JPH0753580B2 - Magnetic powder for magnetic recording - Google Patents

Magnetic powder for magnetic recording

Info

Publication number
JPH0753580B2
JPH0753580B2 JP61208887A JP20888786A JPH0753580B2 JP H0753580 B2 JPH0753580 B2 JP H0753580B2 JP 61208887 A JP61208887 A JP 61208887A JP 20888786 A JP20888786 A JP 20888786A JP H0753580 B2 JPH0753580 B2 JP H0753580B2
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
coercive force
iii
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208887A
Other languages
Japanese (ja)
Other versions
JPS6364921A (en
Inventor
陽久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP61208887A priority Critical patent/JPH0753580B2/en
Priority to US07/092,210 priority patent/US4820433A/en
Priority to DE19873729497 priority patent/DE3729497A1/en
Publication of JPS6364921A publication Critical patent/JPS6364921A/en
Publication of JPH0753580B2 publication Critical patent/JPH0753580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録用磁性粉に関し、更に詳しくは、高密
度磁気記録媒体用に適する微細な粒子からなる六方晶系
フェライト磁性粉に関するものである。
TECHNICAL FIELD The present invention relates to magnetic powder for magnetic recording, and more specifically to hexagonal ferrite magnetic powder composed of fine particles suitable for high density magnetic recording media. is there.

(従来の技術) 近年、磁気記録に対する高密度化の要求に伴い磁気記録
媒体の厚味方向に磁界を記録する垂直磁気記録方式が注
目されている。このような垂直磁気記録方式において使
用される磁性材料は記録媒体表面に垂直な方向に磁化容
易軸を有することが必要である。
(Prior Art) In recent years, along with a demand for higher density in magnetic recording, a perpendicular magnetic recording method for recording a magnetic field in a thickness direction of a magnetic recording medium has been attracting attention. The magnetic material used in such a perpendicular magnetic recording system must have an easy axis of magnetization in a direction perpendicular to the surface of the recording medium.

六方晶系で一軸磁化異方性を有するフェライト、例えば
Baフェライト(BaFe12O19)は六角板状の結晶であっ
て、板面に垂直な方向に磁化容易軸を有しており、塗布
膜タイプの垂直磁気記録用磁性材料として上記の要件を
満足するものである。該磁性材料としては適度な保磁力
(Hc,通常300〜2000Oe程度)とできるだけ大きな飽和磁
化(σs,少くとも40emu/g以上)を有している事、及び
磁性粉の平均粒子径は記録波長の関係から0.3μm以下
でありかつ、超常磁性の関係から0.01μm以上の範囲で
あることが必要である。この範囲では、平均粒子径はノ
イズの関係から小さい方が好ましい。
Hexagonal ferrite with uniaxial magnetization anisotropy, for example
Ba ferrite (BaFe 12 O 19 ) is a hexagonal plate-shaped crystal that has an easy axis of magnetization in the direction perpendicular to the plate surface and satisfies the above requirements as a coating film type magnetic material for perpendicular magnetic recording. To do. The magnetic material should have an appropriate coercive force (Hc, usually about 300 to 2000 Oe) and a saturation magnetization as large as possible (σs, at least 40 emu / g or more), and the average particle diameter of the magnetic powder should be the recording wavelength. It is necessary to be 0.3 μm or less from the above relationship and 0.01 μm or more from the superparamagnetic relationship. In this range, it is preferable that the average particle size is small in view of noise.

ところで、Baフェライトは保磁力が5000Oe以上であり、
このままでは磁気記録用磁性材料としては大きすぎるの
で、Feの一部をCo及びTiで置換して、保磁力を低下させ
る方法が提案されている(例えば特開昭55−86103号公
報、特開昭59−175707号公報、IEEE Trans.on Magn.,MA
G−18,16(1982)P.1122など)。
By the way, Ba ferrite has a coercive force of 5000 Oe or more,
Since it is too large as a magnetic material for magnetic recording as it is, a method of substituting a part of Fe with Co and Ti to lower the coercive force has been proposed (for example, JP-A-55-86103, JP-A-55-86103). Sho 59-175707, IEEE Trans.on Magn., MA
G-18, 16 (1982) P.1122 etc.).

(発明が解決しようとする問題点) ところで、磁気記録用磁性材料として必要とする保磁力
は、通常300〜2000Oe程度であるが、用いられる磁気記
録用磁性材料の用途等によって、要求される保磁力の値
は、異なるので、それぞれの用途に合わせて、一定の値
の保磁力を有することが必要である。従って、保磁力を
単に低下させるだけでは不充分であり、用途に合わせ
て、一定の保磁力に制御されなければならない。
(Problems to be Solved by the Invention) The coercive force required as a magnetic material for magnetic recording is usually about 300 to 2000 Oe, but the required coercive force depends on the use of the magnetic material for magnetic recording. Since the values of magnetic force are different, it is necessary to have a constant value of coercive force according to each application. Therefore, it is not enough to simply reduce the coercive force, and it must be controlled to a constant coercive force according to the application.

Feの一部をCo及びTiで置換した公知の磁性粉は、構成元
素の組成比がほぼ同一であっても、保磁力や飽和磁化
は、第1表に示すとうり、全くまちまちである。このこ
とは、Feの一部をCo及びTiで置換したのでは、保磁力の
制御は不充分であることを示唆している。
In the known magnetic powder in which a part of Fe is replaced with Co and Ti, the coercive force and the saturation magnetization are quite different, as shown in Table 1, even if the composition ratios of the constituent elements are almost the same. This suggests that the control of the coercive force is insufficient when a part of Fe is replaced with Co and Ti.

これを認識する目的で、本発明者は共沈法及び共沈法の
途中の工程で得られた共沈物にフラックスを混入して高
温焼成し、その後でフラックスを水洗除去する共沈−フ
ラックス法を用いて、Feの一部をCo及びTiで置換した磁
気記録用六方晶フェライト磁性粉を製造し、これを同一
操作条件下で何回もくり返し、得られた磁性粉の保磁力
が一定の値に制御されているかどうかを試みた。
For the purpose of recognizing this, the present inventor has co-precipitation method and co-precipitation method in which flux is mixed in the co-precipitate obtained in the middle step of the co-precipitation method, and the mixture is baked at a high temperature, and then the flux is washed and removed. Method was used to produce hexagonal ferrite magnetic powder for magnetic recording in which part of Fe was replaced with Co and Ti, and this was repeated many times under the same operating conditions, and the coercive force of the obtained magnetic powder was constant. Tried whether the value of is controlled.

その結果、同一の操作条件で製造した場合でも、得られ
た六方晶系フェライトの保磁力、飽和磁化、粒径、等は
製造ロット毎にまちまちであり、特に保磁力のバラツキ
が顕著であった。
As a result, even when manufactured under the same operating conditions, the coercive force, the saturation magnetization, the particle size, etc. of the obtained hexagonal ferrite were different for each production lot, and the variation in the coercive force was particularly remarkable. .

このことはFeの一部をCo及びTiで置換した六方晶系フェ
ライトの場合、製造工程中の通常の操作では、制御でき
ない様な部分的わずかな条件の不均一性や、製造中に混
入する微少な不純物等によって、保磁力や飽和磁化が敏
感に影響を受けるためであると考えられる。
This means that in the case of hexagonal ferrite in which a part of Fe is replaced by Co and Ti, there is a slight non-uniformity of conditions that cannot be controlled by normal operation during the manufacturing process, and it is mixed during manufacturing. It is considered that the coercive force and the saturation magnetization are sensitively affected by minute impurities and the like.

このことからFeの一部をCo及びTiで置換したのでは通常
の共沈法や共沈−フラック法では保磁力の制御は不可能
であることが判明した。
From this, it was found that the coercive force could not be controlled by the ordinary coprecipitation method or the coprecipitation-Flack method when a part of Fe was replaced by Co and Ti.

(問題点を解決するための手段) 本発明者等は、従来のこの様な欠点のない垂直磁気記録
用に好適な磁性粉を開発すべく鋭意検討した結果、下記
の一般組成式で示される磁気記録用磁性粉が効果的であ
ることを見出し、本発明を完成するに至った。
(Means for Solving Problems) The inventors of the present invention have earnestly studied to develop a magnetic powder suitable for perpendicular magnetic recording which does not have such a conventional defect, and as a result, it is represented by the following general composition formula. They found that the magnetic powder for magnetic recording is effective, and completed the present invention.

すなわち、本発明により一般組成式 FeaCobTicMI dMII eMIII fOg (ここでMIはBa,Sr,Ca及びPbから選択される少なくとも
一種の金属元素を表わし、MIIはMo及び/またはWを表
わし、MIIIはSi,Ge,Sn,Sb,Ni,Cu及びVから選択される
少なくとも一種の元素を表わし[但し、MIIがW、MIII
がSnとなる組合せ、MIIがW、MIIIがSbとなる組合せ及
びMIIがW、MIIIがSn及びSbとなる組合せは除く]、a,
b,c,d,e,f,及びgはそれぞれFe,Co,Ti,MI,MII,MIII及び
Oの原子数であり、aは8〜11.8、b及びcは0.05〜2.
0、dは0.5〜3.0及びe及びfは0.001〜3.0の値をと
り、gは他の元素の原子価を満足する酸素の原子数を表
わす。)で表わされ、且つ平均粒子径0.01〜0.3μmで
あることを特徴とする磁気記録用磁性粉が提供される。
That is, according to the present invention, the general composition formula Fe a Co b Ti c M I d M II e M III f O g (where M I represents at least one metal element selected from Ba, Sr, Ca and Pb, M II represents Mo and / or W, M III represents at least one element selected from Si, Ge, Sn, Sb, Ni, Cu and V [provided that M II is W or M III
There combinations combination of the Sn, M II is W, M III is Sb combinations and M II is W, M III is Sn and Sb except], a,
b, c, d, e, f, and g are the numbers of Fe, Co, Ti, M I , M II , M III, and O atoms, respectively, a is 8 to 11.8, and b and c are 0.05 to 2.
0 and d have values of 0.5 to 3.0, e and f have values of 0.001 to 3.0, and g represents the number of oxygen atoms satisfying the valences of other elements. ) And having an average particle size of 0.01 to 0.3 μm, a magnetic powder for magnetic recording is provided.

本発明においては、磁性粉の各成分元素の原子数a〜g
が上記の数値範囲内にあることが必要で、この範囲外で
は磁気記録用磁性粉に適した保磁力や飽和磁化を持った
磁性粉は得られ難い。
In the present invention, the number of atoms of each component element of the magnetic powder is a to g
Must be within the above numerical range, and outside this range, it is difficult to obtain a magnetic powder having a coercive force and saturation magnetization suitable for magnetic powder for magnetic recording.

好ましい磁性粉の各成分割合は、aは8〜11.8、b及び
cは0.1〜1.5、dは0.8〜0.2及びe及びfは0.005〜2.0
の値をとり、gは他の元素の原子価を満足する酸素の原
子数である。本発明の磁性粉は、製造方法あるいは製造
条件などによっては、得られる磁性微粒子の結晶が正常
な六角板状を呈していない粒子が混在している場合もあ
るが、該原子数が本発明の範囲内であれば、本発明の目
的を充分に達成することができる。
The ratio of each component of the preferred magnetic powder is 8 to 11.8 for a, 0.1 to 1.5 for b and c, 0.8 to 0.2 for d, and 0.005 to 2.0 for e and f.
And g is the number of oxygen atoms satisfying the valences of other elements. The magnetic powder of the present invention, depending on the production method or production conditions, may be a mixture of particles in which the crystals of the obtained magnetic fine particles do not have a normal hexagonal plate shape, but the number of atoms of the present invention is Within the range, the object of the present invention can be sufficiently achieved.

かかる本発明磁性粉においては、製造操作条件を同一に
した場合のロット間の磁性粉特性のバラツキは殆んどみ
られず、磁気記録用磁性粉として具備されていなければ
ならない保磁力を有することはもちろんであり、更に優
れた飽和磁化を有すると共に平均粒径が小さいという特
徴がある。このことは、本発明に係る磁性粉が従来のCo
及びTiを含む磁性粉とは全く異なる機能を具備している
ことによるものと考えられる。
In the magnetic powder of the present invention, there is almost no variation in the characteristics of the magnetic powder between lots when the manufacturing operation conditions are the same, and the magnetic powder has a coercive force that must be provided as magnetic powder for magnetic recording. Needless to say, it is characterized by further having excellent saturation magnetization and having a small average particle size. This means that the magnetic powder according to the present invention is
It is considered that this is because it has a completely different function from the magnetic powder containing Ti and Ti.

本発明による磁性粉は、この分野で公知のいろいろの方
法、例えば、ガラス結晶化法、共沈法、フラックス法、
水熱合成法等によって製造することができる。特に共沈
法及び共沈法の途中の工程で得られた共沈物に水溶性の
フラックスを混入して高温焼成し、その後でフラックス
を水洗除去する共沈−フラックス法に適している。
The magnetic powder according to the present invention may be obtained by various methods known in the art, for example, a glass crystallization method, a coprecipitation method, a flux method,
It can be produced by a hydrothermal synthesis method or the like. In particular, it is suitable for a coprecipitation method and a coprecipitation-flux method in which a water-soluble flux is mixed with a coprecipitate obtained in the middle of the coprecipitation method, the mixture is baked at a high temperature, and then the flux is washed and removed.

本発明の磁性粉の製造について、共沈法及び共沈フラッ
クス法を例にして述べると次のとうりである。
The production of the magnetic powder of the present invention will be described below by taking the coprecipitation method and the coprecipitation flux method as an example.

すなわち本発明にかかわる磁性粉を構成する各金属元素
の原料化合物としては、酸化物、オキシ水酸化物、水酸
化物、アンモニウム塩、硝酸塩、硫酸塩、炭酸塩、有機
酸塩、ハロゲン化物、アルカリ金属塩等の塩類、遊離
酸、酸無水物、縮合酸等を挙げることができる。特に水
溶性化合物が好ましい。各金属元素の原料化合物は、水
溶液となる様に、水に混合溶解されることが好ましい。
また、アルカリ水溶液に混合溶解した方が都合がよい場
合には、後述のアルカリ水溶液中に混合溶解される。
That is, as the raw material compound of each metal element constituting the magnetic powder according to the present invention, oxides, oxyhydroxides, hydroxides, ammonium salts, nitrates, sulfates, carbonates, organic acid salts, halides, alkalis Examples thereof include salts such as metal salts, free acids, acid anhydrides and condensed acids. Water-soluble compounds are particularly preferable. The raw material compounds of the respective metal elements are preferably mixed and dissolved in water so as to form an aqueous solution.
When it is more convenient to mix and dissolve in an alkaline aqueous solution, it is mixed and dissolved in an alkaline aqueous solution described later.

一方アルカリ水溶液に用いるアルカリ成分としては、水
溶性のものであればよく、アルカリ金属の水酸化物や炭
酸塩、アンモニア、炭酸アンモニウム等が挙げられる。
例えばNaOH,Na2CO3,NaHCO3,KOH,K2CO3,NH4OH,(NH42C
O3等が用いられ、特に水酸化物と炭酸塩の併用が賞用さ
れる。
On the other hand, the alkali component used in the alkaline aqueous solution may be any water-soluble one, and examples thereof include alkali metal hydroxides and carbonates, ammonia, and ammonium carbonate.
For example, NaOH, Na 2 CO 3 , NaHCO 3 , KOH, K 2 CO 3 , NH 4 OH, (NH 4 ) 2 C
O 3 and the like are used, and in particular, a combination of hydroxide and carbonate is prized.

しかして、上記金属イオン水溶液とアルカリ水溶液とを
混合し、共沈物を生ぜしめる。得られた共沈物は、充分
に水洗した後別する。この様にして得られたケーキ状
ないしスラリー状の共沈物は、共沈法による場合には、
これを乾燥後、600〜1100℃で10分〜30時間高温焼成し
て該当する六方晶系フェライト磁性粉を得る。また共沈
−フラックス法による場合には、共沈物に水溶性フラッ
クス(例えば、塩化ナトリウムや塩化カリウム等のハロ
ゲン化アルカリ金属塩、塩化バリウムや塩化ストロンチ
ウム等のハロゲン化アルカリ土類金属塩、硫酸ナトリウ
ム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、及
びこれ等の混合物等)を適当量加えてこれを乾燥後、60
0〜1100℃で10分〜30時間高温焼成した後、水溶性フラ
ックスを水または、酸水溶液で洗浄別し、必要に応じ
更に水洗した後乾燥して該当する六方晶系フェライト磁
性粉を得る。
Then, the metal ion aqueous solution and the alkaline aqueous solution are mixed to form a coprecipitate. The coprecipitate thus obtained is thoroughly washed with water and then separated. The cake-like or slurry-like coprecipitate thus obtained is, in the case of the coprecipitation method,
This is dried and then baked at 600 to 1100 ° C for 10 minutes to 30 hours at high temperature to obtain the corresponding hexagonal ferrite magnetic powder. When the coprecipitation-flux method is used, a water-soluble flux (for example, an alkali metal halide such as sodium chloride or potassium chloride, an alkaline earth metal halide such as barium chloride or strontium chloride, or a sulfuric acid) is added to the coprecipitate. Sodium, potassium sulphate, sodium nitrate, potassium nitrate, and mixtures thereof) in an appropriate amount, and dry it.
After baking at a high temperature of 0 to 1100 ° C. for 10 minutes to 30 hours, the water-soluble flux is washed with water or an acid aqueous solution, washed with water if necessary, and then dried to obtain the corresponding hexagonal ferrite magnetic powder.

以上、共沈法及び共沈フラックス法を例にして本発明磁
性粉の具体的製造例を示したが、もちろん製造された磁
性粉が本発明にかかわる一般組成式で示される磁性粉で
あれば、いかなる方法によって製造してもよいことはい
うまでもない。
As described above, the specific production examples of the magnetic powder of the present invention have been described by taking the coprecipitation method and the coprecipitation flux method as an example. Of course, if the produced magnetic powder is the magnetic powder represented by the general composition formula of the present invention, Needless to say, it may be manufactured by any method.

(発明の効果) 本発明に係る磁性粉は六方晶C面に磁化容易軸を有する
板状粒子であり、同一の操作条件で製造した場合に、ロ
ット間でのバラツキが非常に少いばかりでなく、Feの一
部をCo及びTiで置換した公知の磁性粉よりも、飽和磁化
が大きく、平均粒径の小さいものが得られるので、磁気
記録用磁性材料として好適である。
(Effects of the Invention) The magnetic powder according to the present invention is a plate-like particle having an easy axis of magnetization on the hexagonal C-plane, and when manufactured under the same operating conditions, the variation between lots is very small. However, it is suitable as a magnetic material for magnetic recording because it has a larger saturation magnetization and a smaller average particle diameter than the known magnetic powder in which a part of Fe is replaced with Co and Ti.

(実施例) 以下に実施例を挙げて、本発明をさらに具体的に説明す
る。なお実施例中の保磁力及び飽和磁化は、VSM(振動
的磁気測定装置)を用い最大印加磁場10KOeで測定し
た。
(Example) Hereinafter, the present invention will be described more specifically with reference to Examples. The coercive force and the saturation magnetization in the examples were measured with a maximum applied magnetic field of 10 KOe using a VSM (oscillating magnetometer).

平均粒子径は、透過型電子顕微鏡で得られた写真から40
0個の粒子の最大直径を測定し算術平均により算出し
た。
The average particle size is 40 from the photograph obtained with a transmission electron microscope.
The maximum diameter of 0 particles was measured and calculated by the arithmetic mean.

また、実施例中に示す磁性粉の組成式は、原料調製時の
各元素の原子比を用いている。磁性粉成分中の酸素の表
示については、簡略化のため省略した。
Further, the composition formula of the magnetic powder shown in the examples uses the atomic ratio of each element at the time of preparing the raw materials. The display of oxygen in the magnetic powder component is omitted for simplification.

実施例1 BaCl2・2H2O0.55モル、TiCl40.375モル、CoCl2・6H2O0.
375モル、及びFeCl3・6H2O5.25モルを10の蒸留水にこ
の順に溶解し、これをA液とした。NaOH17.5モル、Na2C
O34.72モル、Na2SiO3・9H2O0.2モル、及び(NH410W12
O41・5H2O0.00833モルを15の室温の蒸留水に溶解し、
これをB液とした。50℃に熱したA液にB液に徐々に加
えた後、50℃で16時間撹拌した。撹拌後のpHは10.1であ
った。こうして得られた共沈物を別し、水洗した後15
0℃で乾燥し、880℃で1.5時間電気炉で焼成した。こう
して得られたBa−フェライトはBa1.1Fe10.5Co0.75Ti
0.750.2Si0.4で示される。
Example 1 BaCl 2 .2H 2 O 0.55 mol, TiCl 4 0.375 mol, CoCl 2 .6H 2 O 0.
375 moles and FeCl 3 .6H 2 O 5.25 moles were dissolved in 10 distilled water in this order to obtain a solution A. NaOH 17.5 mol, Na 2 C
O 3 4.72 mol, Na 2 SiO 3 .9H 2 O 0.2 mol, and (NH 4 ) 10 W 12
The O 41 · 5H 2 O0.00833 mol was dissolved in room temperature distilled water 15,
This was designated as solution B. Solution A heated to 50 ° C. was gradually added to solution B and then stirred at 50 ° C. for 16 hours. The pH after stirring was 10.1. The coprecipitate thus obtained is separated and washed with water 15
It was dried at 0 ° C and calcined at 880 ° C for 1.5 hours in an electric furnace. The Ba-ferrite thus obtained is Ba 1.1 Fe 10.5 Co 0.75 Ti.
0.75 W 0.2 Si 0.4 .

同様の操作を5回くり返し行い、ロット毎の磁性粉の平
均粒径、保磁力、及び飽和磁化のバラツキを調べた。結
果を第2表に示す。第2表から、本発明に係る磁性粉
は、ロット間のバラツキが非常に小さいばかりでなく、
比較例1と較べて、平均粒径が小さく、飽和磁化が大き
いことがわかる。
The same operation was repeated 5 times to examine the variations in the average particle size, coercive force, and saturation magnetization of the magnetic powder for each lot. The results are shown in Table 2. From Table 2, the magnetic powder according to the present invention not only has very small variation between lots,
It can be seen that, as compared with Comparative Example 1, the average particle size is small and the saturation magnetization is large.

比較例1 メタケイ酸ナトリウム及びタングステン酸アンモニウム
を除いた他は、実施例1と全く同様の方法でBa−フェラ
イトを製造した。得られたBa−フェライトは、Ba1.1Fe
10.5Co0.75Ti0.75で示される。
Comparative Example 1 Ba-ferrite was produced in the same manner as in Example 1 except that sodium metasilicate and ammonium tungstate were removed. The obtained Ba-ferrite is Ba 1.1 Fe.
10.5 Co 0.75 Ti 0.75 .

同様の操作を5回くり返して行い、ロット毎の磁性粉の
平均粒径、保磁力、及び飽和磁化のバラツキを調べた。
結果を第3表に示す。
The same operation was repeated 5 times to examine the variations in the average particle size, coercive force, and saturation magnetization of the magnetic powder for each lot.
The results are shown in Table 3.

第3表から公知の磁性粉は、ロット間のバラツキが非常
に大きく、実施例1の本発明の如き、通常の操作では、
保磁力の制御は不可能であることがわかる。
The magnetic powders known from Table 3 have a very large lot-to-lot variability, and in the normal operation as in the present invention of Example 1,
It can be seen that the coercive force cannot be controlled.

実施例2 実施例1で得られた共沈物を別し、水洗して得られた
ケーキ状の共沈物スラリーにラックスとしてNaCl400gを
加え、充分に混合した後水分を蒸発乾固せしめ、これを
870℃で1.5時間電気炉で焼成した。この焼成物を水に用
いて可溶物がなくなるまで洗浄した後、過、乾燥し
て、実施例1と同様の組成式で示されるBa−フェライト
を得た。
Example 2 The coprecipitate obtained in Example 1 was separated and washed with water, and 400 g of NaCl was added as a lux to the cakey coprecipitate slurry, which was thoroughly mixed and the water was evaporated to dryness. To
It was baked in an electric furnace at 870 ° C for 1.5 hours. The calcined product was washed with water until the soluble matter disappeared, and then dried and dried to obtain Ba-ferrite having the same composition formula as in Example 1.

共沈物のケーキを製造する段階から同様の操作を5回く
り返し行い、ロット毎の磁性粉の平均粒径、保磁力及び
飽和磁化のバラツキを調べた。結果を第4表に示す。
The same operation was repeated 5 times from the step of producing the coprecipitate cake, and the variations in the average particle size, coercive force, and saturation magnetization of the magnetic powder for each lot were examined. The results are shown in Table 4.

第4表から、本発明に係る磁性粉はロット間のバラツキ
の少い、均一な磁性粉が得られることがわかる。
It can be seen from Table 4 that the magnetic powder according to the present invention can be obtained as a uniform magnetic powder with less variation among lots.

比較例2 比較例1のロット番号C1−1で得られた共沈物を用い
て、実施例2と同様の操作を5回くり返して行い、ロッ
ト毎の磁性粉の平均粒径、保磁力、及び飽和磁化のバラ
ツキを調べた。結果を第5表に示す。本比較例において
はいずれのロットにおいても同一共沈物を用いたにもか
かわらず、公知の組成を有する磁性粉は、ロット間のバ
ラツキが非常に大きく、本発明の実施例2の如き、通常
の操作では、保磁力の制御は不可能であった。
Comparative Example 2 Using the coprecipitate obtained in Lot No. C1-1 of Comparative Example 1, the same operation as in Example 2 was repeated 5 times, and the average particle size of the magnetic powder, the coercive force of each lot, And the variation of saturation magnetization was investigated. The results are shown in Table 5. In this comparative example, although the same coprecipitate was used in all the lots, the magnetic powder having a known composition had a very large variation among lots, and thus, the magnetic powder having the same composition as in Example 2 of the present invention was used. However, it was impossible to control the coercive force.

実施例3 NaOH量を10.0モルとした他は、実施例1と同様にして、
A液及びB液を調製した。
Example 3 In the same manner as in Example 1 except that the amount of NaOH was 10.0 mol,
Solution A and solution B were prepared.

50℃に熱したA液とB液を混合し、それを蒸発皿に入
れ、含水率50%となるまで充分撹拌しながら水分を蒸発
させた。これを更に、乾燥器で、充分に乾燥した後870
℃で、1.5時間電気炉で焼成した。この焼成物を水を用
いて可溶物がなくなるまで洗浄した後、過、乾燥し
て、実施例1と同様の組成式で示されるBa−フェライト
を得た。
Solution A and solution B heated to 50 ° C. were mixed, placed in an evaporation dish, and water was evaporated with sufficient stirring until the water content became 50%. This is further dried in a dryer and then 870
Baking was performed in an electric furnace at ℃ for 1.5 hours. The calcined product was washed with water until the soluble matter was removed, and then dried and dried to obtain Ba-ferrite having the same composition formula as in Example 1.

こうして得られた微粒子粉末は、平均粒径0.09μmの板
状であり、保磁力は610Oe,飽和磁化は55meu/gであっ
た。
The fine particle powder thus obtained was plate-shaped with an average particle size of 0.09 μm, the coercive force was 610 Oe, and the saturation magnetization was 55 meu / g.

また同様の操作を5回くり返して実験を行ったところロ
ット毎に磁性粉の平均粒径、及び飽和磁化はいずれも上
記と同一値であり、また保磁力のバラツキは、±1.5%
以内と非常に小さかった。
Further, the same operation was repeated 5 times, and the experiment showed that the average particle size of the magnetic powder and the saturation magnetization were the same as the above for each lot, and the coercive force variation was ± 1.5%.
It was very small within.

実施例4〜22 MI成分、MII成分、MIII成分及び各金属成分の組成比を
変えた他は、実施例2と同様の方法によって第6表に示
す磁性粉を調製した。なお、MI成分の原料は、塩化物を
使用し、MII成分の原料は、アンモニウム塩を使用し、M
III成分の原料としてSiは、メタケイ酸ナトリウムまた
は、水ガラスを、Ge,Sn,及びSbは塩化物を、Niは硝酸塩
を、Cuは塩化物または水酸化を、Vはアンモニウム塩を
使用した。Si,Mo,V,及びWの原料化合物は、アルカリ水
溶液中に溶解した。
Examples 4 to 22 Magnetic powders shown in Table 6 were prepared in the same manner as in Example 2 except that the composition ratios of the M I component, the M II component, the M III component and each metal component were changed. The raw material for the M I component is chloride, and the raw material for the M II component is ammonium salt.
As the raw material for the III component, Si was sodium metasilicate or water glass, Ge, Sn, and Sb were chlorides, Ni was nitrate, Cu was chloride or hydroxide, and V was ammonium salt. The raw material compounds of Si, Mo, V, and W were dissolved in the alkaline aqueous solution.

また、第6表に示す磁性粉の各々について、同一操作に
よる5回のくり返し実験を行いロット毎の磁性粉の平均
粒径、保磁力、及び飽和磁化のバラツキについても調べ
たが、いずれも、ロット間のバラツキは実施例2と同程
度の範囲であり、非常に小さかった。
Further, with respect to each of the magnetic powders shown in Table 6, the experiment was repeated 5 times by the same operation, and the variations in the average particle size, the coercive force, and the saturation magnetization of the magnetic powders from lot to lot were also investigated. The variation between lots was in the same range as in Example 2, and was extremely small.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記の一般組成式で表わされ、且つ平均粒
径0.01〜0.3μmであることを特徴とする磁気記録用磁
性粉 FeaCobTicMI dMII eMIII fOg (ここでMIはBa、Sr、Ca及びPbから選択される少なくと
も一種の金属元素を表わし、MIIはMo及び/またはWを
表わし、MIIIはSi、Ge、Sn、Sb、Ni、Cu及びVから選択
される少なくとも一種の元素を表わし[但し、MII
W、MIIIがSnとなる組合せ、MIIがW、MIIIがSbとなる
組合せ及びMIIがW、MIIIがSn及びSbとなる組合せは除
く]、a、b、c、d、e、f、及びgはそれぞれFe、
Co、Ti、MI、MII、MIII及びOの原子数であり、aは8
〜11.8、b及びcは0.05〜2.0、dは0.5〜3.0及びe及
びfは0.001〜3.0の値をとり、gは他の元素の原子価を
満足する酸素の原子数である。)。
1. A magnetic powder for magnetic recording Fe a Co b Ti c M I d M II e M III f represented by the following general composition formula and having an average particle diameter of 0.01 to 0.3 μm. O g (wherein M I represents at least one metal element selected from Ba, Sr, Ca and Pb, M II represents Mo and / or W, M III represents Si, Ge, Sn, Sb, Ni , Cu and V, at least one element being selected, provided that M II is W, M III is Sn, M II is W, M III is Sb, and M II is W, M III. Except for a combination of Sn and Sb], a, b, c, d, e, f, and g are Fe,
It is the number of atoms of Co, Ti, M I , M II , M III and O, and a is 8
.About.11.8, b and c are 0.05 to 2.0, d is 0.5 to 3.0, and e and f are 0.001 to 3.0, and g is the number of oxygen atoms satisfying the valences of other elements. ).
JP61208887A 1986-09-05 1986-09-05 Magnetic powder for magnetic recording Expired - Lifetime JPH0753580B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61208887A JPH0753580B2 (en) 1986-09-05 1986-09-05 Magnetic powder for magnetic recording
US07/092,210 US4820433A (en) 1986-09-05 1987-09-02 Magnetic powder for magnetic recording
DE19873729497 DE3729497A1 (en) 1986-09-05 1987-09-03 MAGNETIC POWDER FOR MAGNETIC RECORDING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208887A JPH0753580B2 (en) 1986-09-05 1986-09-05 Magnetic powder for magnetic recording

Publications (2)

Publication Number Publication Date
JPS6364921A JPS6364921A (en) 1988-03-23
JPH0753580B2 true JPH0753580B2 (en) 1995-06-07

Family

ID=16563766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208887A Expired - Lifetime JPH0753580B2 (en) 1986-09-05 1986-09-05 Magnetic powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH0753580B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216922A (en) * 1986-03-19 1987-09-24 Central Glass Co Ltd Hexagonal ferrite fine powder for magnetic recording medium and its production

Also Published As

Publication number Publication date
JPS6364921A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
JPH0725553B2 (en) Method for producing plate-like magnetic powder
US4820433A (en) Magnetic powder for magnetic recording
JPH0712933B2 (en) Magnetic powder for magnetic recording
JPH0753580B2 (en) Magnetic powder for magnetic recording
US5062983A (en) Magnetic powder for magnetic recording media
JPS6377105A (en) Magnetic powder for magnetic recording
JPH0359007B2 (en)
JPS63185829A (en) Magnetic powder for magnetic recording
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPH06104574B2 (en) Coating film type magnetic powder for magnetic recording
JPH0712934B2 (en) Magnetic powder for magnetic recording
US5062982A (en) Magnetic powder for magnetic recording media
JPH01119521A (en) Magnetic powder for magnetic recording
JPS63260105A (en) Magnetic powder for magnetic recording
JPH0459620A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JPS63260109A (en) Magnetic powder for magnetic recording
JPH0618073B2 (en) Magnetic powder for magnetic recording
JPS63260103A (en) Magnetic powder for magnetic recording
JPH01119517A (en) Magnetic powder for magnetic recording
JPH01119516A (en) Magnetic powder for magnetic recording
JPS63260110A (en) Magnetic powder for magnetic recording
JPS63260107A (en) Magnetic powder for magnetic recording
JPS63260104A (en) Magnetic powder for magnetic recording
JPS63260106A (en) Magnetic powder for magnetic recording
JPH0614486B2 (en) Plate-shaped composite ferrite fine particle powder for magnetic recording and method for producing the same