶化しているので、必ずα
−BaBtOaとして晶出する。
By the way, as mentioned above, < BaCO3 and B, 0. When the ratio is 1:1, the melting temperature of the base material is 1095°C, and conversely, when a melt heated above this temperature is cooled, crystallization starts at 1095°C. However, since the crystals in this case are crystallized at temperatures above 925°C, α
-It crystallizes as BaBtOa.

更に、この固化した結晶を冷却せしめ、結晶温度が92
5℃以下になるとβ−BaBtO4に相変態せんとする
が、前述したように構成原子の変化方向が場所によって
異なってくる。つまり「分域」が形成されるので、結晶
全体にわたって一方向に原子が変位した均一なβ−Ba
BzO4に変態せしめることが困難で、変態したとして
もその均一性が劣り、良質な単結晶を得ることができな
い。
Furthermore, this solidified crystal was cooled until the crystal temperature reached 92
When the temperature drops below 5° C., the phase transforms to β-BaBtO4, but as mentioned above, the direction of the change in the constituent atoms varies depending on the location. In other words, since "domains" are formed, uniform β-Ba with atoms displaced in one direction throughout the crystal.
It is difficult to transform BzO4, and even if it transforms, its uniformity is poor, making it impossible to obtain a high-quality single crystal.

この場合の良質な単結晶とは、「分域のない」β−Ba
dge4結晶である。この問題点を回避し、良質なβ−
Batte4単結晶を得るには925°C以下の溶融液
を用意し、これを冷却することにより、直接β−BaB
ヨ04単結晶を晶出せしめる方法が考えられる。液体か
ら固化への変化ゆえ全体の原子構造が均一なβ−Bai
t’4単結晶を極めて容易に得られるからである。
In this case, a high-quality single crystal is β-Ba with “no domain”.
It is a dge4 crystal. This problem can be avoided and high quality β-
To obtain a Batte 4 single crystal, prepare a melt at 925°C or lower and cool it to directly produce β-BaB.
A possible method is to crystallize a YO04 single crystal. β-Bai whose entire atomic structure is uniform due to the change from liquid to solidification
This is because a t'4 single crystal can be obtained extremely easily.

ところで、このように母原料の溶融液温度(結晶製造時
の溶融液温度)を下げる方法には、(イ)母原料の配合
比をずらす、いわゆるセルフ−フラックス法(self
−flux)と、(ロ)母原料の他に全く違う融剤(f
lux)を添加するフラックス法がある。
By the way, methods for lowering the melt temperature of the base material (melt temperature during crystal production) include (a) the so-called self-flux method, in which the blending ratio of the base materials is shifted;
-flux) and (b) a completely different flux (f) in addition to the base material.
There is a flux method that adds lux).

BaBgOiの場合、セルフ−フラックス法を実現する
には、B!0.の配合比を増加すれば良いし、フラック
ス法を実現するには、例えばNa、GO,を添加すれば
良い、いずれにしても、925°C以下の温度で溶融液
状態を実現できる。
In the case of BaBgOi, to realize the self-flux method, B! 0. For example, Na, GO, etc. may be added to realize the flux method. In either case, a molten liquid state can be realized at a temperature of 925° C. or lower.

しかしながら、いずれの方法を用いても、溶融液の温度
を低下することにより、新たな重大な問題が生じる。
However, with either method, lowering the temperature of the melt creates new and significant problems.

即ち、結晶が晶出する溶融液の母原料となるB、0.の
粘性は低温はど高くなり900℃では230ポアズと大
きいため、溶融液の粘性も高く、従って熱伝導が悪くな
るので効率よく大型単結晶が得られなくなる。具体的に
はこのような溶融液から引上げ法(チックラルスキーあ
るいはカイロポーラス法)で行うと、毎時0.1〜0.
5閣という極めて遅い成長速度となり、結晶の大型化や
、ados中に含まれる水分に起因する気泡等の介在物
の無い良質結晶は得にくいという問題である。
That is, B, 0.0. The viscosity increases at low temperatures and is as high as 230 poise at 900°C, so the viscosity of the melt is also high, resulting in poor heat conduction and making it impossible to efficiently obtain large single crystals. Specifically, when the pulling method (Chickralski or chiroporous method) is carried out from such a melt, the rate is 0.1 to 0.0% per hour.
The problem is that the growth rate is extremely slow, and it is difficult to obtain high-quality crystals that are free of inclusions such as air bubbles caused by large crystals and water contained in ados.

