JPH07508492A - Glass composition and its manufacturing method - Google Patents

Glass composition and its manufacturing method

Info

Publication number
JPH07508492A
JPH07508492A JP6524535A JP52453594A JPH07508492A JP H07508492 A JPH07508492 A JP H07508492A JP 6524535 A JP6524535 A JP 6524535A JP 52453594 A JP52453594 A JP 52453594A JP H07508492 A JPH07508492 A JP H07508492A
Authority
JP
Japan
Prior art keywords
weight
glass composition
transmittance
glass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6524535A
Other languages
Japanese (ja)
Inventor
ヒグビー、ペイジ・エル
ペンロッド、ブレット・イー
ベイカー、ロドニー・ジー
チェン、ジョセフ・ジェイ
Original Assignee
リビー−オーウェンズ−フォード・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リビー−オーウェンズ−フォード・カンパニー filed Critical リビー−オーウェンズ−フォード・カンパニー
Publication of JPH07508492A publication Critical patent/JPH07508492A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A neutral, generally green colored, infrared energy and ultraviolet radiation absorbing glass composition comprises conventional soda-lime-silica float glass ingredients, a relatively high concentration of moderately reduced iron, and titanium oxide(s). The resultant glass exhibits an Illuminant A visible light transmittance of at least 70%, a total solar energy transmittance not greater than about 46%, and an ultraviolet radiation transmittance not greater than approximately 38%, at selected glass thicknesses in the range of 3mm to 5mm. The titanium oxide(s) as well as at least a portion of the iron in the glass is provided by the inclusion of the mineral ilmenite in the glass batch formulation.

Description

【発明の詳細な説明】 ガラス組成物及びその製造方法 ル胛旦背1 産 の 1 本発明は、鉄とチタンの酸化物を含む紫外線及び赤外線吸収ソーダ石灰シリカガ ラス(soda−1ime−s 11ica glass)組成物と、このガラ ス組成物の製造方法と、さらに、それからガラス製品を作る方法とに関する。特 に、本発明は特定のエネルギー吸収及び光透過特性を有する中性の、通常緑色の ガラス組成物に関する。好ましくは、本発明に基づく好適なガラスは狭い範囲の 主波長及び色純度を有する。本発明は、可視光線の透過率が高く、全太陽エネル ギーの透過率や紫外線の透過率が低いことが望まれる自動車や建築用の窓材の製 造に特に有用である。[Detailed description of the invention] Glass composition and its manufacturing method Lu's back 1 Product 1 The present invention uses ultraviolet and infrared absorbing soda lime silica containing iron and titanium oxides. glass (soda-1ime-s 11ica glass) composition and this glass The present invention relates to methods of making glass compositions and also methods of making glass products therefrom. Special In addition, the present invention provides a neutral, usually green colored material with specific energy absorption and light transmission properties. The present invention relates to glass compositions. Preferably, suitable glasses according to the invention have a narrow range of It has a dominant wavelength and color purity. The present invention has high visible light transmittance and total solar energy For the manufacture of automobile and architectural window materials that require low energy transmittance and low ultraviolet transmittance. Particularly useful for construction.

従m術 一般に知られているように、熱や赤外線を吸収するソーダ石灰シリカガラスは、 鉄分を加えることによって製造することができる。鉄は通常、ガラス内に酸化第 一鉄(FeO)と酸化第二鉄(Fezes)として存在する。酸化第一鉄と酸化 第二鉄の配合の度合いは、ガラスの色及び光透過特性に直接的かつ重要な影響を 与える。化学的に酸化第二鉄を還元することによって、酸化第一鉄の含有量が増 加すると、赤外線の吸収率も高まり、紫外線の吸収率は減少する。Fezesに 対するFeOの濃度を高めると、ガラスの色も黄色または黄緑色から濃い緑色ま たは青緑色へと変化し、可視光線の透過性が悪くなる。従って、可視光線の透過 性を宿性にすることなく、ガラスの赤外線の吸収を高めるためには、従来鉄分の 含有量が少なく、かっFezesからFeOへと高度に還元されたガラスを製造 することが必要であると考えられてきた。subjugation technique As is generally known, soda lime silica glass, which absorbs heat and infrared rays, It can be produced by adding iron. Iron is usually oxidized within the glass. It exists as iron (FeO) and ferric oxide (Fezes). Ferrous oxide and oxidation The degree of ferric content has a direct and important effect on the color and light transmission properties of the glass. give. By chemically reducing ferric oxide, the content of ferrous oxide increases. When added, the absorption rate of infrared rays also increases and the absorption rate of ultraviolet rays decreases. To Fezes When the concentration of FeO is increased, the color of the glass changes from yellow or yellow-green to dark green. The color changes to a blue-green color, and the transparency of visible light becomes poor. Therefore, the transmission of visible light In order to increase the absorption of infrared rays in glass without making it a host, it was necessary to Produces glass with low content and highly reduced Fezes to FeO It has been considered necessary to do so.

米国特許第2,860,059号明細書には、含有鉄全体の濃度が低く抑えられ た、紫外線吸収ガラス組成物が開示されている。その述べるところによると、こ のガラス組成物は、自動車や建築用窓材として通常使用される緑ががった青色の ガラスに比べ、可視光線透過性に優れている。U.S. Patent No. 2,860,059 discloses that the overall iron concentration is kept low. Additionally, ultraviolet absorbing glass compositions are disclosed. According to the statement, this The glass composition is a greenish-blue color commonly used as automotive and architectural window materials. Superior visible light transmittance compared to glass.

このガラスでは、無色性及び高い可視光線透過率を維持するため、鉄の濃度は最 大でも0. 6重量%となっている。In order to maintain colorlessness and high visible light transmittance in this glass, the iron concentration is kept at a minimum. Even if it is large, it is 0. It is 6% by weight.

このガラスには、紫外線吸収特性を持たせるため、酸化チタンと0. 5重量% 以下の酸化セリウムとが添加されている。This glass is coated with titanium oxide and O. 5% by weight The following cerium oxide is added.

米国特許第1,936.231号明細書には、紫外線遮断剤として、酸化第二鉄 が添加された無色ガラスが開示されている。酸化第二鉄の量はわずかであり、得 られたガラスは高い可視光線透過率を有する。鉄全体の濃度として約035重量 %が推奨されている。この特許明細書には、さらに、含有鉄分の少ないガラス組 成物に対して、紫外線遮断剤としてセリウム化合物を添加することが開示されて いる。それによって、得られたガラス組成物は、無色性を維持すると共に高い可 視光線透過率も備える。U.S. Pat. No. 1,936.231 discloses that ferric oxide is used as a UV blocker. A colorless glass doped with is disclosed. The amount of ferric oxide is small and The glass has high visible light transmittance. Approximately 0.035 weight as the total concentration of iron % is recommended. This patent specification further includes a glass assembly with a low iron content. It has been disclosed that a cerium compound is added to the composition as an ultraviolet blocking agent. There is. Thereby, the obtained glass composition maintains colorlessness and has a high potency. It also has visual light transmittance.

米国特許第4,792,536号明細書には、鉄全体の濃度は低いが、FeOへ と高度に還元された鉄を含む赤外線エネルギー吸収ガラスの製造方法が開示され ている。さらに、ガラス組成物中の鉄全体の含有量を増やすことにより、赤外線 エネルギーの吸収性を高めることができるということが開示されているが、それ によって可視光線透過性も悪化し、自動車用窓材として十分だと考えられている レベル以下になり得るということも述べられている。開示された製造方法は2段 溶融精製法(a two stagemelting and refinin g operation)を用い、高度に還元を促進する状態を発生させ、濃度 が0.45重量%〜0.65重量%の間にある鉄全体にしめる酸化第一鉄の状態 にある鉄の割合いを増加させる。この特許の教えるところによると、含有鉄の少 なくとも35%は還元されてFeOにならなければならない。U.S. Pat. No. 4,792,536 states that although the overall iron concentration is low, FeO A method for manufacturing infrared energy absorbing glass containing highly reduced iron is disclosed. ing. Furthermore, by increasing the overall iron content in the glass composition, infrared It has been disclosed that energy absorption can be increased; Visible light transmittance deteriorates due to this, and it is considered to be sufficient as a window material for automobiles. It is also stated that it can be below the level. The disclosed manufacturing method consists of two stages. Melt refining method (a two stage melting and refining method) g operation) to generate a state that highly promotes reduction, and to increase the concentration. is between 0.45% and 0.65% by weight of ferrous oxide throughout the iron. Increase the proportion of iron in According to this patent, the content of iron is small. At least 35% must be reduced to FeO.