更に、他のBを含む化合物として圧電性を有するLiJ
40tがある。この場合は、相変態との関係で溶融液温
度を低下させる必要性は無いが、別の観点から大量の8
30.を必要とする。即ち、母原料であるLigCOs
とBtusをモル比1:2で混合し、917℃以上で加
熱することで LigCOs + 28tus  →Li8BaOy+
COg ↑の反応でLiJ40を溶融液を形成し、引上
げ法等で単結晶化する。
Furthermore, LiJ, which has piezoelectricity, is another B-containing compound.
There is 40t. In this case, there is no need to lower the melt temperature due to phase transformation, but from another point of view, a large amount of 8
30. Requires. That is, the base material LigCOs
By mixing and Btus at a molar ratio of 1:2 and heating at 917°C or higher, LigCOs + 28tus → Li8BaOy+
A molten liquid of LiJ40 is formed by the reaction of COg ↑, and it is made into a single crystal by a pulling method or the like.

この場合、B2O.は他の母原料(Li!(:Os)の
2倍の量を要し、しかも結晶引上げ時の温度は917℃
直上であることから、溶融液の粘性は200〜230ポ
アズと高い、実験によれば、気泡等の介在物を含まない
大型結晶を得るには、この程度の粘性溶融液であると毎
時的0.3〜1.0 mと極めて遅い引上げ速度を必要
とし、極めて生産効率が悪かった。
In this case, B2O. requires twice the amount of other base materials (Li!(:Os)), and the temperature during crystal pulling is 917°C.
Because it is directly above the molten liquid, the viscosity of the molten liquid is as high as 200 to 230 poise.According to experiments, in order to obtain large crystals that do not contain inclusions such as bubbles, a viscous molten liquid of this level requires a This required an extremely slow pulling speed of .3 to 1.0 m, resulting in extremely poor production efficiency.

以上の種々の例かられかるように、B20.は温度に対
して粘性が大きく変化するので、結晶引上げ温度、引上
げ速度等の他の条件を規定してしまい、生産効率を含め
た最適条件を実現する上での制約要因になるという問題
があワた。
As can be seen from the various examples above, B20. Since the viscosity of crystal changes greatly with temperature, other conditions such as crystal pulling temperature and pulling speed are specified, which becomes a constraining factor in achieving optimal conditions including production efficiency. Wata.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもので
、その目的は、Bを構成元素の1つとして含む酸化物単
結晶を育成する際の溶融液の高粘性である点を解決した
、低粘性原料溶融液を実現し、高効率にB酸化物単結晶
を製造することにある。
(Object of the invention) The present invention was proposed to improve the above-mentioned drawbacks, and its purpose is to reduce the high viscosity of the melt when growing an oxide single crystal containing B as one of its constituent elements. The objective is to realize a low-viscosity raw material melt that solves certain problems and to produce B oxide single crystals with high efficiency.

(問題点を解決するための手段) 上記の目的を達成するため、本発明はホウ素を構成元素
の1つとして含む複合酸化物単結晶を製造する場合、前
記酸化物単結晶を製造する温度における、ホウ素を含む
複合酸化物溶融液の粘性を小さくする特定な不純物を添
加することを特徴とする単結晶の製造方法を発明の要旨
とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides, when manufacturing a composite oxide single crystal containing boron as one of the constituent elements, at a temperature at which the oxide single crystal is manufactured. The gist of the invention is a method for producing a single crystal, which is characterized by adding a specific impurity that reduces the viscosity of a boron-containing complex oxide melt.

本発明は該単結晶を製造する際の、B20.を主成分と
する溶融液の結晶製造時の液相線温度Tgにおける粘性
を特定の不純物を添加することにより低下(従来の17
2〜1/10 )させることを最も主要な特徴とし、従
来では液相線温度Tgおける該溶融液の粘性を低下させ
ることに関して公知方法はない。
The present invention provides B20. By adding specific impurities, the viscosity at the liquidus temperature Tg during crystal production of a melt mainly composed of
The most important feature is to reduce the viscosity of the melt at the liquidus temperature Tg.

更に加えるならば、従来は得られる単結晶の特性を変え
るために特定な不純物元素を加えることはあっても、該
結晶が成長する溶融液の粘性を小さくするために特定な
不純物を添加することは報告がない。
In addition, conventionally, specific impurity elements are added to change the properties of the resulting single crystal, but specific impurities are also added to reduce the viscosity of the melt in which the crystal grows. There is no report.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうろことは言うまでも
ない。
Next, examples of the present invention will be described. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

〔実施例1〕 BaB104は、BaCO5とB20.をモル比1:1
に配合し、加熱すると1095℃でコングルエンド溶融
し、α−BaBiO4として結晶化し、約925℃以下
で結晶構造が中心対称性を持たず、実用的に有意義な空
間群R8に属するβ−BaBaO1に相変態する。ここ
で−従来技術の項で説明した問題があるので、高品質な
β−Baboo4結晶を効率良く製造するには、溶融液
温度が925℃以下で行わなければならない、この目的
のため、前述のセルフ−フラックス法を用い、B2O.
を増加し溶融液温度の低温化を実現することができる。
[Example 1] BaB104 is a mixture of BaCO5 and B20. molar ratio 1:1
When heated, it undergoes congruent melting at 1095°C and crystallizes as α-BaBiO4, and below about 925°C, the crystal structure does not have central symmetry and belongs to the practically meaningful space group R8. β-BaBaO1 undergoes a phase metamorphosis. Here, due to the problems explained in the prior art section, in order to efficiently produce high-quality β-Baboo4 crystals, the melt temperature must be below 925°C.For this purpose, the above-mentioned Using the self-flux method, B2O.
It is possible to increase the temperature of the melt and lower the temperature of the melt.

しかしながら、B2O.の粘性は1000℃で〜110
ポアズ、900℃では〜230ポアズと高いために81
0.を増加した低温の溶融液の粘性は極めて大きくなり
、結晶成長には不適となる。そこで、用いるa、O,に
pboを5モル%混合したBtus(Pb)を出発原料
として用い、BaCO5とこのBtus (Pb)をモ
ル比でl:1からBtus(Pb)を増やして液相線温
度Tgを〜920℃にまで下げた。この結果、この場合
の溶融液の粘性は20〜2Sポアズとpbo無添加の場
合の粘性に比べ約1710小さくなり、熱伝導が大きく
なる結果として単結晶の製造は極めて容易となった。
However, B2O. The viscosity of is ~110 at 1000℃
Poise is as high as ~230 poise at 900°C, so it is 81
0. The viscosity of the low-temperature melt increases significantly, making it unsuitable for crystal growth. Therefore, Btus (Pb), which is a mixture of 5 mol% pbo in a, O, used, is used as a starting material, and the molar ratio of BaCO5 and this Btus (Pb) is 1:1. The temperature Tg was lowered to ~920°C. As a result, the viscosity of the melt in this case was 20 to 2 S poise, which was about 1710 smaller than the viscosity in the case without pbo addition, and as a result of increased heat conduction, production of single crystals became extremely easy.