最も好ましくは、含有鉄全体の50%以上を還元して酸化第一鉄の状態にするこ とである。さらにこの特許明細書に開示されているところによると、紫外線の吸 収のため、0゜25重量%〜0.5重量%の酸化セリウムを、含有鉄全体の濃度 が低く抑えられ、しかも含有鉄が高度に還元されているガラス組成物に添加して もよい。ある量のTiO2、■、06、乃至M o Osを加えてもよい。Most preferably, 50% or more of the total iron contained is reduced to the state of ferrous oxide. That is. Furthermore, according to what is disclosed in this patent specification, ultraviolet ray absorption In order to improve the iron content, 0.25% to 0.5% by weight of cerium oxide is added to the total iron concentration. It is added to glass compositions where the iron content is kept low and the iron content is highly reduced. Good too. A certain amount of TiO2, ■,06, to M o Os may be added.

米国特許第5,077.133号明細書には、酸化セリウムを紫外線吸収剤とし て含む緑色の熱吸収ガラスが開示されている。この特許の別の実施例では、含ま れる酸化セリウムの一部がある量のT i Osで置き換えられている。このガ ラス組成物が含む鉄全体の濃度は比較的高く、0. 7重量%〜1.25重量% の間にある。U.S. Patent No. 5,077.133 discloses that cerium oxide is used as an ultraviolet absorber. A green heat-absorbing glass is disclosed. Another embodiment of this patent includes A portion of the cerium oxide produced is replaced by an amount of TiOs. This moth The overall iron concentration of the lath composition is relatively high, with 0. 7% to 1.25% by weight It's between.

え肌夏盟逐 本発明によると、中性の、通常緑色のガラス組成物であって、約3mmから5m mの厚さに於いて、光源Aによる可視光線透過率が少なくとも70%であり、全 太陽エネルギーの透過率が約46%以下であり、さらに、紫外線の透過率が約3 8%以下、好ましくは約36%以下であるガラス組成物が提供される。ここで、 ガラスの厚さは、1枚のガラスからなるものでも、或いは複数のガラス板を組み 合わせてなるものであっても、いずれにせよ、その全体の厚さが、示された範囲 の値を示すものであることを了解されたい。また、本明細書中で開示されている 光線の透過率は以下の波長の範囲について評価されたものである:紫外線 30 0nm〜400nm 可視光線 400nm 〜770nm 全太陽光 300nm〜2130nm このガラス組成物はソーダ石灰シリカをベースにしたガラスを含んでおり、主要 な成分として、さらに約0.4重量%〜0.9重量%のFe2Omと、0.1重 量%−0,5重量%のFeOと、0.25重量%〜1. 25ffi量%のTl O2とからなる着色料を含む。これらのガラスは光源Cによる約495nm〜5 35nmの主波長と、約2%〜5%の色純度とを有する。このようなガラスは、 Fezesの形で存在する鉄全体の濃度が約0.45%より高いバッチ組成物( batch compositions)から製造される。ここで、ガラス業界 では、ガラス組成物またはバッチに含まれる鉄全体(total 1ron)を ”Fe5O3で表された鉄全体”として表すのが普通となっている。ガラスバッ チを溶融すると、含有鉄全体の幾分かは還元されてFeOになるが、残りはFe *Osのままである。溶融ガラス中の酸化第一鉄と酸化第二鉄の濃度バランスは 酸化反応と還元反応の平衡によって決まり、請求の範囲を含む本明細書中では、  “酸化第−鉄値(ferrous value)”で表される。Fe2Omを 還元することにより、FeOたけでなく酸素ガスも発生し、得られたガラス製品 中の酸化第一鉄と酸化第二鉄を合わせた重さは減少する。従って、得られたガラ ス組成物中に含まれる実際のFeOとFezO−を合わせた重さは、Fe20g で表された鉄全体のバッチに於ける重さより軽くなる。このため、 “鉄全体” または“Fe20−で表された鉄全体”は、請求の範囲を含む本明細書中では、 還元される前のガラスバッチに含まれる鉄の総重量を意味すると理解されたい。Ehada summer alliance According to the invention, a neutral, typically green glass composition having a thickness of about 3 mm to 5 m m, the visible light transmittance by light source A is at least 70%, and the total The transmittance of solar energy is about 46% or less, and the transmittance of ultraviolet rays is about 3 Glass compositions are provided that are 8% or less, preferably about 36% or less. here, The thickness of the glass can be determined by whether it is made of a single piece of glass or made up of multiple glass sheets. In any case, even if the total thickness is within the indicated range. Please understand that this indicates the value of Also disclosed herein The light transmittance was evaluated for the following wavelength range: UV 30 0nm~400nm Visible light 400nm ~ 770nm Total sunlight 300nm ~ 2130nm This glass composition contains a glass based on soda lime silica and is a major Furthermore, about 0.4% to 0.9% by weight of Fe2Om and 0.1% by weight are added as components. Amount % - 0.5% by weight of FeO and 0.25% by weight to 1. 25ffi amount% Tl Contains a coloring agent consisting of O2. These glasses are approximately 495 nm to 5 by light source C. It has a dominant wavelength of 35 nm and a color purity of about 2% to 5%. This kind of glass is Batch compositions in which the concentration of total iron present in the form of Fezes is greater than about 0.45% ( batch compositions). Here, the glass industry Then, the total iron contained in the glass composition or batch (total 1ron) is It is common to express it as "the entire iron expressed as Fe5O3". glass bag When iron is melted, some of the iron content is reduced to FeO, but the rest is FeO. *Remains Os. The concentration balance of ferrous oxide and ferric oxide in molten glass is Determined by the equilibrium between oxidation and reduction reactions, in this specification, including the claims, It is expressed as a "ferrous oxide value". Fe2Om By reducing, not only FeO but also oxygen gas is generated, resulting in glass products. The combined weight of the ferrous oxide and ferric oxide inside decreases. Therefore, the resulting galaxies The actual combined weight of FeO and FezO- contained in the gas composition is Fe20g. It is lighter than the weight of the entire batch of iron expressed as . For this reason, “the whole iron” or “the whole iron expressed as Fe20-” in the present specification including the claims, It is to be understood that it means the total weight of iron contained in the glass batch before being reduced.

さらに、理解されるように“酸化第−鉄値”は、請求の範囲を含む本明細書中で は、得られたガラス中の酸化第一鉄の重量%を、Fezosで表された鉄全体の 重量%で割った値として定義される。Furthermore, as will be understood, "ferrous oxide value" is used herein, including in the claims. is the weight percent of ferrous oxide in the resulting glass, based on the total iron expressed in Fezos. Defined as the value divided by weight percent.

本発明によるガラス組成物は、特に赤外線エネルギー及び紫外線吸収ガラスの製 造に適しており、このようなガラスは、自動車や建築用の窓材として用いられる 。従って、このガラス組成物からできたガラス板は熱による強化または焼き入れ を施されたり、または逆に焼きなまされ、間に例えばポリビニルブチラールのよ うな透明な樹脂の層を含む層状にされたりし、例えば風防として用いられる。通 常、風防用ガラス板の厚さは約1.7mmから約2.5mmであり、副灯や背面 灯として調整され用いられるガラス板の厚さは約3mmから約5mmである。The glass composition according to the invention is particularly suitable for the production of infrared energy and ultraviolet absorbing glasses. This type of glass is used as window material for automobiles and architecture. . Therefore, glass sheets made from this glass composition can be heat-strengthened or tempered. or, conversely, annealed, with a material such as polyvinyl butyral in between. It is sometimes made into a layered structure, including a layer of transparent resin, and is used, for example, as a windshield. General Usually, the thickness of the windshield glass plate is about 1.7 mm to about 2.5 mm, and it is used for side lights and back lights. The thickness of the glass plate adjusted and used as a lamp is approximately 3 mm to approximately 5 mm.