〔実施例2〕 実施例1では母原料の一つの配合比をズラして溶融液に
して所望の結晶を得る、いわゆるセルフーフランクス(
self−flux)法であるが、相変態後の結晶を得
る方法として融剤(flux)を用いて液相線温度を下
げる方法がある。β−fia810gの製造の為にはい
くつかのフラックスが考えられるが、ここではNa1C
O3を用いて X BaCO5+ 7 Na1CO3+ Z Btus
 (Pb)の原料混合において27≦X≦32.17≦
y≦22.z−50のモル比とした溶液を、Pb05モ
ル%混合したB2O.であるBtus (Pb)を用い
て形成し、溶液温度920〜850°Cにしてβ−Ba
BgOa単結晶を成長させることができた。このときの
溶液の粘性は無添加BtO,を用いたときに比べ1/2
〜1/10はど小さく、従って容易に大形の単結晶が得
られた。
[Example 2] In Example 1, the so-called self-flux (
Although this is a self-flux method, there is a method of lowering the liquidus temperature using a flux as a method of obtaining crystals after phase transformation. Several fluxes are possible for producing 810g of β-fia, but here we use Na1C
Using O3 X BaCO5+ 7 Na1CO3+ Z Btus
In the raw material mixture of (Pb), 27≦X≦32.17≦
y≦22. A solution with a molar ratio of Z-50 was mixed with B2O. β-Ba
A BgOa single crystal could be grown. The viscosity of the solution at this time is 1/2 compared to when using non-additive BtO.
The size of the crystal was 1/10, so a large single crystal could be easily obtained.

以上の実施例では、セルフーフランクス法の場合につい
て説明したが、フラックス法でも同様に低温、低粘性化
できることは容易に理解できる。
In the above embodiments, the case of the self-flux method was explained, but it is easy to understand that low temperature and low viscosity can be achieved by the flux method as well.

このように、母原料として用いるのBtusに粘性を下
げる他の元素を混合することにより(このような82O
.をBzOs(X)と記す、先の実施例ではx−pbの
場合について述べた。)、セルフ−フラックス法、フラ
ックス法を問わず低温においても低粘性の溶融液が実現
でき、従って高品質のβ−BaB*Os単結晶を容易に
、効率よく得ることができる。
In this way, by mixing other elements that lower the viscosity with Btus used as the base material (such as 82O
.. is written as BzOs(X), and the case of x-pb was described in the previous embodiment. ), self-flux method, or flux method, a low-viscosity melt can be achieved even at low temperatures, and therefore high-quality β-BaB*Os single crystals can be obtained easily and efficiently.

〔実施例3〕 実施例1.2ではB、0.にPb (PbOの形で添加
)を混合して低温、低粘性の溶液を実現したが、このp
bo代わりにBi (またはBit’s )を2.5モ
ル%混合したB2O.を用いると920〜850°Cの
温度範囲で粘性が約100ポアズで、無添加BxOsの
粘性の約172に、As (またはAs103 )を0
.8モル%混合したB、0.を用いると粘性は〜130
ポアズであり、粘性は約60%に低下し、実施例1.2
と同じようにしてβ−Batte4単結晶を効率よく得
ることができた。
[Example 3] In Example 1.2, B, 0. A low-temperature, low-viscosity solution was achieved by mixing Pb (added in the form of PbO) with Pb.
B2O. in which 2.5 mol% of Bi (or Bit's) was mixed instead of bo. When using BxOs, the viscosity is about 100 poise in the temperature range of 920 to 850°C, and the viscosity of BxOs without additives is about 172, and As (or As103) is added to 0.
.. B mixed with 8 mol%, 0. When using , the viscosity is ~130
Poise, the viscosity is reduced to about 60%, Example 1.2
β-Batte4 single crystal could be efficiently obtained in the same manner as above.

Ga及びその酸化物を8.0.に加えた場合も同様の効
果が得られた。
Ga and its oxides at 8.0. A similar effect was obtained when added to

なお、添加物としてPb、 Bi、 As、 Ga又は
その酸化物□の中の2つ以上を併用することも可能であ
る。
Note that it is also possible to use two or more of Pb, Bi, As, Ga, or their oxides □ as additives.

(発明の効果) 以上説明したように、β−BaB10.単結晶を製造す
るには925°C以下の溶融液が必要であるが、この溶
融液の粘性を極力小さくすることは、結晶成長に不可欠
である。何故ならば、高粘性はど熱伝導が悪(なり結晶
成長速度を遅くする必要があり、この点を解決するため
に、溶融液の低粘性化が結晶の効率的製造に重要である
からである0本発明によれば、主原料であるB、0.に
特定な添加元素を混合することによって液の粘性が無添
加の場合に比べて1/2〜1/1(ロ)浄小さくするこ
とができる利点がある。
(Effect of the invention) As explained above, β-BaB10. A melt at 925° C. or lower is required to produce a single crystal, and it is essential for crystal growth to minimize the viscosity of this melt. This is because high viscosity results in poor heat conduction (the crystal growth rate must be slowed down), and to solve this problem, lowering the viscosity of the melt is important for efficient crystal production. According to the present invention, the viscosity of the liquid is reduced by 1/2 to 1/1 (b) compared to the case without additives by mixing specific additive elements to the main raw materials B and 0. There is an advantage that it can be done.

なお、実施例では特定添加元素としてPb (PbO)
In addition, in the examples, Pb (PbO) was used as a specific additive element.
.

Bi (Bi露Os)、^S(^5g0s)を記載のよ
うにモル%とした例を述べたが、本発明ではこの混合割
合を規定するものではない、要は特定元素を加えて溶融
液の粘性を下げることにある。従って、実施例からも判
るように、あらかじめ混合したBIOs(X)を用いる
代わりに、β−BaBgOa単結晶を製造し得る溶融液
に特定元素を金属あるいは酸化物の形で添加しても効果
は同じである。更に付は加えれば、このようにして得ら
れたβ−Ba8gO4の光学屈折率は僅かに増加するも
のの、他の特性は何ら変化はなかった。
An example was given in which Bi (BiOs) and ^S (^5g0s) were set as mol% as described, but the present invention does not specify this mixing ratio. The goal is to reduce the viscosity of Therefore, as can be seen from the examples, instead of using pre-mixed BIOs (X), adding specific elements in the form of metals or oxides to the melt that can produce β-BaBgOa single crystals has no effect. It's the same. Furthermore, although the optical refractive index of β-Ba8gO4 thus obtained increased slightly, other properties did not change at all.

なお、β−BaB*04以外のB酸化物結晶(例えば、
従来例おして示したLi*B40y )についても本発
明が適用できることは容易に類推できる。すなわちLi
J<Ovのように母原料として大量のBtusを用いる
場合には、その溶融液の粘性を低温で低下できることは
、製造条件を最適化する上での自由度が増し、実用上、
更に有効であることは言うまでもない。
In addition, B oxide crystals other than β-BaB*04 (for example,
It can be easily inferred that the present invention is also applicable to Li*B40y shown in the conventional example. That is, Li
When using a large amount of Btus as a base material such as J<Ov, being able to reduce the viscosity of the melt at low temperatures increases the degree of freedom in optimizing manufacturing conditions, and is practical.
Needless to say, it is even more effective.

Claims (3)