特に断らない限り、%は、請求の範囲を含む本明細書中では、重量%を表す。波 長拡散X線蛍光法(wavelength dispersion X−ray  flu。Unless otherwise specified, % refers to % by weight in this specification, including the claims. wave Wavelength dispersion X-ray  flu.

rescence)を用いて、Ti0zや、Fe2Ogで表された鉄全体の重量 %を決定した。鉄全体の還元率を決定するため、まず最初に、分光光度計を用い て、11060nの波長に対するサンプルの透過率を測定した。次に、1106 0nの波長に対する透過率を用いて、以下の式によって光学濃度計算した: 光学濃度= L o g to (T/ To)ここで、Toは100から、反 射率=92から評価された損失率を差し引いた値、Tは波長11060nに対す る透過率である。こうして、光学濃度を使って還元率が計算された・ 還元率 =110x光学濃度/(ガラス厚さ×鉄全体の重量%)ここでガラス厚さの単位 はmmであり、鉄全体の重量%はFC’zO*で表された鉄全体の重量%である 。The weight of the entire iron expressed as Ti0z or Fe2Og using %It was determined. To determine the overall reduction rate of iron, we first used a spectrophotometer to The transmittance of the sample at a wavelength of 11060n was measured. Next, 1106 Optical density was calculated using the following formula using the transmittance for a wavelength of 0n: Optical density = L o g to (T/To) where To is from 100 to The value obtained by subtracting the evaluated loss rate from emissivity = 92, T is for the wavelength 11060n This is the transmittance. In this way, the reduction rate was calculated using the optical density. Refund rate =110x optical density/(glass thickness x total iron weight%) where the unit of glass thickness is is mm, and the weight percent of the total iron is the weight percent of the total iron expressed as FC'zO* .

図面の簡単な説明 自動車の風防に用いる場合、赤外線エネルギー及び紫外線吸収ガラスは国の規格 に合致していなけらばならず、すなわち光源へによる可視光線透過率が70%よ り高いことが必要とされる。最近の自動車に用いられるガラスは薄くなったので 、標準的な光源Aに対し70%の透過率に達することは容易になったが、赤外線 エネルギー及び紫外線の透過率も増加する結果となった。そのため、自動車メー カは、それを補うため、エアコンを大きくしてより大きな熱負荷に対応できるよ うにしたり、また紫外線による劣化を防ぐため内装の布地や内部のプラスチック 部品に紫外線安定剤を入れなければならなくなった。Brief description of the drawing When used in automobile windshields, infrared energy and ultraviolet absorbing glass meet national standards. In other words, the visible light transmittance to the light source must be greater than 70%. It is necessary to have a high level of performance. The glass used in modern cars has become thinner. , it became easy to reach 70% transmittance for standard light source A, but infrared light This also resulted in an increase in energy and UV transmittance. Therefore, automobile manufacturers To compensate, mosquitoes are increasing the size of their air conditioners to handle a larger heat load. Interior fabrics and internal plastics to prevent deterioration due to ultraviolet rays. I ended up having to put UV stabilizer into the parts.

本発明によるガラス組成物は、約3mm〜5mmの厚さに製造されたとき、少な くとも70%の光源Aによる可視光線透過率を示し、非常に望ましい赤外線エネ ルギー透過率と紫外線透過率の組み合わせ特性を有する。本発明によるガラス組 成物の全太陽エネルギーの透過率は、3mm〜5mmの間のガラス厚さに於いて 、約46%以下である。The glass composition according to the present invention, when manufactured to a thickness of about 3 mm to 5 mm, has a It exhibits a visible light transmittance of at least 70% by light source A, making it a highly desirable infrared energy source. It has a combination of UV transmittance and UV transmittance. Glass set according to the invention The total solar energy transmittance of the composition is at glass thickness between 3 mm and 5 mm. , about 46% or less.

好ましくは、これらの厚さに於ける全太陽エネルギーの透過率は約45%以下で ある。全太陽エネルギーの透過率は、太陽エネルギーの波長全体に渡る太陽エネ ルギー透過率の尺度であり、可視光線、赤外線、紫外線の各エネルギー波長につ いての波長対透過率曲線の下側の領域に相当する積分値である。本発明によるガ ラス組成物の紫外線透過率は、3mm〜5mmの間のガラス厚さに於いて、約3 8%以下であり、通常約36%以下である。紫外線透過率は、300nmと40 0nmの間の波長に於ける波長対透過率曲線の下の面積を表す積分値である。当 業者には当然理解されるように、上述した本発明によるガラス組成物の範囲は、 特定の所望の厚さで所望の特性が得られるように調整される。Preferably, the total solar energy transmission at these thicknesses is about 45% or less. be. Total solar energy transmittance is the transmittance of solar energy over the entire wavelength of solar energy. It is a measure of energy transmittance for visible, infrared, and ultraviolet energy wavelengths. This is the integral value corresponding to the lower region of the wavelength versus transmittance curve. The gas according to the present invention The UV transmittance of the glass composition is about 3 at glass thicknesses between 3 mm and 5 mm. 8% or less, usually about 36% or less. UV transmittance is 300nm and 40nm It is an integral value representing the area under the wavelength versus transmittance curve at wavelengths between 0 nm. Current As will be understood by those skilled in the art, the scope of the glass composition according to the invention as described above includes: It is adjusted to provide the desired properties at a particular desired thickness.

本発明に従った適切なバッチ材料は、砂、石灰石、苦灰石、ソーダ灰、芒硝、石 膏、べんがら、炭、乃至二酸化チタンのようなチタン化合物を含んでおり、従来 のガラスバッチ原料混合装置によって混合される。ここで、本発明の重要な実施 例によると、驚くべきことに、チタン鉄鉱をチタン源として用いることが特に有 利であって、二酸化チタンだけでなく、少なくともFe20mの一部が供給され る。Suitable batch materials according to the invention include sand, limestone, dolomite, soda ash, mirabilite, stone Contains titanium compounds such as plaster, red pepper, charcoal, and titanium dioxide; Mixed by glass batch raw material mixing equipment. Here, important implementations of the invention By way of example, surprisingly, the use of titanite as a source of titanium is particularly advantageous. It is advantageous that not only titanium dioxide but also at least a part of Fe20m is supplied. Ru.

これらのバッチ材料は従来のガラス製造炉で混合溶融するのが便利であって、生 成された中性の、通常緑色の赤外線エネルギー及び紫外線吸収ガラス組成物は、 続いて連続的にフロートガラス工程により溶融金属バス(moltedmeta l bath)上で鋳造される。製造された平板ガラスは建築用窓材に成形され たり、切断されたり、例えばプレス曲げ加工によって成形されたりすることによ って自動車用窓材なったりする。These batch materials are conveniently mixed and melted in a conventional glassmaking furnace and A neutral, usually green, infrared energy and ultraviolet absorbing glass composition made of This is followed by a continuous float glass process to create a molten metal bath. l bath). The manufactured flat glass is molded into architectural window materials. by cutting, cutting or forming, e.g. by press bending. It is used as a window material for automobiles.

上述したように、鉱物チタン鉄鉱、すなわち酸化チタンHv)鉄(II)(Fe TiOs)には、ガラスバッチ原料として、顔料クラスの品位のチタニア(二酸 化チタンTi0z)よりいくつか優れた点がある。特に取り扱いに関して述べる と、チタン鉄鉱は、破砕された砂状の結晶粒として天然に存在するのに対し、チ タニアは高価な人工の微細粉末である。チタン鉄鉱の結晶粒は重力によって自由 に流れ、石英砂とほぼ同じ安息角を有する。チタン鉄鉱の粒子の大きさは、他の ガラスのバッチ原料と同じ粒子サイズに納まっているため、湿式バッチ混合機で よく均一化でき、分離しない。微細なチタニア粉末はファンデルワールス力のよ うな分子間結合力のため自由に流れない。分離と均一化の問題はチタニア粉末と 他のガラスバッチ原料との間の大きさがあまりに違いすぎることによって発生す る。微細粉末を計量室内ではかりにかけたり積み替えたりすることは難しく、生 産されたガラスに化学的な品質のばらつきが生じる結果になる。混合が上手く行 われないと、ガラスの品質に問題が生じ、ガラスの化学的な品質のばらつきも増 大する。さらに、チタン鉄鉱を使用することには溶融や化学作用の見地からも利 点がある。チタン鉄鉱の結晶粒は黒色で、熱を吸収し易く、溶融ガラスによって 簡単に溶融する。チタニア粉末は白色で、熱を反射しやすく、従って、溶かすの にさらにエネルギーを必要とする。チタニア粉末は、もし混合性の悪さや流れ易 さの問題により塊になっていると、より溶融しにくくなってしまう。As mentioned above, the mineral titanite, i.e. titanium oxide (Hv) iron (II) (Fe TiOs) is used as a raw material for glass batches, including titania (diacid) of pigment class quality. It has several advantages over titanium chloride (Ti0z). Especially regarding handling While titanite exists naturally as crushed sand-like crystal grains, Tania is an expensive artificial fine powder. Titanite crystal grains are freed by gravity , and has almost the same angle of repose as quartz sand. The particle size of titanite is different from that of other Because the particle size is the same as the glass batch raw material, it can be used in a wet batch mixer. Can be homogenized well and does not separate. Fine titania powder has a similar effect to van der Waals forces. It does not flow freely due to the intermolecular bonding force. The problem of separation and homogenization is with titania powder. This is caused by the size being too different from other glass batch raw materials. Ru. It is difficult to weigh or transfer fine powder in the weighing room, and This results in variations in the chemical quality of the produced glass. Mix well Failure to do so may result in glass quality problems and increase variations in the chemical quality of the glass. make it big Furthermore, the use of titanite is advantageous from the viewpoint of melting and chemical action. There is a point. The crystal grains of titanite are black and easily absorb heat. Melts easily. Titania powder is white and reflects heat easily, so it is difficult to melt. requires more energy. Titania powder may have poor mixability or flow easily. If it becomes a lump due to the problem of heat, it becomes more difficult to melt.

還元された状態での酸化物の存在は、溶融されたガラスの安定性を増し、またガ ラスの品質向上にも関係する。チタン鉄鉱は通常50%に達するFeOを含有し ており、溶融されたガラスの還元を促進し、ガラスの光学的性質を制御する。現 在、ガラスの酸化状態の制御には炭素が用いられている。チタン鉄鉱は酸化状態 の制御を改善するが、それは高温で非常に安定していることによる。炭素は変換 されて二酸化炭素になり、チタン鉄鉱中に存在する鉄とチタンは直接変形してガ ラス中に溶は込み、全く揮発を生じない。The presence of oxides in the reduced state increases the stability of the molten glass and also It is also related to improving the quality of lath. Titanite usually contains up to 50% FeO. It promotes the reduction of the molten glass and controls the optical properties of the glass. current Currently, carbon is used to control the oxidation state of glass. Titanite is in an oxidized state due to which it is very stable at high temperatures. carbon is converted is converted into carbon dioxide, and the iron and titanium present in titanite are directly transformed into gas. The melt penetrates into the glass and does not cause any volatilization.

本発明による溶融され鋳造されたソーダ石灰シリカガラスの組成は、以下の通り である: A)約65重量%〜約80重量%のSiO2;B)約10重量%〜約20重量% のNa2O:C)約O重量%〜約10重量%のに20;D)約1重量%〜約10 重量%のMgO。The composition of the fused and cast soda lime silica glass according to the present invention is as follows: is: A) about 65% to about 80% SiO2 by weight; B) about 10% to about 20% by weight Na2O: C) about 1% to about 10% by weight; D) about 1% to about 10% by weight % MgO by weight.

E)約5重量%〜約15重量%のCab;F)約0重量%〜約5重量%のAl2 O5;G)約0重量%〜約5重量%のBad;H)約O14重量%〜約0.9重 量%のF e s Oa ;■)約0.1重量%〜約0.5ffi量%のF e  0% このFeoの重量パーセント値はバッチに含まれた鉄全体の還元率(第 1酸化鉄値)が約19%からせいぜい50%であることを示す; ■)約0.25重量%〜約1.25重量%のT i O*。E) about 5% to about 15% by weight Cab; F) about 0% to about 5% by weight Al2 O5; G) About 0% to about 5% by weight Bad; H) About 014% to about 0.9% by weight Amount% of F e s Oa;■) About 0.1 wt % to about 0.5 ffi Amount % of F e 0% The weight percent value of this Feo is the reduction rate of the entire iron contained in the batch (first 19% to at most 50%; ■) T i O* of about 0.25% to about 1.25% by weight.

さらに好ましくは、得られたガラス組成物は以下を含むことが重要である: A)約70重量%〜約74重量%のSiO*;B)約12重量%〜約14重量% のNano:C)約O重量%〜約1重量%のKtO;D)約3重量%〜約4重量 %のMgO;E)約6重量%〜約10重量%のCaO;F)約O重量%〜約2重 量%のAltos;G)約0.45重量%〜約0. 9重量%のFe1on;H )約0. 1重量%〜約0.3重量%のF e O,このFeoの重量パーセン ト値はバッチに含まれた鉄全体の還元率(第1酸化鉄値)が約20%からせいぜ い29%であることを示す; ■)約0.25重量%〜約1重量%のT i Oz、このガラスは、残りの極少 量の溶融促進剤と/またはガラスの性質には何の影響も与えない不純物の他には このガラスに影響を与えるものを何も含まない。More preferably, it is important that the glass composition obtained contains: A) about 70% to about 74% by weight SiO*; B) about 12% to about 14% by weight Nano: C) about O wt % to about 1 wt % KtO; D) about 3 wt % to about 4 wt % % MgO; E) about 6% to about 10% CaO; F) about 0% to about 2% by weight % Altos; G) from about 0.45% to about 0.45% by weight; 9% by weight of Fe1on;H ) approx. 0. 1% by weight to about 0.3% by weight of FeO, the weight percent of this Feo The iron value indicates that the reduction rate (iron oxide value) of the entire iron contained in the batch is about 20% to at most 29%; ■) About 0.25% to about 1% by weight of TiOz, this glass has very little remaining Besides the amount of melting accelerator and/or impurities that have no effect on the properties of the glass Contains nothing that affects this glass.

名目上のガラス厚さが4mmの場合、このガラスに含まれるFe2onは約01 6ffi量%〜約0.9重量%である。If the nominal glass thickness is 4 mm, the Fe2on content in this glass is approximately 01 6ffi% to about 0.9% by weight.

ガラスの基質は石英によって形成されている。酸化ナトリウム、シュウ酸カリウ ム、及び酸化カルシウムは、融剤として働きガラスの融点を下げる。アルミナは ガラスの粘性を調整し、2重ガラス化(divitrification)を防 ぐ。さらに、酸化マグネシウム、酸化カルシウム、アルミナは協働してガラスの 耐久性を向上させる。芒硝や石膏は精製剤として働き、炭素は還元剤として知ら れている。The glass matrix is formed by quartz. Sodium oxide, potassium oxalate and calcium oxide act as a fluxing agent to lower the melting point of the glass. Alumina is Adjusts the viscosity of glass and prevents divitrification. ingredient. Additionally, magnesium oxide, calcium oxide, and alumina work together to form glass. Improve durability. Glauber's salt and gypsum act as purifying agents, and carbon is known as a reducing agent. It is.

鉄は典型的には、べんがらまたはFe2Omとして加えられるが、好ましくは少 なくとも一部はチタン鉄鉱として加えられ、一部は還元されてFeOとなってい ることが望ましい。バッチ中の鉄全体の量は影響力が大きく、Fe20mで表さ れた重量%が約0.45重量%〜約1重量%でなければならない。約0.6重量 %〜1.0重量%であるとさらに好ましい。同様に、還元の度合い、すなわち第 −酸化鉄値が重要であり、19%と50%の間にあるべきであって、20%と2 9%の間にあるとさらに好ましい。上述した鉄全体の濃度範囲、または酸化第二 鉄から酸化第一鉄へ還元される度合いの範囲によると、結果的に、ガラスは濃度 が約0. 4重量%〜約0. 9重量%のFearsと約O61重量%〜約0.  5重量%のFeOを含有することになる。Iron is typically added as iron or Fe2Om, but preferably in small amounts. At least some of it is added as titanite, and some of it is reduced to FeO. It is desirable that The total amount of iron in the batch is highly influential and is expressed as Fe20m. The weight percentage added should be from about 0.45% to about 1% by weight. Approximately 0.6 weight % to 1.0% by weight is more preferable. Similarly, the degree of reduction, i.e. - Iron oxide value is important and should be between 19% and 50%, 20% and 2 More preferably, it is between 9%. The overall iron concentration range mentioned above, or the secondary oxide According to the range of degrees of reduction of iron to ferrous oxide, the resulting glass is about 0. 4% by weight to about 0. 9% by weight Fears and about 61% by weight to about 0. It will contain 5% by weight of FeO.

還元される鉄の量が上述の量より多いと、ガラスの色は暗くなりすぎ、光源Aに よる可視光線投下率は70%より低くなってしまう。さらに、FeOが増加する と熱が内部まで浸透するのを妨げるため、ガラスバッチの溶融がより難しくなる 。もし、還元される鉄の量が上述の量より少ないと、または、使用される鉄全体 の量がより少ないと、所望の厚さのガラスに対する全太陽エネルギーの透過率は 約46%を越えてしまう。もし、鉄全体の量が上述の量よりも多いと、内部まで 浸透する熱が少なくなり、ガラスバッチの溶融はより難しくなる。If the amount of iron reduced is greater than the above amount, the color of the glass will be too dark and light source A will Therefore, the visible light emission rate becomes lower than 70%. Furthermore, FeO increases and prevents heat from penetrating into the interior, making it more difficult to melt the glass batch. . If the amount of iron reduced is less than the amount mentioned above, or if the total amount of iron used is For a smaller amount of , the total solar energy transmission through a glass of desired thickness is It exceeds about 46%. If the total amount of iron is more than the above amount, the internal Less heat penetrates and melting of the glass batch becomes more difficult.

さらに、鉄と協働して紫外線を吸収する酸化チタンの濃度は、透過特性のバラン スに対して大きな影響を及ぼす。Furthermore, the concentration of titanium oxide, which works with iron to absorb ultraviolet rays, determines the balance of transmission characteristics. have a major impact on the

酸化チタンの濃度は、約0. 25ffiflt%〜約1.25重量%でなけれ ばならず、特に約0.25重量%〜約1. 0重量%であることが好ましく、さ らに好ましくは約0.4重量%〜約0.9重量%であることが望まれる。酸化チ タンの濃度が高くなるにつれ、ガラスの色は黄緑色へ向かって徐々に変化し、販 売上許容できないような色になってしまう。酸化チタンの濃度が低すぎると、紫 外線の透過率が許容できないくらいに高くなってしまう。The concentration of titanium oxide is approximately 0. Must be 25ffiflt% to about 1.25% by weight but especially from about 0.25% to about 1.5% by weight. It is preferably 0% by weight, and More preferably, it is about 0.4% by weight to about 0.9% by weight. Chi oxide As the concentration of tan increases, the color of the glass gradually changes towards yellow-green, making it more popular for sale. The color ends up being unacceptable for sales. If the concentration of titanium oxide is too low, it will turn purple. The transmittance of external rays becomes unacceptably high.

理解されるように、重要な鉄やチタンの酸化物の濃度が限定され、Fezesか らFeOへの還元率が所望の度合いにされることなどが相互作用することによっ て、中性の、通常緑色の、光源Aによる可視光線透過率が70%より高く、全太 陽エネルギーの透過率が約46%以下で、紫外線透過率が約38%以下、より好 ましくは36%以下であるガラス組成物が生成される。As is understood, the concentration of important iron and titanium oxides is limited, and Fezes By interacting, the reduction rate to FeO is adjusted to the desired degree. neutral, usually green, visible light transmittance from light source A is higher than 70%, full thickness It is more preferable that the transmittance of positive energy is about 46% or less and the ultraviolet transmittance is about 38% or less. Preferably, a glass composition is produced that is 36% or less.

さらに、本発明によるガラスは、光源Cによる約498〜約535nmの主波長 によって特徴づけられ、また約2%〜約5%の色純度を示す。その大半は約2% 〜約4%を示す。自動車用窓材の色純度は重要な変数であり、できるだけ小さい 値であるのが望ましい。比較として、青色ガラスを挙げると、その色純度は約1 0%にまで達し、従って、自動車用窓材としては望ましくない。色純度以外の変 数で表すと、本発明によるガラスの色はCIELABシステムによって定義され た変数で以下のように表される。a*=−10+10 ; b”=4±5;L= 89±100 さらにa 11 ==8±4 、b”=2+3/−2、L=89 ±2であることが本発明に従い、典型的なソーダ石灰シリカガラスのバッチ原料 を、べんがら、炭素のような還元剤、例えばチタン鉄鉱のようなチタン化合物と ともに混合し、さらに溶融することにより4mm厚の試験用サンプルを生成した 。得られたガラスのサンプルは以下のような特性を示した:(以下余白) 例4のガラスの完全な組成は以下の通りである(重量%):5i02=73.O ;Na!0=13,9;Ca0=7゜8;Mg0=3.4;Fe*0s=0,7 67;TiO*=0゜654 ; A lso嘗=o、345 ; K*O=0 .08゜例7のガラスのバッチの組成は(重量部(partsby weigh t)):砂=145;石灰石=11;苦灰石=33、ソーダ灰=50、石膏=1 、べんがら=0゜67、チタン鉄鉱=2.25、炭=0.05であった。得られ たガラスの完全な組成は以下の通りであった(重量%): S 102=73. 25 ; Fe*Om=0.697 ;A tt。Furthermore, the glass according to the invention has a dominant wavelength of about 498 to about 535 nm by light source C. and exhibits a color purity of about 2% to about 5%. Most of them are about 2% ~4%. The color purity of automotive window materials is an important variable and should be as small as possible Preferably a value. For comparison, blue glass has a color purity of approximately 1 It reaches up to 0% and is therefore undesirable as a window material for automobiles. Changes other than color purity In numerical terms, the color of the glass according to the invention is defined by the CIELAB system: It is expressed as follows using the variables. a*=-10+10; b”=4±5; L= 89±100 further a 11 ==8±4, b”=2+3/-2, L=89 A typical soda-lime-silica glass batch feedstock according to the present invention to be ±2 with a reducing agent such as red iron, carbon, and a titanium compound such as titanite. A 4 mm thick test sample was produced by mixing together and further melting. . The obtained glass sample showed the following characteristics: (See the margin below) The complete composition of the glass of Example 4 is as follows (% by weight): 5i02=73. O ;Na! 0=13,9; Ca0=7°8; Mg0=3.4; Fe*0s=0,7 67; TiO*=0゜654; A lso=o, 345; K*O=0 .. 08° The composition of the glass batch of Example 7 is (parts by weight) t)): sand = 145; limestone = 11; dolomite = 33, soda ash = 50, gypsum = 1 , red iron = 0°67, titanoferrite = 2.25, and charcoal = 0.05. obtained The complete composition of the glass was as follows (% by weight): S 102 = 73. 25; Fe*Om=0.697; Att.

、=0. 168;TiO*=0. 70;Ca0=7. 786;Mg0=3 .44;NatO=13.92;KzO=0゜038゜ 特定の例を引用して、本発明について述べてきたが、当業者には理解されるよう に、様々な変形変更が以下に定義する本発明の請求範囲を逸脱することなく可能 である。,=0. 168; TiO*=0. 70; Ca0=7. 786; Mg0=3 .. 44; NatO=13.92; KzO=0°038° Although the invention has been described with reference to specific examples, those skilled in the art will appreciate that Various modifications and changes may be made without departing from the scope of the invention as defined below. It is.

フロントページの続き (81)指定国 EP(AT、BE、CH,DE。Continuation of front page (81) Designated countries EP (AT, BE, CH, DE.

DK、ES、FR,GB、GR,IE、IT、LU、MC,NL、 PT、SE )、0A(BP、BJ、CF、CG、 CI、 CNi、 GA、 GN、〜i L、 MR,NE、SN。DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), 0A (BP, BJ, CF, CG, CI, CNi, GA, GN, ~i L, MR, NE, SN.

TD、 TG)、 AT、 AU、BB、 BG、 BR,BY。TD, TG), AT, AU, BB, BG, BR, BY.

CA、 CH,CN、 CZ、 DE、 DK、 ES、F I、 GB、GE 、HU、JP、KG、KP、KR,KZ、LK、LU、 LV、 MD、 MG 、 MN、 MW、 NL、 No。CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE , HU, JP, KG, KP, KR, KZ, LK, LU, LV, MD, MG , MN, MW, NL, No.

NZ、PL、PT、R○、 RU、SD、SE、SI、SK、TJ、TT、UA 、UZ、VN (72)発明者 ペイカー、ロドニー・ジーアメリカ合衆国オハイオ州4353 7・モーミー・イーストウィリアムストリート 605(72)発明者 チェノ 、ジョセフ・ジエイアメリカ合衆国オハイオ州43551・ぺり一ズバーグ・ウ エストサウスバウンダリーストリート 309NZ, PL, PT, R○, RU, SD, SE, SI, SK, TJ, TT, UA ,UZ,VN (72) Inventor: Paker, Rodney Gee 4353, Ohio, USA 7. Maumee East William Street 605 (72) Inventor Cheno , Joseph G., Perrysburg, Ohio 43551, United States Est South Boundary Street 309

Claims (1)

【特許請求の範囲】 1.中性の、通常緑色のソーダ石灰シリカガラス組成物であって、主要な成分と して、約0.4重量%〜0.9重量%のFe2O3と、約0.1重量%〜約0. 5重量%のFeOと、約0.25重量%〜1.25重量%のTiO2とを含み、 光源Aによる可視光線透過率が70%より高く、全太陽エネルギーの透過率が約 46%以下であり、さらに、紫外線の透過率が約38%以下であることを特徴と するガラス組成物。 2.以下のCIELAB値で定義される色を有することを特徴とする請求項1に 記載のガラス組成物:a′′=−10士10; b′′=4±5; L=89土10。 3.前記FeOの重量%がFe2O3で表される鉄全体の還元率が約19%から せいぜい50%であることを表すことを特徴とする請求項1に記載のガラス組成 物。 4.約0.45重量%〜約0.9重量%のFe2O3と、約0.1重量%〜約0 .3重量%のFeOと、約0.25重量%〜約1重量%のTiO2とを含むこと を特徴とする請求項1に記載のガラス組成物。 5.約0.6重量%〜約0.9重量%のFe2O3と、約0.1重量%〜約0. 3重量%のFeOと、約0.4重量%〜約0.9重量%のTIO2とを含むこと を特徴とする請求項4に記載のガラス組成物。 6.前記FeOの重量%がFe2O3で表される鉄全体の還元率が約20%から 約29%であることを表すことを特徴とする請求項4に記載のガラス組成物。 7.以下のCIELAB値で定義される色を有することを特徴とする請求項4に 記載のガラス組成物:a′′=−8士4; b′′=2十3/一2; L=89±2。 8.中性の、通常緑色のソーダ石灰シリカガラス組成物であって、主要な成分と して、約0.4重量%〜約0.9重量%のFe2O3と、杓0.1重量%〜約0 .5重量%のFeOと、約0.25重量%〜1.25重量%のTiO2とを含み 、 約3mmから約5mmの間の厚さに於いて、光源Aによる可視光線透過率が70 %より高く、全太陽エネルギーの透過率が約46%以下であり、さらに、紫外線 の透過率が約38%以下であることを特徴とするガラス組成物。 9.中性の、通常緑色のソーダ石灰シリカガラス組成物であって、主要な成分と して、約0.6重量%〜約0.9重量%のFe2O3と、約0.1重量%〜約0 .3重量%のFeOと、約0.4重量%〜約0.9重量%のTiO2とを含み、 名目上4mmの厚さに於いて、光源Aによる可視光線透過率が70%より高く、 全太陽エネルギーの透過率が約46%以下であり、さらに、紫外線の透過率が約 38%以下であることを特徴とするガラス組成物。 10.前記FeOの重量%がFe2O3で表される鉄全体の還元率が約20%か ら約29%であることを表すことを特徴とする請求項9に記載のガラス組成物。 11.名目上4mmの厚さに於いて、全太陽エネルギーの透過率が約45%以下 であり、さらに、紫外線の透過率が約36%以下であることを特徴とする請求項 10に記載のガラス組成物。 12.中性の、通常緑色のソーダ石灰シリカガラス組成物であって、そのベース となるガラスが、65重量%〜80重量%のSiO2と、10重量%〜20重量 %のNa2Oと、5重量%〜15重量%のCaOと、 1重量%〜10重量%のMgOと、 0重量%〜5重量%のAl2O3と、 0重量%〜10重量%のK2Oと、 0重量%〜5重量%のBaOとを含み、さらに、あっても極少量の溶融促進剤と 精製促進剤とを含み、さらに、 0.4重量%〜0.9重量%のFe2O3と、0.1重量%〜0.5重量%のF eOと、0.25重量%〜1.25重量%のTiO2とを主要な成分として含む 着色剤とを含み、 3mmから5mmの名目上の厚さに於いて、光源Aによる可視光線透過率が70 %より高く、全太陽エネルギーの透過率が約46%以下であり、さらに、紫外線 の透過率が約38%以下であることを特徴とするガラス組成物。 13.中性の、通常緑色のソーダ石灰シリカガラス組成物であって、そのベース となるガラスが、70重量%〜74重量%のSiO2と、12重量%〜14重量 %のNa2Oと、6重量%〜10重量%のCaOと、 3重量%〜4重量%のMgOと 0重量%〜2重量%のAl2O3と、 0重量%〜1重置%のK2Oとを含み、さらに、あっても極少量の溶融促進剤と 精製促進剤とを含み、さらに、 0.45重量%〜0.9重量%のFe2O3と、0.1重量%〜0.3重量%の FeOと、0.25重量%〜1重量%のTiO2とを主要な成分として含む着色 剤とを含み、 3mmから5mmの名目上の厚さに於いて、光源Aによる可視光線透過率が70 %より高く、全太陽エネルギーの透過率が約46%以下であり、さらに、紫外線 の透過率が約38%以下であることを特徴とするガラス組成物。 14.酸化鉄と酸化チタンとを含む中性の、通常緑色の紫外線を吸収するソーダ 石灰シリカガラス組成物を製造する方法であって、 芒硝と石膏とからなるグループから選ばれる硫酸塩と、砂と、ソーダ灰と、苦灰 石と、石灰石とを混合、加熱、溶融する過程を含み、 さらに前記酸化チタンの供給源として、かつ得られるガラスに含まれる酸化鉄の 供給源の少なくとも一部として、前記バッチ中にチタン鉄鉱を含ませる過程を有 することを特徴とするガラス組成物の製造方法。 15.前記チタン鉄鉱が、50%に達するFeOを含むことを特徴とする請求項 14に記載のガラス組成物の製造方法。[Claims] 1. A neutral, usually green, soda-lime-silica glass composition containing from about 0.4% to about 0.9% by weight Fe2O3 and from about 0.1% to about 0.9% by weight. 5 wt.% FeO and about 0.25 wt.% to 1.25 wt.% TiO2; The visible light transmittance by light source A is higher than 70%, and the transmittance of total solar energy is approximately 46% or less, and furthermore, the transmittance of ultraviolet rays is about 38% or less. glass composition. 2. Claim 1, characterized in that it has a color defined by the following CIELAB values: Glass composition as described: a''=-10 10; b''=4±5; L=89 Sat 10. 3. The weight percent of FeO is expressed as Fe2O3, and the reduction rate of the entire iron is about 19%. Glass composition according to claim 1, characterized in that it represents at most 50% thing. 4. about 0.45% to about 0.9% by weight Fe2O3 and about 0.1% to about 0% by weight .. 3 wt.% FeO and about 0.25 wt.% to about 1 wt.% TiO2. The glass composition according to claim 1, characterized in that: 5. from about 0.6% to about 0.9% by weight Fe2O3 and from about 0.1% to about 0.9% by weight. 3% by weight FeO and about 0.4% to about 0.9% by weight TIO2. The glass composition according to claim 4, characterized in that: 6. The weight percent of FeO is expressed as Fe2O3, and the reduction rate of the entire iron is about 20%. 5. A glass composition according to claim 4, characterized in that it represents about 29%. 7. Claim 4, characterized in that it has a color defined by the following CIELAB values: Glass composition as described: a''=-8 4; b''=23/12; L=89±2. 8. A neutral, usually green, soda-lime-silica glass composition containing and about 0.4% to about 0.9% by weight of Fe2O3 and 0.1% to about 0% by weight of the ladle. .. 5 wt.% FeO and about 0.25 wt.% to 1.25 wt.% TiO2. , At a thickness between about 3 mm and about 5 mm, the visible light transmittance by light source A is 70 %, the transmittance of total solar energy is about 46% or less, and the ultraviolet rays A glass composition having a transmittance of about 38% or less. 9. A neutral, usually green, soda-lime-silica glass composition containing and about 0.6% to about 0.9% by weight Fe2O3 and about 0.1% to about 0% by weight. .. 3 wt.% FeO and about 0.4 wt.% to about 0.9 wt.% TiO2; At a nominal thickness of 4 mm, the visible light transmittance by light source A is higher than 70%; The transmittance of total solar energy is about 46% or less, and the transmittance of ultraviolet rays is about 46% or less. A glass composition characterized in that it is 38% or less. 10. The weight percent of FeO is expressed as Fe2O3, and the reduction rate of the entire iron is about 20%. 10. The glass composition of claim 9, wherein the glass composition represents approximately 29% of the glass composition. 11. At a nominal thickness of 4 mm, the total solar energy transmittance is approximately 45% or less. A claim further characterized in that the transmittance of ultraviolet rays is about 36% or less. 10. The glass composition according to 10. 12. A neutral, usually green, soda-lime-silica glass composition, the base of which is The glass contains 65% to 80% by weight of SiO2 and 10% to 20% by weight. % of Na2O and 5% to 15% of CaO by weight, 1% to 10% by weight of MgO; 0% to 5% by weight of Al2O3; 0% to 10% by weight of K2O, 0% to 5% by weight of BaO, and even a very small amount of melt accelerator. and a purification accelerator; 0.4% to 0.9% by weight of Fe2O3 and 0.1% to 0.5% by weight of F Contains eO and 0.25% to 1.25% by weight of TiO2 as main components including a coloring agent, At a nominal thickness of 3 mm to 5 mm, the visible light transmittance by light source A is 70 %, the transmittance of total solar energy is about 46% or less, and the ultraviolet rays A glass composition having a transmittance of about 38% or less. 13. A neutral, usually green, soda-lime-silica glass composition, the base of which is The glass contains 70% to 74% by weight of SiO2 and 12% to 14% by weight. % of Na2O, and 6% to 10% of CaO, 3% to 4% by weight of MgO and 0% to 2% by weight of Al2O3; Contains 0% by weight to 1% by weight of K2O, and further contains a very small amount of melting accelerator, if any. and a purification accelerator; 0.45% to 0.9% by weight of Fe2O3 and 0.1% to 0.3% by weight Coloring containing FeO and 0.25% to 1% by weight of TiO2 as main components containing an agent, At a nominal thickness of 3 mm to 5 mm, the visible light transmittance by light source A is 70 %, the transmittance of total solar energy is about 46% or less, and the ultraviolet rays A glass composition having a transmittance of about 38% or less. 14. A neutral, usually green ultraviolet-absorbing soda containing iron oxide and titanium oxide A method of manufacturing a lime-silica glass composition, the method comprising: Sulfate selected from the group consisting of Glauber's salt and gypsum, sand, soda ash, and dolomite Including the process of mixing, heating, and melting stone and limestone, Furthermore, as a source of the titanium oxide, and iron oxide contained in the obtained glass, including titanite in said batch as at least part of the source. A method for producing a glass composition, characterized in that: 15. Claim characterized in that the titanite contains up to 50% FeO. 15. The method for producing a glass composition according to 14.
JP6524535A 1993-04-27 1994-04-28 Glass composition and its manufacturing method Pending JPH07508492A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5360393A 1993-04-27 1993-04-27
US053,603 1993-04-27
PCT/US1994/004671 WO1994025407A1 (en) 1993-04-27 1994-04-28 Glass composition

Publications (1)

Publication Number Publication Date
JPH07508492A true JPH07508492A (en) 1995-09-21

Family

ID=21985372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6524535A Pending JPH07508492A (en) 1993-04-27 1994-04-28 Glass composition and its manufacturing method

Country Status (17)

Country Link
US (2) US5523263A (en)
EP (1) EP0648195B1 (en)
JP (1) JPH07508492A (en)
KR (1) KR100320696B1 (en)
CN (1) CN1042826C (en)
AT (1) ATE210095T1 (en)
AU (1) AU678011B2 (en)
BR (1) BR9405243A (en)
CA (1) CA2138786C (en)
CZ (1) CZ287734B6 (en)
DE (1) DE69429321T2 (en)
ES (1) ES2169072T3 (en)
FI (1) FI946096A0 (en)
MX (1) MX9403013A (en)
PL (1) PL178656B1 (en)
PT (1) PT648195E (en)
WO (1) WO1994025407A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593929A (en) * 1990-07-30 1997-01-14 Ppg Industries, Inc. Ultraviolet absorbing green tinted glass
FR2721600B1 (en) * 1994-06-23 1996-08-09 Saint Gobain Vitrage Clear glass composition intended for the manufacture of glazing.
UA44291C2 (en) * 1994-11-11 2002-02-15 Хейнекен Технікал Сервісес Б.В. SODIUM-CALCIUM GREEN GLASS FOR FOOD PACKAGING, ABSORBING ULTRAVIOLET RADIATION AND TRANSMITTING VISIBLE LIGHT
IT1284767B1 (en) * 1995-09-06 1998-05-21 Glaverbel INTENSE DARK GRAY SODIUM GLASS
US5830812A (en) * 1996-04-01 1998-11-03 Ppg Industries, Inc. Infrared and ultraviolet radiation absorbing green glass composition
US6413893B1 (en) 1996-07-02 2002-07-02 Ppg Industries Ohio, Inc. Green privacy glass
GB2315265A (en) * 1996-07-11 1998-01-28 Pilkington Plc Infra-red and ultraviolet absorbing glass containing iron
GB2320022A (en) * 1996-12-07 1998-06-10 Pilkington Plc Green solar control glass
GB9705426D0 (en) * 1997-03-15 1997-04-30 Pilkington Plc Solar control glass and glazings
WO1999020577A1 (en) 1997-10-20 1999-04-29 Ppg Industries Ohio, Inc. Infrared and ultraviolet radiation absorbing blue glass composition
FR2774679B1 (en) * 1998-02-11 2000-04-14 Saint Gobain Vitrage SILICO-SODO-CALCIUM GLASS COMPOSITIONS
BE1012997A5 (en) * 1998-06-30 2001-07-03 Glaverbel Soda-lime green glass.
JP3670489B2 (en) * 1998-07-07 2005-07-13 日本板硝子株式会社 Method for producing soda-lime glass
US6605555B2 (en) 1999-12-10 2003-08-12 Ppg Industries Ohio, Inc. Methods of increasing the redox ratio of iron in a glass article
BE1013373A3 (en) * 2000-04-04 2001-12-04 Glaverbel Soda-lime glass high light transmission.
US6596660B1 (en) 2001-10-26 2003-07-22 Visteon Global Technologies, Inc. Amber-free reduced blue glass composition
US6849566B2 (en) * 2002-07-19 2005-02-01 Ppg Industries Ohio, Inc. Blue-green grass
US7094716B2 (en) * 2002-10-04 2006-08-22 Automotive Components Holdings, Llc Green glass composition
US6995102B2 (en) * 2003-07-16 2006-02-07 Visteon Global Technologies, Inc. Infrared absorbing blue glass composition
KR20050083451A (en) * 2004-02-23 2005-08-26 정인수 Multi-functional glass composition and glass products with minus ions and far-infrared rays radiation properties
FR2881739B1 (en) * 2005-02-08 2007-03-30 Saint Gobain GLASS COMPOSITION FOR THE MANUFACTURE OF GLAZES ABSORBING ULTRAVIOLET AND INFRARED RADIATION.
US7678722B2 (en) 2005-07-29 2010-03-16 Ppg Industries Ohio, Inc. Green glass composition
JP5853700B2 (en) * 2009-10-22 2016-02-09 旭硝子株式会社 Heat-absorbing glass plate and manufacturing method thereof
GB0922064D0 (en) 2009-12-17 2010-02-03 Pilkington Group Ltd Soda lime silica glass composition
US9573841B1 (en) * 2015-10-06 2017-02-21 Vidrio Plano De Mexico, S.A. De C. V. UV absorbent green solar control glass composition
KR101969627B1 (en) 2016-06-23 2019-04-16 주식회사 케이씨씨 Composition for green colored glass
JP6564956B2 (en) * 2016-11-10 2019-08-21 日本板硝子株式会社 Glass filler and method for producing the same
CN107162415B (en) * 2017-05-04 2019-11-05 湖北戈碧迦光电科技股份有限公司 A kind of optical glass
CN111533447B (en) * 2020-04-07 2022-09-16 山东柔光新材料有限公司 Alkali aluminosilicate flexible glass suitable for ultraviolet laser processing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860059A (en) * 1953-09-03 1958-11-11 Libbey Owens Ford Glass Co Ultra-violet light absorbing glass
US4331770A (en) * 1980-04-21 1982-05-25 Corning Glass Works Low liquidus glasses for television tube faceplates
US4866010A (en) * 1985-02-19 1989-09-12 Ford Motor Company Nickel ion-free blue glass composition
US4701425A (en) * 1986-05-19 1987-10-20 Libbey-Owens-Ford Co. Infrared and ultraviolet absorbing glass compositions
US4792536A (en) * 1987-06-29 1988-12-20 Ppg Industries, Inc. Transparent infrared absorbing glass and method of making
CN1027635C (en) * 1989-11-16 1995-02-15 利比-欧文斯-福特公司 Infrared and ultraviolet radiation absorbing green glass composition
US5077133A (en) * 1990-06-21 1991-12-31 Libbey-Owens-Ford Co. Infrared and ultraviolet radiation absorbing green glass composition
MY104796A (en) * 1990-01-30 1994-05-31 Geoffery Evans Batch composition for making infrared and ultraviolet radiation absorbing green glass.
US5112778A (en) * 1990-01-30 1992-05-12 Libbey-Owens-Ford Co. Batch composition for making infrared and ultraviolet radiation absorbing green glass
US5593929A (en) * 1990-07-30 1997-01-14 Ppg Industries, Inc. Ultraviolet absorbing green tinted glass
EP0488110B1 (en) * 1990-11-26 1996-06-26 Central Glass Company, Limited Infrared and ultraviolet ray absorbing glass
US5070048A (en) * 1990-12-12 1991-12-03 Ford Motor Company Blue glass compositions
JP2544035B2 (en) * 1991-08-14 1996-10-16 セントラル硝子株式会社 High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same
JP2528579B2 (en) * 1991-12-27 1996-08-28 セントラル硝子株式会社 Frit glass with high iron content and high reduction rate, and ultraviolet / infrared absorbing green glass using it
EP0561337A1 (en) * 1992-03-18 1993-09-22 Central Glass Company, Limited Bronze-colored infrared and ultraviolet radiation absorbing glass
EP0565882B1 (en) * 1992-03-19 1997-06-04 Central Glass Company, Limited Neutral gray-colored infrared and ultraviolet radiation absorbing glass
US5214008A (en) * 1992-04-17 1993-05-25 Guardian Industries Corp. High visible, low UV and low IR transmittance green glass composition
CN1079723A (en) * 1992-06-12 1993-12-22 同济大学 Utilize iron ore tail sand to make the method for crystal glass

Also Published As

Publication number Publication date
US5641716A (en) 1997-06-24
ES2169072T3 (en) 2002-07-01
CN1110476A (en) 1995-10-18
ATE210095T1 (en) 2001-12-15
BR9405243A (en) 1999-08-31
CA2138786C (en) 2007-10-30
CA2138786A1 (en) 1994-11-10
KR100320696B1 (en) 2002-05-13
CZ327594A3 (en) 1995-08-16
DE69429321T2 (en) 2002-08-14
PT648195E (en) 2002-05-31
AU678011B2 (en) 1997-05-15
EP0648195A1 (en) 1995-04-19
US5523263A (en) 1996-06-04
EP0648195B1 (en) 2001-12-05
DE69429321D1 (en) 2002-01-17
FI946096A (en) 1994-12-27
PL178656B1 (en) 2000-05-31
EP0648195A4 (en) 1996-04-17
PL306838A1 (en) 1995-04-18
MX9403013A (en) 1995-01-31
AU6715394A (en) 1994-11-21
WO1994025407A1 (en) 1994-11-10
CZ287734B6 (en) 2001-01-17
FI946096A0 (en) 1994-12-27
CN1042826C (en) 1999-04-07

Similar Documents

Publication Publication Date Title
JPH07508492A (en) Glass composition and its manufacturing method
AU629086B2 (en) Infrared and ultraviolet radiation absorbing green glass composition
JP2544035B2 (en) High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same
US5240886A (en) Ultraviolet absorbing, green tinted glass
CA2109059C (en) Ultraviolet absorbing green tinted glass
US5077133A (en) Infrared and ultraviolet radiation absorbing green glass composition
EP0821659B1 (en) Colored glass compositions
JP3086165B2 (en) UV-infrared absorbing green glass
JPH0264038A (en) Glass composition containing having blackish light gray color and containing no nickel
JPH1171131A (en) Deep green soda lime glass
JPH11512694A (en) Glass with neutral color and low radiation transmittance
JP3620289B2 (en) UV infrared absorption medium transmission green glass
JP6926129B2 (en) Green glass composition
JPH09208251A (en) Ultraviolet rays and infrared rays absorbing green glass
JP3606607B2 (en) UV-infrared absorbing green glass
JPH04193738A (en) Infrared and ultraviolet absorption glass and its manufacture
KR100379643B1 (en) A batch composition for manufacturing UV/IR absorption glass and the composition of said glass manufactured thereof
JP2006232598A (en) Ultraviolet/infrared ray-absorbing greenish glass
JP2001270735A (en) Green color system glass absorbing ultraviolet light and infrared light
MXPA97008101A (en) Color glass compositions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122