【特許請求の範囲】[Claims] (1)ホウ素を構成元素の1つとして含む複合酸化物単
結晶を製造する場合、前記酸化物単結晶を製造する温度
における、ホウ素を含む複合酸化物溶融液の粘性を小さ
くする特定な不純物を添加することを特徴とする単結晶
の製造方法。
(1) When producing a complex oxide single crystal containing boron as one of the constituent elements, certain impurities are added to reduce the viscosity of the complex oxide melt containing boron at the temperature at which the oxide single crystal is produced. A method for producing a single crystal, characterized in that a single crystal is added.
(2)単結晶を製造する場合複合酸化物の溶融液を形成
する際に、溶融液の粘性を小さくする不純物として、P
b、Bi、As、Gaあるいはそれらの酸化物の中のい
ずれか1つまたは2つ以上を混合することを特徴とする
特許請求の範囲第1項記載の単結晶の製造方法。
(2) When producing a single crystal When forming a melt of complex oxide, P is added as an impurity to reduce the viscosity of the melt.
2. The method for producing a single crystal according to claim 1, wherein any one or more of Bi, As, Ga, or oxides thereof are mixed.
(3)B_2O_3に不純物として、Pb、Bi、As
、Ga、PbO、Bi_2O_3、As_2O_3、G
a_2O_3の中のいずれか1つあるいは2つ以上混合
したB_2O_3を原料として該単結晶を製造すること
を特徴とする特許請求の範囲第1項記載の単結晶の製造
方法。
(3) Pb, Bi, As as impurities in B_2O_3
, Ga, PbO, Bi_2O_3, As_2O_3, G
The method for producing a single crystal according to claim 1, characterized in that the single crystal is produced using B_2O_3, which is a mixture of any one or two or more of a_2O_3, as a raw material.
JP3811187A 1987-02-23 1987-02-23 Single crystal manufacturing method Expired - Fee Related JPH075434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3811187A JPH075434B2 (en) 1987-02-23 1987-02-23 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3811187A JPH075434B2 (en) 1987-02-23 1987-02-23 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPS63206393A true JPS63206393A (en) 1988-08-25
JPH075434B2 JPH075434B2 (en) 1995-01-25

Family

ID=12516363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3811187A Expired - Fee Related JPH075434B2 (en) 1987-02-23 1987-02-23 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JPH075434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471938A (en) * 1993-02-12 1995-12-05 Japan Energy Corporation Process for growing multielement compound single crystal
US6153125A (en) * 1996-08-02 2000-11-28 National Research Institute For Metals BaM2 O4 oxide single crystal having non-linear optical property and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471938A (en) * 1993-02-12 1995-12-05 Japan Energy Corporation Process for growing multielement compound single crystal
US6153125A (en) * 1996-08-02 2000-11-28 National Research Institute For Metals BaM2 O4 oxide single crystal having non-linear optical property and manufacturing method thereof

Also Published As

Publication number Publication date
JPH075434B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4231838A (en) Method for flux growth of KTiOPO4 and its analogues
Itoh et al. β-barium borate single crystal grown by a direct Czochralski method
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
CN101831706A (en) Growth method of low ultraviolet absorption YA13(BO3)4 crystal
JPS63206393A (en) Production of single crystal
CN103993348A (en) Rare earth orthoferrite monocrystal growth method and application
US4931133A (en) High temperature solution growth of barium borate (β-BaB2 O4)
Gualtieri et al. Growth of β-barium borate from NaCl-Na2O solutions
CN115504480A (en) Compound zinc barium borate and zinc barium borate birefringent crystal, and preparation method and application thereof
JPS59164692A (en) Preparation of oxide single crystal
CN101787558A (en) Fluxing agent growing method of K2Al2B2O7 crystal
JP2507910B2 (en) Method for producing oxide single crystal
Chani et al. Growth of K3Li2Nb5O15 and KNbO3 ferroelectric fiber crystals by pulling-down technique
CN114457423B (en) Zn (zinc) 4 B 6 O 13 Method for growing single crystal
JPS63215598A (en) Production of barium borate single crystal having low temperature phase
Nakano et al. Flux growth of LiNdP4O12 single crystals
Wanklyn et al. Control of spontaneous nucleation in flux growth
US2736659A (en) Method for preparation of highly refractive material
JP2647940B2 (en) Single crystal growth method
JPS606912B2 (en) Manufacturing method of indium borate single crystal
Gier et al. Method for flux growth of KTiOPO4 and its analogues
JPH0753300A (en) Lithium niobate and its production
CN114214722A (en) Preparation method of high-quality large-size LBO crystal
JPH02279583A (en) Method for growing single crystal
CN115233287A (en) beta-BBO crystal growth method using cesium fluoride as fluxing agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees