JP3606607B2 - UV-infrared absorbing green glass - Google Patents

UV-infrared absorbing green glass Download PDF

Info

Publication number
JP3606607B2
JP3606607B2 JP20747394A JP20747394A JP3606607B2 JP 3606607 B2 JP3606607 B2 JP 3606607B2 JP 20747394 A JP20747394 A JP 20747394A JP 20747394 A JP20747394 A JP 20747394A JP 3606607 B2 JP3606607 B2 JP 3606607B2
Authority
JP
Japan
Prior art keywords
glass
ultraviolet
ceo
tio
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20747394A
Other languages
Japanese (ja)
Other versions
JPH0834637A (en
Inventor
泰史 田口
宏文 小林
久和 廣澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP20747394A priority Critical patent/JP3606607B2/en
Publication of JPH0834637A publication Critical patent/JPH0834637A/en
Application granted granted Critical
Publication of JP3606607B2 publication Critical patent/JP3606607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は比較的高い透視性をもち赤外線紫外線を吸収して高居住性、高安全性となって軽量化ができ得る紫外線赤外線吸収緑色系ガラスに関し、建築用窓ガラスや各種ガラス物品はもちろん、殊に車両用窓ガラスに有用な前記紫外線赤外線吸収緑色系ガラスを提供するものである。
【0002】
【従来技術】
近年富みに、冷房負荷の低減等省エネルギー化あるいは有機物における劣化ならびに退色等から、赤外線や紫外線の反射吸収等多機能化をガラス自体またはガラス表面に付加することにより、人的にも物的にもより高居住性に繋がる板ガラス物品のニーズが急激に高まってきている。
【0003】
そこで、従来の赤外線吸収ガラスに加えて紫外線吸収を意識したガラスがさらに提案されつつあり、例えば特開昭64ー18938 号公報にはFeとして表して少なくとも0.45重量%の鉄を有する溶融ガラスの連続流を送り、溶融操作中の酸化還元の条件をFeO として表される第一鉄状態の鉄を少なくとも35%与えるように制御し、そしてガラスを成形操作で平板ガラス製品へ成形することを含み、しかも前記平板ガラスが少なくとも65%の光透過率及び15%以下の赤外線透過率を有する、連続的方法でソーダ・石灰・シリカ平板ガラスを製造する方法が開示されている。
【0004】
該公報には、ガラス中でFeとして表して0.65%より少ない全鉄含有量が与えられていることあるいは製品ガラスの硫黄含有量がSOとして表して0.02%より少ないこと等にすることが好ましいものであると記載され、またFeとして表して少なくとも0.45重量%の全鉄で、そのうち少なくとも50%がFeO として表した第一鉄状態にある鉄、及びSOとして表して0.02重量%より少ない硫黄を有し、少なくとも65%の光透過率及び15%以下の全太陽赤外線透過率を示すソーダ・石灰・シリカガラス物品が開示されており、ガラス物品が、重量に基づいて、66〜75%のSiO、12〜20%のNaO、7 〜12%のCaO 、0 〜5 %のMgO 、0 〜4 %のAl、0 〜3 %のKO 、0 〜1 %のFe、及びCeO、TiO、V又はMoOの合計0 〜1.5 %から本質的になる組成を有するものが好ましいことが記載されている。
【0005】
また例えば、特開平3ー187946号公報には、重量%で表して、約0.51〜0.96のFeと、約0.15〜0.33のFeO と、約0.2 〜1.4 のCeOとを主要な成分として含む赤外線及び紫外線吸収ソーダ石灰シリカ緑色ガラスが開示されている。
【0006】
また例えば、本出願人が既に提案した特開平4ー193738号公報、特開平4ー224133号公報、特開平5ー78147 号公報、特願平3ー144928号、特願平5ー178639号ならびに特願平5ー24456 号等があり、また他では例えば特開平4ー310539号公報等がある。
【0007】
さらに例えば、特開平4ー231347号公報には、重量%で表して、SiO68〜75%、NaO10〜20%、CaO5〜15%、MgO0〜5 %、Al0〜5 %、KO0〜5 %と、0.5 重量%未満のCeO及び0.85重量%より多い全鉄(Feとして)で、FeO /全鉄が0.275 重量%より小さい全鉄から本質的になる着色剤成分を有し、3.9mm の基準厚さで31%以下の紫外線透過率(300 〜390nm )を示す緑色紫外線吸収性ガラスが開示されている。
【0008】
さらにまた例えば、特開平6ー92678 号公報には、重量%で表示して本質的に、65〜80%のSiO、0 〜5 %のAl、0 〜5 %のB、0 〜10%のMgO 、5 〜15%のCaO 、10〜18%のNaO、0 〜5 %のKO 、0.5 〜15%のMgO +CaO 、10〜20%のNaO+KO 、0.3 〜2 %のCeOに換算した酸化セリウム、0 〜1 %のTiO、0.1 〜0.8 %のFeに換算した酸化鉄、0 〜0.006 %のCoO 、0 〜0.01%のNiO 、0 〜0.0015%のSeから成る紫外線赤外線吸収ガラスが開示されている。
【0009】
【発明が解決しようとする問題点】
前述したような例えば特開昭64ー18938 号公報に記載のものは、SO成分を0.02重量%より少なくし、通常のフロート法による板ガラス製造での溶融操作手段では到底所期の赤外線紫外線吸収ガラスを得ることが困難であって、種々の複雑な手段工程、例えば液化段階、溶解段階、清澄段階、攪拌室ならびに攪拌器等が必要となるようなものであり、また特開平3ー187946号公報に記載のものは赤外線の吸収においても必ずしも充分優れるものとは言い難いものであり、これら特開平3ー187946号公報乃至特開平4ー310539号公報等のいずれも比較的高価なCeO成分を極端に低減することができないものであった。
【0010】
そのなかで、特開平4ー231347号公報ならびに特開平6ー92678 号公報に記載のものはいずれをもCeO成分を低減するようにしたものではあるものの、前者は全鉄(Feとして)を比較的多くする必要があり、後者はCeO成分を充分低減するようにしたとは言い難く、しかもどちらかと言えばブロンズ色ないし灰色を呈するものであってグリーン色とは言い難いものである。
【0011】
【問題点を解決するための手段】
本発明は、従来のかかる欠点に鑑みてなしたものであって、通常のフロート法による板ガラスの製造ができ、しかも比較的高価なCeO成分をゼロ近くに極端に低減し得るようにし、しかも全鉄を極端に多くすることなく適度の増量とする程度に止めるようにするとともに、変色や不均質による生産性の低下ならびに操業条件の悪化を防止し解消しうるようにし、生産性向上と品質の安定維持を高めるなかで、赤外線と紫外線を充分所期の吸収を有するものであって、比較的透視性がある緑色系の色調を発現し、しかも耐候性、成形性も充分に有する紫外線赤外線吸収緑色系ガラスを提供するものである。
【0012】
本発明は、重量%表示で実質的に下記酸化物であり、SiO2 68〜73%、Al2O30.05〜3.0 %、CaO 7.5 〜11.0%、MgO2.0 〜4.2 %、Na2O 12.0〜16.0%、K2O 0.5 〜3.0 %、SO3 0.05〜0.19%、Fe2O3 0.60〜0.95%、CeO2 0.001 〜0.10%(但し、0.10%は除く)、TiO2 0.03〜0.15%、CoO 0.0001〜0.0015%、これら成分の総和が99.87%以上であって、かつSiO2+Al2O3+TiO270.0〜74.0%、CaO +Mg0 10.0〜15.0%、Na2O+K2O 13.0〜17.0%であり、さらに5mm 厚換算でA 光源による可視光線透過率が65%以上、日射透過率が35〜50%、紫外線透過率が7〜17%、D65 光源による主波長が500 〜515 nm、刺激純度が3.5 %以下の紫外線赤外線吸収緑色系ガラスである。
【0013】
また、前記ガラスの還元率が Fe 2+ /Fe 3+ 表示で 30 40 %である紫外線赤外線吸収緑色系ガラスである。
【0016】
ここで、SiO成分を重量%で68〜73%としたの は、68%未満では表面にやけ等が発生しやすく耐候性が下がり実用上の問題が生じてくるものであり、73%を超えると、溶融も難しくなるものであり、Al成分を重量%で0.05〜3.0 %としたのは、0.05%未満では耐候性が下がり表面にやけ等が発生しやすく実用上の問題が生じてくるものであり、3%を超えると失透が生じやすくなり成形温度範囲が狭くなり製造が難しくなるものであり、CaO 成分を重量%で7.5 〜11.0%としたのは、7.5 %未満では融剤として不足気味となり溶融温度も高くなりまた流動温度を低くしないので製造しにくくなり、11%を超えると失透し易くなり、成形作業範囲が狭くなり製造が難しくなるものであり、MgO 成分を重量%で2.0 〜4.2 %としたのは、2.0 %未満では溶融温度が上がり操作範囲を狭めるので製造がしにくくなり、4.2 %を超えると易強化性が下がるものであり、NaO成分を重量%で12.0〜16.0%としたのは、12.0未満では溶融性が悪化しかつ易強化性が下がり、成形性が難しくなり、失透も生じ易くなるので操作範囲が狭まり製造しにくくなり、16%を超えると耐候性が下がり、表面にやけ等が発生しやすくなり実用上の問題が生じてくるものであり、KO 成分を重量%で0.5 〜3.0 %としたのは、0.5 %未満では易強化性が下がり、3.0 %を超えると耐候性が下がりかつコストも高くなるものである。
【0017】
さらに、SO成分を重量%で0.05〜0.30%としたのは、0.05%未満では例えば通常の溶融において脱泡あるいは均質性上不充分となり易い程度にしかできなくなり、0.30%を超えると特にガラスの着色状態に影響を与え、例えば黄色やアンバー色がかった色調に移行し易くなる等が発現し所期の緑系色調が得られなくなるためであり、好ましくは0.15%前後とどちらかと言えば範囲内でも低いところがよいものである。
【0018】
さらにまた、Fe成分を重量%で0.60〜0.95%としたのは、赤外線を吸収するFeO 成分量と紫外線を吸収し所期の色調を確保するFe成分量との総量として、前述した各種光学特性を安定して得るために、他のCeO、TiO等の各成分量とともに必要であり、0.60%未満では上述に対する作用が劣り、0.95%を超えると特に可視光線透過率が低下するとともに、所期の色調を制御することができずらくなって不安定化することとなるからであり、より確実な所期の色調を得るためには好ましくは重量%で0.60〜0.90%程度であって、より好ましくは重量%で0.60〜0.85%程度であり、淡い色調の際には0.63〜0.73%程度、通常の色調の際には0.73〜0.88%程度である。
【0019】
CeOとTiO成分は紫外線の吸収作用を有し、CeO成分を0.001 〜0.10%とし、TiO成分を0.01〜0.15%としたのは、ガラスにおける還元率をほとんど変化させないしかも紫外線吸収能がCeO成分より小さいTiO成分と、ガラスにおける還元率を比較的大きく変化させしかも紫外線吸収能を充分与えるCeO成分とを上述の特定範囲内に限定して組み合わすことで、僅かの含有量で所期の特性を効率的に得ることでき、従来の還元率をほとんど変化させないようにしつつ、前述した全鉄におけるFeとFeO との割合を制御して、可視光領域の透過率を全体的に低下させないようにしかつ紫外線吸収や赤外線吸収等所期の光学特性を達成し得るようにするためである。
【0020】
さらにまた、紫外線の吸収に効果はあって酸化性が強力なCeO成分が比較的多くガラス素地中に存在すると、Fe とFeO を含む全鉄を酸化させFe+3に変えるように働きすぎ、例えば黄色調のガラス素地を発現し易くなり、該素地が所謂リームやディストーション等の不均質な欠陥の要因となって、生産性の低下や作業性の悪化を招くこととなる。該現象を阻止するためにも従来より微量としCeO成分を0.001 〜0.10%としたものであり、好ましくは0.005 〜0.08%程度であってより安定して確実に所期の緑色色調と前記欠陥の発現を抑制できるとともに前記光学特性を維持できるものである。
【0021】
さらにまた、紫外線の吸収に効果があるものの可視域についても吸収するTiO成分はガラス素地中のFe としての全鉄濃度を低下しなければならなくなり、総合的にマイナスとなることとなるので、TiO成分としては0.01〜0.15%の範囲とし、好ましくは0.03〜0.10%程度であり、しかも全鉄濃度とTiO成分およびCeO成分範囲とのバランスを調整せしめ、その補足としてCoO 成分を0.0001〜0.0015%の範囲で微量添加し、色調調整を比較的容易にできるうにする。好ましくは0.0002〜0.0010%程度であってよりバランスよく調整し易いこととなる。
【0022】
さらにまた、還元率としては、Fe2+/Fe3+表示で30〜40%程度であり、好ましくは32〜38%程度である。すなわち酸化性が強いCeO成分を極力低減するようにしたことで、全鉄の還元率を高める必要もなく、むしろ該全鉄の還元率のアップは紫外線の吸収率を低下させ好ましくないものであり、紫外線の遮蔽率と日射の透過率を考慮すると前記範囲となる。いずれにしても本願発明は着色成分とその濃度さらにバッチの酸化還元条件を調整することで、色調や光学特性共所期のめざす紫外線赤外線吸収緑色系ガラスを得ることができるものである。
【0023】
また、SiO2、Al2O3 、CaO 、MgO 、Na2O、K2O 、Fe2O3 、SO3 、CeO2、TiO2の成分の総和を重量百分率で99.87%以上としたのは、例えばMnO 、ZnO 、SnO2等微量成分を、各微量成分の合計でも0.13%を超えない量に制御するためである。さらに具体的には例えばMnO としては約0.0005〜0.0370%程度であることが緑色系色調を制御するためにも微妙な影響を付与し得ることから好ましいものである。
【0024】
さらに、SiO+Al+TiOを重量百分率で70.0〜74.0%としたのは、70%未満では耐候性が下がり、74%を超えると易強化性が下がる問題が生じるものであり、CaO +MgO を重量百分率で10.0〜15.0%としたのは、CaO およびMgO 成分は溶融温度を下げるために用いられるとともに、10%未満では易強化性が下がり、15%を超えると失透しやすくなり製造上難しくなるものであり、NaO+KO を百分率で13.0〜17%としたのは、13.0%未満では易強化性が下がり、失透も生じやすくなって成形において作業温度範囲が狭くなり、製造が難しくなり、17%を超えると耐候性が下がり実用上の問題を生じるものであるとともにコスト的にも高くなるものである。
【0025】
さらにまた、5mm 厚換算で、A 光源による可視光線透過率が65%以上、日射透過率が35〜50%、紫外線透過率が7 〜17%、主波長が500 〜515 nm、刺激純度が3.5 %以下であるとしたのは、前記可視光線透過率が65%以下では特に自動車のフロント窓ガラスにおいてガラスの透視性、ことに日暮れ、夜間あるいは雨降りなどに際し、物体の識別性の低下が発現しやすく好ましくなく、好ましくは前記可視光線透過率が67%以上、より好ましくは可視光線透過率が70乃至75%前後である。
【0026】
また日射透過率が50%を超えると冷房負荷の増大あるいは車内・室内での居住性を向上する効果の実感が少なく充分満足することができないこととなり、35%未満では透視性ことに前述した識別性の低下あるいは色調にも影響を与え兼ねないこととなるので好ましくなく、好ましくは37〜47%程度である。
【0027】
また紫外線透過率が17%を超えると車内・室内での物品の脱色・劣化あるいは肌焼け等人的影響により居住性の悪化に結び付き易く、7 %未満では例えば前記可視光線透過率が得られなくなる等の弊害が発生し易くなり、好ましくは9〜15%程度である。主波長が515nm を超えると黄色あるいはアンバー色が影響して所期の緑色調系に成らず、500nm 未満ではブルー色が勝ち過ぎて所期の緑色調系と成らないためであり、好ましくは502 〜512nm 程度である。刺激純度が3.5 %を超えると物体の識別性が低下するようになって例えば日暮れやどんよりした雨降り等で乗員の透視性に支障を来し、安全性の確保等が困難となるためである。なお紫外線域は290 〜390nm とし、可視域等は従来通りとした。
【0028】
さらにまた例えば、前記紫外線赤外線吸収緑色系ガラスを製造するに当たり、原料として本発明のマザーガラス組成に例えばFe、SO、CeO、TiOあるいはさらにMnO 、S2− 等をも含むフリットガラスまたはカレットまたはこれらに属するもの、さらにFeとCoO を含むフリットガラスまたはカレット、さらにCoO を含むフリットガラス、さらにはイルメナイト等を用いる方が好ましいものであり、これらの量的調整が確実で安定して確保でき易く、FeO のガラス中への取り込みが少しでも容易となり、しかも実窯の操業条件等をほぼ不変とし、ガラスの酸化還元状態を従来と出来るだけ変えないように、すなわち実窯で還元率が約45%程度であるのに対し本発明の赤外線紫外線吸収緑色系ガラスの製造に当たってはCeO等種々の作用を加味し30〜40%程度とするのに少しでも役立つためであり、微量原料として炭素、Zn、Sn等の金属粉または酸化物のうち少なくともその一つを用いることもでき、例えば時として芒硝(NaSO)等清澄剤の作用効果を助ける必要があり、一方では前記所期の色調の確保に悪い影響を与えることともなり易く、ZnあるいはSn等還元剤もFeとFeO とのバランスを調整するために必要な場合もあるためである。
【0029】
なお、本発明の紫外線赤外線吸収緑色系ガラスは易強化ガラス組成物をも含むものであって、板厚1mm 前後の薄板ガラスから15mm前後の厚板ガラスで、平板または曲げ板として生板から強度アップしたもの、半強化したもの、強化したもの等で、単板ガラス、合せガラス、積層ガラスあるいは複層ガラス等で用いることが、建築用窓材、ことに車両用窓ガラスで用いることが有用である。
【0030】
【作用】
前述したとおり、本発明の紫外線赤外線吸収緑色系ガラスは、特定酸化物成分を特定組成範囲で組み合わせ、特に比較的高価でかつ酸化性が強いCeO成分を低減し、それに伴う関連成分およびその濃度を制御したガラスとし、あるいはガラス組成内に易強化性をも含み持たせしかも還元率の低下を抑制するよう組み合わせて特異な原料をも用い、上述したガラスを通常のフロート法で製造することによって、例えば黄色調のガラス素地の発生を抑制し解消でき、所謂リームやディストーションの発現、さらには場合によっては微細泡の発生等による歩留りの低下を激減することができ、操業ならびに品質の安定向上ができ、歩留りと生産性を向上に充分寄与することとなる。
【0031】
また例えば微量のCeO成分としたので、比重が重いCeO成分(比重:7.0 〜7.2 程度)の比重差による使用量の制限等もなくなり、色替え時はもちろん通常の操業時においてもフリットガラスまたはカレットによる補給でCeO成分組成を充分満足できるようになり、原料バッチ中にはCeO成分をゼロ、あるいはゼロに近い微量とすることも可能であり、しかも例えばこれにつれ、TiO成分を比較的微量の方向にもって行くことができて、光学特性をも満足できる等の効用をも有するものである。
【0032】
さらに例えば溶融性、清澄性、耐候性、成形性、失透性、コスト等を考慮し、従来のフロートガラスの製造条件ならびにそのガラスの性質等をほとんど変化させず、加えて易強化性を持ち合わせるようなガラス組成も含めかつ赤外線ならびに紫外線を吸収して人的物的に高居住性であって、物体の識別も優れた透視性を充分持つものとなって高安全性を確保でき、グリーン色調系で例えば車・室内外と充分調和のあるものとなって環境的にも優れたものとなり、さらに、従来の熱強化方法では得られなかった薄板ガラス等でも、充分な強化度あるいは充分強度アップが得られるようになり、建築用窓ガラスはもちろん家具用ガラス、調理用ガラス、ことに自動車用等車両用窓ガラス等に有用な赤外線紫外線吸収緑色系ガラスを提供できるものである。
【0033】
【実施例】
以下本発明の実施例について説明する。ただし本発明は係る実施例に限定されるものではない。
【0034】
実施例1
ガラス原料として例えば珪砂、長石、ソーダ灰、ドロマイト、石灰石、芒硝、ベンガラ、酸化チタン、炭酸セリウムあるいはイルメナイト、カーボン、スラグ、前記フリットガラスやカレット、例えば重量%でFe 約 0.09 %とTiO約0.04%を含むクリアカレット(Cガレット)、Fe 約 0.675%とTiO約0.20%とCeO約0.60%等を主に含むフリットガラス(NMフリット)またはカレット(NMカレット)、さらにCoO 約0.0960%程度を含むフリットガラス(Coフリット)等を適宜用い、所期のガラス組成を目標組成として秤量調合し、ことに通常の実窯と多少低い程度の還元率(35±3 %程度)を得るようにしたものである。
【0035】
なお、原料バッチとして、例えば芒硝/(珪砂+長石)を約1%程度(0.5 〜2%程度)、Cカレット約47%程度、NMカレット約13%程度、Coフリット約0.32%程度(カレットとフリットの合計が40〜65%程度)等とした。
【0036】
該調合原料をルツボに入れ、約1450℃前後に保持した実窯(例えば投入口横側壁部、コンディション部側壁部)または実窯と同等にある電気炉中で約3〜4時間程度溶融しガラス化して、さらに均質化および清澄のため、1420〜1430℃で約1.5 〜2時間程度保持した後、型に流し出しガラスブロックとし、大きさ100mm ×100mm で厚み約5mmのガラス板に切り出して研削研磨し、またはガラスを板状に流し出し、各試料とした。
【0037】
この試料について、ガラス成分組成(重量%)についてはJIS R−3101に基づく湿式分析法等で行い、光学特性(5mm厚みにおける)としての可視光線透過率(A光源にて、%)、紫外線透過率(%)、および日射透過率、主波長(D65光源にて、nm)、刺激純度(D65光源にて、%)については340 型自記分光光度計(日立製作所製)とJIS Z−8722、JIS R−3106、ISO/DIS−9050にて測定計算して求める等を行った。
【0038】
その結果、ガラス成分組成は重量表示でSiO71.15 %、Al1.99 %、CaO8.16 %、MgO3.67 %、NaO13.13 %、KO0.80 %、Fe0.826%、TiO0.067 %、CeO0.076 %、SO0.12 %、CoO0.00034%と成り、成分の総和が約99.989%であってかつSiO+Al+TiO73.207%、CaO +MgO11.83%、NaO+KO13.93%であり、還元率(Fe2+/Fe3+)は0.30〜0.35程度となった。なお例えば他にMnO 成分を0.0100〜0.0250%程度含むものでもあった。
【0039】
また光学特性は、約5mm厚において、可視光線透過率が約67.6%、日射透過率が約39.7%、主波長が約510.0nm 、紫外線透過率約10.1%、刺激純度が約3.1 %であり、所期のグリーン系色調であった。
【0040】
なお、本発明の約2.5mm 板厚の曲げ紫外線赤外線吸収緑色系ガラスを外側に用い、内側に約2mm板厚の熱線反射膜被覆曲げガラス板を配し、該膜側を内側にしてPVB 中間膜を介して積層した合せガラスを試作し、自動車の窓ガラスに用いたところ、規格をクリヤーすることができ、本発明の作用効果を高めるとともにさらに多機能化され、車内外の居住性なよびに安全性がより優れたものとなるものであった。
【0041】
実施例2
前記実施例1と同様なガラス原料、前記Cカレット、NMカレット、重量%でFe 約 0.38 %とCoO 約0.0018%を含むフリットガラス(Hカレット)を用い、秤量調合し、溶融操作をし、得たガラスを同様に試料化した。
【0042】
なお、原料バッチとして、例えば芒硝/(珪砂+長石)を約1.3 %程度、Cカレット約35%程度、NMカレット約13%程度、Hカレット約12%程度等とした。
得られた試料について前記実施例1と同様に分析、測定、評価した結果、ガラス成分組成は重量表示でSiO71.23 %、Al1.99 %、CaO8.17 %、MgO3.68 %、NaO13.14 %、KO0.80 %、Fe0.698%、TiO0.066 %、CeO0.079 %、SO0.12 %、CoO0.0003 %と成り、成分の総和が約99.973%であってかつSiO+Al+TiO73.286%、CaO +MgO11.85%、NaO+KO13.94%であり、還元率(Fe2+/Fe3+)は0.32〜0.37程度となった。なお例えば他にMnO 成分を0.0100〜0.0250%程度含むものでもあった。
【0043】
また光学特性は、約5mm厚において、可視光線透過率が約71.7%、日射透過率が約44.8%、主波長が約507.4nm 、紫外線透過率約13.6%、刺激純度が約2.8 %であり、所期の淡いグリーン系色調であった。
【0044】
さらに薄いガラス板でも高効率、高歩留りで前記規格に合格するものが得られるようになるものであった。
実施例3
前記実施例1と同様なガラス原料を用い、秤量調合し、溶融操作をし、得たガラスを同様に試料化した。
【0045】
得られた試料について前記実施例1と同様に分析、測定、評価した結果、ガラス成分組成は重量表示でSiO70.8%、Al1.6%、CaO9.52 %、MgO 2.51%、NaO13.54 %、KO0.9%、Fe0.833%、TiO0.067 %、CeO0.075 %、SO0.13 %、CoO0.00038%と成り、成分の総和が約99.975%であって、SiO+Al+TiO72.467%、CaO +MgO 12.03 %、NaO+KO 14.44 %であり、還元率は前記と同様に0.30〜0.35程度となった。光学特性は可視光線透過率が67.9%、日射透過率が39.5%、主波長が509.0nm 、刺激純度が3.1 であり、所期のグリーン系色調であった。
【0046】
易強化性についても、JIS 、例えばR3211 で決められた規格を充分満足するものであって、実施例1と同様、薄いガラス板でも高効率、高歩留りで前記規格に合格するものが得れるようになるものであった。
【0047】
実施例4
前記実施例2と同様なガラス原料を用い、秤量調合し、溶融操作をし、得たガラスを同様に試料化した。
【0048】
得られた試料について前記実施例1と同様に分析、測定、評価した結果、ガラス成分組成は重量表示でSiO69.55 %、Al1.8%、CaO9.85 %、MgO 3.32%、NaO13.47 %、KO1.0%、Fe0.695%、TiO0.065 %、CeO0.077 %、SO0.15 %、CoO0.00028%と成り、成分の総和が約99.977%であって、SiO+Al+TiO71.415%、CaO +MgO 13.17 %、NaO+KO 14.47 %であり、還元率は前記実施例2と同様に0.32〜0.37程度となった。光学特性は可視光線透過率が71.9%、日射透過率が45.2%、主波長が507.0nm 、刺激純度が2.8 %であり、所期のグリーン系色調であった。
【0049】
さらに易強化性についても、前記実施例3と同様にJIS 例えばR3211 で決められた規格を充分満足するものであって、実施例1と同様に薄いガラス板でも高効率、高歩留りで前記規格に合格するものが得れるようになるものであった。
実施例5
前記実施例2と同様なガラス原料を用い、秤量調合し、溶融操作をし、得たガラスを同様に試料化した。
【0050】
得られた試料について前記実施例1と同様に分析、測定、評価した結果、ガラス成分組成は重量表示でSiO70.70 %、Al2.0%、CaO8.4%、MgO3.7%、NaO12.9%、KO1.0%、Fe0.870%、TiO0.020 %、CeO0.090 %、SO0.19 %、CoO0.00006%と成り、成分の総和が約99.87 %であって、SiO+Al+TiO72.72 %、CaO +MgO 12.10 %、NaO+KO 13.9%であり、還元率は前記実施例2と同様に約0.37程度となった。光学特性は可視光線(380 〜780nm )透過率が66.6%、日射(340 〜1800nm)透過率が38.5%、主波長が506.1 〜508.7nm 、刺激純度が2.4 〜3.8 %であり、紫外線(297.5 〜377.5nm )透過率が11.4%であり、所期のグリーン系色調であった。なお例えば他にMnO 成分を0.0020〜0.0250%程度含むものでもあった。
【0051】
比較例1
前記したと同様にして得られたガラスを同様に試料化した。
得られた試料について前記実施例1と同様に分析、測定、評価した結果、ガラス成分組成は重量表示でSiO73.0%、Al1.7%、CaO6.45 %、MgO 3.0 %、NaO13.1%、KO1.0%、Fe0.572%、TiO0.73%、CeO0.22%、SO0.22 %と成り、成分の総和が約99.992%であって、SiO+Al+TiO75.43 %、CaO +MgO 9.45%、NaO+KO 14.1%であり、酸化性のCeOを加えているので、還元率を高めるため、カーボン等の還元剤を加えて還元率を約40%前後と調整した。光学特性は可視光線透過率が70.9%、日射透過率が42.8%、主波長が538.6nm 、刺激純度が4.2 であり、所期のグリーン系色調であるとは必ずしも言えなかった。
【0052】
また黄色状素地の発現が少々見られ、所謂リームあるいはデストーション等がたまたま発生することがあり、必ずしも極めて充分とは言い難く、さらに品質および生産性を高める必要を多少感じるようなものであった。
【0053】
さらに易強化性についても、前記実施例3と同様に実施したところ、特に前記実施例3乃至4とは差異があるものであってJIS 例えばR3211 で決められた規格を必ずしも満足するものではなかった。また強化処理等で必ずしも効率や歩留りを向上させるものではなかった。
【0054】
なお、上述した各実施例は本発明の一例を示すものであって、これら実施例に限られるものではない。
【0055】
【発明の効果】
本発明によれば、特定酸化物成分を特定組成範囲で組み合わせた紫外線赤外線吸収緑色系ガラスとし、しかもTiOとCeOの濃度を低減できたなかでCoO を微量添加できるようにし、特異な原料を組み合わせて用いることもでき、還元率の低下を抑制し、赤外線の吸収と紫外線の吸収とをバランス良く、充分透視性を持ち、所期のグリーン系色調を呈するガラスを、フロート法における実窯の操業条件ならびに製板条件を大幅に変更することなく、品質や歩留りを高めて生産性を向上し、安定操業で製造することができ、人的物的両面で高居住性、高安全性、高環境性を有し軽量化も可能であるものと成り、建築用窓ガラス等はもちろん、ことに自動車用窓ガラスに適用して有用なものと成るより安価な紫外線赤外線吸収緑色系ガラスを提供するものである。
[0001]
[Industrial application fields]
The present invention relates to a UV-infrared-absorbing green-based glass that has relatively high transparency and absorbs infrared UV rays and is highly livable and highly safe and can be reduced in weight, as well as architectural window glass and various glass articles, In particular, the present invention provides the ultraviolet-infrared-absorbing green glass useful for vehicle window glass.
[0002]
[Prior art]
Rich in recent years, energy savings such as reduction of cooling load or deterioration and discoloration in organic matter, etc., by adding multi-functionality such as reflection and absorption of infrared rays and ultraviolet rays to the glass itself or the glass surface, both personally and physically There is a rapidly increasing need for flat glass articles that lead to higher habitability.
[0003]
Therefore, in addition to the conventional infrared absorbing glass, a glass which is conscious of ultraviolet absorption is being proposed. For example, Japanese Patent Application Laid-Open No. 64-18938 discloses Fe.2O3As a continuous flow of molten glass having at least 0.45 wt% iron and controlling the redox conditions during the melting operation to give at least 35% ferrous iron expressed as FeO 2. And soda-lime-silica flat plate in a continuous manner, wherein the flat glass has a light transmittance of at least 65% and an infrared transmittance of 15% or less. A method for producing glass is disclosed.
[0004]
The publication describes Fe in glass.2O3Expressed as a total iron content of less than 0.65% or the sulfur content of the product glass is SO3As less than 0.02%, etc., and Fe2O3At least 0.45% by weight of total iron, of which at least 50% is iron in the ferrous state expressed as FeO 2, and SO3A soda-lime-silica glass article having a sulfur content of less than 0.02 wt.% And exhibiting a light transmission of at least 65% and a total solar infrared transmission of 15% or less is disclosed. 66-75% SiO, based on weight212-20% Na2O, 7-12% CaO 2, 0-5% MgO 2, 0-4% Al2O3, 0-3% K2O, 0-1% Fe2O3, And CeO2TiO2, V2O5Or MoO3It is described that those having a composition consisting essentially of 0 to 1.5% of the total are preferable.
[0005]
Further, for example, in Japanese Patent Laid-Open No. 3-187946, Fe of about 0.51 to 0.96 expressed in weight% is used.2O3About 0.15 to 0.33 FeO and about 0.2 to 1.4 CeO.2Infrared and ultraviolet absorbing soda-lime-silica green glass is disclosed.
[0006]
Further, for example, Japanese Patent Application Laid-Open Nos. 4-193737, 4-224133, 5-78147, Japanese Patent Application No. 3-144828, Japanese Patent Application No. 5-17839, and There is Japanese Patent Application No. 5-24456, and others include, for example, Japanese Patent Application Laid-Open No. 4-310539.
[0007]
Further, for example, in Japanese Patent Laid-Open No. 4-231347, it is expressed in wt% as SiO 2268-75%, Na2O10-20%, CaO5-15%, MgO0-5%, Al2O30-5%, K20 to 5% O and less than 0.5% by weight CeO2And more than 0.85 wt% total iron (Fe2O3And having a colorant component consisting essentially of total iron with FeO 2 / total iron less than 0.275% by weight, with a reference thickness of 3.9 mm and an ultraviolet transmittance of not more than 31% (300 to 390 nm) A green ultraviolet absorbing glass exhibiting is disclosed.
[0008]
Furthermore, for example, JP-A-6-92678 discloses essentially 65 to 80% SiO expressed in weight%.20-5% Al2O3, 0-5% B2O30-10% MgO, 5-15% CaO 2, 10-18% Na2O, 0-5% K2O 2, 0.5-15% MgO + CaO 2, 10-20% Na2O + K2O 2, 0.3-2% CeO2Cerium oxide, 0 to 1% TiO20.1-0.8% Fe2O3An ultraviolet-infrared-absorbing glass composed of iron oxide converted to 0, 0.006% CoO, 0-0.01% NiO 2 and 0-0.0015% Se is disclosed.
[0009]
[Problems to be solved by the invention]
For example, those described in Japanese Patent Application Laid-Open No. 64-18938 are described above.3It is difficult to obtain the desired infrared and ultraviolet absorbing glass by means of melting operation in the production of plate glass by the usual float process with less than 0.02% by weight of components, and various complicated means steps such as liquefaction A stage, a dissolution stage, a clarification stage, a stirrer, a stirrer, and the like are required, and those described in JP-A-3-187946 are not necessarily excellent in absorption of infrared rays. None of these JP-A-3-187946 to JP-A-4-310539 and the like are relatively expensive CeO.2Ingredients could not be extremely reduced.
[0010]
Among them, those described in JP-A-4-231347 and JP-A-6-92678 are all CeO.2Although the component is reduced, the former is all iron (Fe2O3As)), the latter is CeO2It is difficult to say that the components are sufficiently reduced, and if anything, it is a bronze or gray color and is difficult to say a green color.
[0011]
[Means for solving problems]
The present invention has been made in view of such conventional drawbacks, and can produce a sheet glass by a normal float process, and is relatively expensive CeO.2In addition to making it possible to extremely reduce the components to near zero and to increase the amount to an appropriate level without excessively increasing the total amount of iron, it also reduces productivity due to discoloration and inhomogeneity and deteriorates operating conditions. In the process of improving productivity and maintaining stable quality, it has sufficient absorption of infrared rays and ultraviolet rays, and exhibits a relatively transparent green color tone. In addition, the present invention provides an ultraviolet-infrared-absorbing green glass having sufficient weather resistance and moldability.
[0012]
The present invention is substantially the following oxide in terms of% by weight:2 68-73%, Al2OThree0.05 to 3.0%, CaO 7.5 to 11.0%, MgO 2.0 to 4.2%, Na2O 12.0-16.0%, K2O 0.5-3.0%, SOThree0.05 to 0.19%, Fe2OThree0.60-0.95%, CeO2 0.001 to 0.10% (excluding 0.10%), TiO2 0.03-0.15%, CoO 0.0001-0.0015%, the sum of these components99.87% Or more and SiO2+ Al2OThree+ TiO270.0-74.0%, CaO + Mg0 10.0-15.0%, Na2O + K2O 13.0-17.0%, and in terms of 5mm thickness, visible light transmittance by A light source is 65% or more, solar transmittance is 35-50%, ultraviolet transmittance is 7-17%, D65It is an ultraviolet-infrared-absorbing green glass with a dominant wavelength of 500 to 515 nm and a stimulus purity of 3.5% or less.
[0013]
Also,The reduction rate of the glass Fe 2+ / Fe 3+ In display 30 ~ 40 %It is a UV-infrared absorbing green glass.
[0016]
Where SiO2The reason why the component is 68 to 73% by weight is that if it is less than 68%, the surface tends to be burned and the weather resistance is lowered, resulting in practical problems. It becomes difficult, Al2O3The reason why the component is 0.05 to 3.0% by weight is that if it is less than 0.05%, the weather resistance is lowered, and the surface is likely to be burned. When the content exceeds V, devitrification tends to occur and the molding temperature range becomes narrow and the production becomes difficult. The CaO component is 7.5 to 11.0% by weight. As the melting temperature becomes high and the flow temperature is not lowered, it becomes difficult to produce, and if it exceeds 11%, devitrification tends to occur, the molding work range becomes narrow and the production becomes difficult. If the ratio is less than 2.0%, the melting temperature rises and the operating range is narrowed, making it difficult to manufacture. If the ratio exceeds 4.2%, the easy strengthening property decreases. Yes, Na2The reason why the O component is set to 12.0 to 16.0% by weight is that if it is less than 12.0, the meltability is deteriorated and the easy strengthening property is lowered, the moldability becomes difficult, and devitrification easily occurs. The range becomes narrow and difficult to manufacture, and if it exceeds 16%, the weather resistance is lowered, and the surface is liable to be burned, resulting in practical problems.2The reason why the O component is set to 0.5 to 3.0% by weight is that if it is less than 0.5%, the ease of strengthening decreases, and if it exceeds 3.0%, the weather resistance decreases and the cost increases. .
[0017]
In addition, SO3The component was made 0.05 to 0.30% in terms of% by weight. If it is less than 0.05%, for example, it would be possible only to the extent that defoaming or homogeneity tends to be insufficient in normal melting, and 0.30% If it exceeds, it will affect the colored state of the glass in particular, for example, it will be easy to shift to a yellow or amber color tone, and the desired green color tone will not be obtained, preferably around 0.15% If anything, the lower part of the range is better.
[0018]
Furthermore, Fe2O3The reason why the component is 0.60 to 0.95% by weight is the amount of FeO 2 that absorbs infrared rays and the amount of Fe that absorbs ultraviolet rays and ensures the desired color tone.2O3In order to stably obtain the various optical properties described above as a total amount with the component amount, other CeO2TiO2When the amount is less than 0.60%, the effect on the above is inferior, and when it exceeds 0.95%, the visible light transmittance particularly decreases and the intended color tone cannot be controlled. In order to obtain a more reliable desired color tone, it is preferably about 0.60 to 0.90% by weight%, more preferably about% by weight. It is about 0.60 to 0.85%, about 0.63 to 0.73% for a light color tone, and about 0.73 to 0.88% for a normal color tone.
[0019]
CeO2And TiO2The component has an ultraviolet absorption effect, and CeO2The component is 0.001 to 0.10%, TiO2The reason why the component is 0.01 to 0.15% is that the reduction rate in the glass is hardly changed and the ultraviolet absorbing ability is CeO.2TiO smaller than component2CeO that sufficiently changes the reduction ratio of the components and the glass and provides sufficient UV absorption ability2By combining the components within the specific range described above, the desired properties can be efficiently obtained with a small amount of content, while the conventional reduction rate is hardly changed, and the aforementioned total iron Fe in2O3This is to control the ratio of FeO 2 and FeO 3 so as not to lower the transmittance in the visible light region as a whole and to achieve desired optical characteristics such as ultraviolet absorption and infrared absorption.
[0020]
Furthermore, CeO is effective in absorbing ultraviolet light and has strong oxidizing properties.2If there are relatively many components in the glass substrate,2O3  FeO 3 and all iron+3For example, it becomes easy to develop a yellow-colored glass substrate, which causes non-uniform defects such as so-called ream and distortion, leading to a decrease in productivity and workability. It becomes. In order to prevent this phenomenon, the amount of CeO was made smaller than before.2The component is 0.001 to 0.10%, preferably about 0.005 to 0.08%, and can more stably and reliably suppress the expected green tone and the occurrence of the defect. The optical characteristics can be maintained.
[0021]
Furthermore, although it is effective in absorbing ultraviolet rays, it absorbs also in the visible region.2Ingredients are Fe in glass substrate2O3  As the total iron concentration has to be reduced, it becomes negative overall, so TiO2The component is in the range of 0.01 to 0.15%, preferably about 0.03 to 0.10%, and the total iron concentration and TiO2Ingredients and CeO2The balance with the component range is adjusted, and as a supplement, a small amount of CoO 2 component is added in the range of 0.0001 to 0.0015% so that the color tone can be adjusted relatively easily. Preferably, it is about 0.0002 to 0.0010%, and it is easy to adjust with better balance.
[0022]
Furthermore, the reduction rate is Fe2+/ Fe3+The display is about 30 to 40%, preferably about 32 to 38%. In other words, CeO is highly oxidizable2By reducing the components as much as possible, it is not necessary to increase the reduction rate of total iron. Rather, an increase in the reduction rate of the total iron is undesirable because it reduces the absorption rate of ultraviolet rays, and the ultraviolet shielding rate and When the transmittance of solar radiation is taken into consideration, the above range is obtained. In any case, the present invention can obtain a UV-infrared-absorbing green glass aiming for color tone and optical characteristics by adjusting the color components, their concentrations, and batch redox conditions.
[0023]
SiO2, Al2OThree, CaO, MgO, Na2OK2O, Fe2OThree, SOThree, CeO2, TiO2The sum of ingredients in percentage by weight99.87For example, MnO, ZnO, SnO2Equal amount of trace components, even the sum of each trace component0.13It is for controlling to the quantity which does not exceed%. More specifically, for example, about 0.0005 to 0.0370% of MnO is preferable because it can give a subtle effect to control the green color tone.
[0024]
Furthermore, SiO2+ Al2O3+ TiO2Is 70.0 to 74.0% by weight percentage because when 70% or less, the weather resistance is lowered, and when it exceeds 74%, the easy strengthening property is lowered. CaO 2 + MgO 2 is 10% by weight. 0.01 to 15.0% because CaO and MgO components are used for lowering the melting temperature, and if less than 10%, the easy strengthening is reduced, and if it exceeds 15%, devitrification tends to occur and it is difficult to manufacture. Na Na2O + K2The reason why the percentage of O 2 is set to 13.0 to 17% is that if it is less than 13.0%, the ease of strengthening is reduced, and devitrification is likely to occur, the working temperature range becomes narrow in molding, and manufacturing becomes difficult. If it exceeds 1, the weather resistance will be lowered, causing problems in practical use and increasing the cost.
[0025]
Furthermore, in terms of 5 mm thickness, the visible light transmittance by the A light source is 65% or more, the solar radiation transmittance is 35-50%, the ultraviolet transmittance is 7-17%, the dominant wavelength is 500-515 nm, and the stimulation purity is 3 .5% or less when the visible light transmittance is 65% or less, the transparency of the glass, particularly at night, at night or when it rains, is reduced in the windshield of an automobile. The visible light transmittance is preferably 67% or more, more preferably about 70 to 75%.
[0026]
In addition, if the solar radiation transmittance exceeds 50%, the cooling load is increased or the feeling of improving the comfort in the vehicle and the room is not sufficiently satisfied. This is not preferable because it may adversely affect the color reduction or color tone, and is preferably about 37 to 47%.
[0027]
Further, if the ultraviolet transmittance exceeds 17%, it tends to lead to deterioration of the habitability due to human effects such as decolorization / deterioration of articles in the vehicle or in the room or skin burn, and if it is less than 7%, for example, the visible light transmittance cannot be obtained. Such an adverse effect is likely to occur, and is preferably about 9 to 15%. This is because when the dominant wavelength exceeds 515 nm, yellow or amber color affects the desired green tone system, and when it is less than 500 nm, the blue color wins too much and the desired green tone system is not achieved. It is about ~ 512 nm. If the stimulus purity exceeds 3.5%, the object's discriminability will decrease, and it will be difficult to ensure safety, for example, because it will hinder the occupant's visibility due to sunset or drought rain. is there. The ultraviolet range was 290 to 390 nm, and the visible range and the like were the same as before.
[0028]
Furthermore, for example, in producing the ultraviolet and infrared absorbing green glass, the mother glass composition of the present invention is used as a raw material, for example, Fe.2O3, SO3, CeO2TiO2Alternatively, MnO 2, S2-Frit glass or cullet or the like belonging to these, and further Fe2O3It is preferable to use a frit glass or cullet containing CoO 2, a frit glass containing CoO 2, and further ilmenite. These quantitative adjustments can be surely and reliably ensured, and FeO 2 is incorporated into the glass. Incorporation becomes easier, and the operating conditions of the actual kiln are almost unchanged, so that the redox state of the glass is not changed as much as possible, that is, the reduction rate is about 45% in the actual kiln. In producing the infrared ultraviolet absorbing green glass of the present invention, CeO2In consideration of various actions such as 30 to 40% as much as possible, it is possible to use at least one of metal powders or oxides such as carbon, Zn, Sn, etc. as a trace raw material, For example, sometimes mirabilite (Na2SO4) It is necessary to help the effect of the clarifying agent, and on the other hand, it tends to adversely affect the desired color tone, and a reducing agent such as Zn or Sn is also Fe.2O3This is because it may be necessary to adjust the balance between Fe and FeO 2.
[0029]
The ultraviolet-infrared-absorbing green glass of the present invention also includes an easily tempered glass composition, which is a thin glass plate with a plate thickness of about 1 mm to a thick plate plate with a thickness of about 15 mm. , Semi-tempered, tempered, etc., used in single plate glass, laminated glass, laminated glass or multilayer glass, etc., it is useful to be used in building window materials, especially in vehicle window glass. .
[0030]
[Action]
As described above, the ultraviolet-infrared-absorbing green glass of the present invention combines a specific oxide component in a specific composition range, and is particularly expensive and highly oxidative CeO.2Using glass with a controlled component and a related component and its concentration controlled, or by using a unique raw material in combination with the glass composition including easy strengthening and suppressing the reduction of the reduction rate. For example, it is possible to suppress and eliminate the occurrence of yellow-colored glass substrates by drastically reducing the yield reduction due to the development of so-called reams and distortions and, in some cases, the generation of fine bubbles. Therefore, stable operation and quality can be improved, and the yield and productivity can be sufficiently improved.
[0031]
For example, a small amount of CeO2CeO with heavy specific gravity because it is a component2There are no restrictions on the amount of use due to the difference in specific gravity of the components (specific gravity: about 7.0 to 7.2), and CeO can be replenished with frit glass or cullet at the time of normal operation as well as color change.2The component composition can be fully satisfied, and the raw material batch contains CeO.2It is possible to make the component zero or a minute amount close to zero.2The component can be brought in a relatively small amount of direction, and the optical properties can be satisfied.
[0032]
Furthermore, considering, for example, meltability, clarity, weather resistance, formability, devitrification, cost, etc., the manufacturing conditions of conventional float glass and the properties of the glass are hardly changed, and in addition, it has easy toughness. In addition to the glass composition, it absorbs infrared rays and ultraviolet rays and is highly habitable in terms of human and physical properties, and has sufficient transparency to identify objects, ensuring high safety and green color tone. The system is well harmonized with, for example, the car / indoor / outdoor environment, and is environmentally superior. Furthermore, even with thin glass that could not be obtained with conventional heat strengthening methods, the degree of strengthening or sufficient strength is increased. In addition to architectural window glass, glass for furniture, cooking glass, and particularly for infrared and ultraviolet absorbing green-based glass useful for window glass for vehicles such as automobiles can be provided. A.
[0033]
【Example】
Examples of the present invention will be described below. However, the present invention is not limited to the embodiment.
[0034]
Example 1
Examples of glass raw materials include quartz sand, feldspar, soda ash, dolomite, limestone, mirabilite, bengara, titanium oxide, cerium carbonate or ilmenite, carbon, slag, frit glass and cullet, for example, Fe in wt%2O3  About 0.09% and TiO2Clear cullet (C galette) containing about 0.04%, Fe2O3  About 0.675% and TiO2About 0.20% and CeO2Frit glass (NM frit) or cullet (NM cullet) mainly containing about 0.60% or the like, and frit glass (Co frit) containing about 0.0960% CoO or the like are appropriately used to obtain the desired glass composition. The target composition is weighed and mixed to obtain a reduction rate (about 35 ± 3%) that is slightly lower than that of a normal kiln.
[0035]
As raw material batches, for example, mirabilite / (silica sand + feldspar) is about 1% (about 0.5-2%), C cullet about 47%, NM cullet about 13%, Co frit about 0.32% Grade (total of cullet and frit is about 40 to 65%).
[0036]
The prepared raw material is put in a crucible and melted for about 3 to 4 hours in an actual kiln (eg, the side wall of the inlet, the side wall of the condition port) held in about 1450 ° C. or an electric furnace equivalent to the actual kiln. For further homogenization and clarification, hold for about 1.5 to 2 hours at 1420 to 1430 ° C., then pour into a mold and cut into a glass plate with a size of 100 mm × 100 mm and a thickness of about 5 mm. Each sample was ground and polished, or glass was poured into a plate shape.
[0037]
With respect to this sample, the glass component composition (% by weight) is measured by a wet analysis method based on JIS R-3101, and the visible light transmittance (% at A light source) as optical characteristics (at 5 mm thickness), ultraviolet light transmission. Rate (%), solar transmittance, dominant wavelength (D65With light source, nm), stimulation purity (D65With respect to the light source,%) was obtained by measurement and calculation using a 340 type spectrophotometer (manufactured by Hitachi, Ltd.) and JIS Z-8722, JIS R-3106, ISO / DIS-9050.
[0038]
As a result, the glass component composition is expressed in terms of weight by SiO.271.15%, Al2O31.99%, CaO 8.16%, MgO 3.67%, Na2O13.13%, K2O0.80%, Fe2O30.826%, TiO20.067%, CeO20.076%, SO30.12%, CoO 0.00034%, the total of the components is about 99.989% and SiO22+ Al2O3+ TiO273.207%, CaO + MgO 11.83%, Na2O + K2O 13.93% and the reduction rate (Fe2+/ Fe3+) Was about 0.30 to 0.35. In addition, for example, it also included about 0.0100 to 0.0250% of MnO 2 component.
[0039]
The optical characteristics are about 5 mm thick, visible light transmittance is about 67.6%, solar radiation transmittance is about 39.7%, dominant wavelength is about 510.0 nm, ultraviolet transmittance is about 10.1%, stimulation purity. Was about 3.1%, which was the desired green color tone.
[0040]
In addition, the bent ultraviolet ray infrared absorbing green glass having a thickness of about 2.5 mm according to the present invention is used on the outside, a heat ray reflective film-coated bent glass plate with a thickness of about 2 mm is arranged on the inside, and the PVB is placed with the film side on the inside. When a laminated glass laminated through an interlayer film is prototyped and used for a window glass of an automobile, the standard can be cleared, and the functions and effects of the present invention are enhanced and more multifunctional. In addition, the safety is improved.
[0041]
Example 2
Same glass raw material as in Example 1, C cullet, NM cullet, Fe in% by weight2O3  A frit glass (H cullet) containing about 0.38% and CoO about 0.0018% was weighed and prepared for melting operation, and the obtained glass was similarly sampled.
[0042]
In addition, as raw material batches, for example, mirabilite / (silica sand + feldspar) was about 1.3%, C cullet about 35%, NM cullet about 13%, H cullet about 12%, and the like.
As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition was expressed in terms of weight by SiO.271.23%, Al2O31.99%, CaO 8.17%, MgO 3.68%, Na2O13.14%, K2O0.80%, Fe2O30.698%, TiO20.066%, CeO20.079%, SO30.12%, CoO 0.0003%, the total sum of the components is about 99.973%, and SiO 22+ Al2O3+ TiO273.286%, CaO + MgO 11.85%, Na2O + K2O13.94%, the reduction rate (Fe2+/ Fe3+) Was about 0.32 to 0.37. In addition, for example, it also included about 0.0100 to 0.0250% of MnO 2 component.
[0043]
Optical properties are about 5 mm thick, visible light transmittance is about 71.7%, solar radiation transmittance is about 44.8%, dominant wavelength is about 507.4 nm, ultraviolet transmittance is about 13.6%, stimulation purity. Was about 2.8%, and the intended pale green color tone was obtained.
[0044]
Furthermore, even thin glass plates can be obtained that pass the above-mentioned standards with high efficiency and high yield.
Example 3
Using the same glass raw material as in Example 1, weighed and prepared, melted, and sampled the obtained glass in the same manner.
[0045]
As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition is expressed by weight in terms of SiO.270.8%, Al2O31.6%, CaO 9.52%, MgO 2.51%, Na2O13.54%, K2O0.9%, Fe2O30.833%, TiO20.067%, CeO20.075%, SO30.13% and CoO 0.00038%, and the total of the components is about 99.975%, and SiO22+ Al2O3+ TiO272.467%, CaO + MgO 12.03%, Na2O + K2O was 14.44%, and the reduction rate was about 0.30 to 0.35 as described above. The optical properties were 67.9% visible light transmittance, 39.5% solar radiation transmittance, 509.0 nm dominant wavelength, 3.1 stimulus purity, and the desired green color tone.
[0046]
As for easy strengthening, JIS, for example, the standard determined by R3211, for example, is sufficiently satisfied, and as in Example 1, a thin glass plate can pass the above standard with high efficiency and high yield. It was to become.
[0047]
Example 4
Using the same glass raw material as in Example 2, weighed and prepared, melted, and sampled the obtained glass in the same manner.
[0048]
As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition is expressed by weight in terms of SiO.269.55%, Al2O31.8%, CaO 9.85%, MgO 3.32%, Na2O13.47%, K2O1.0%, Fe2O30.695%, TiO20.065%, CeO20.077%, SO30.15% and CoO 0.00028%, and the total sum of the components is about 99.977%,2+ Al2O3+ TiO271.415%, CaO + MgO 13.17%, Na2O + K2O was 14.47%, and the reduction rate was about 0.32 to 0.37 as in Example 2. The optical characteristics were a visible green color tone having a visible light transmittance of 71.9%, a solar radiation transmittance of 45.2%, a dominant wavelength of 507.0 nm, and an excitation purity of 2.8%.
[0049]
Further, with regard to easy strengthening, it satisfies the standard defined in JIS, for example, R3211 as in the case of Example 3, and even with a thin glass plate as in Example 1, it is highly efficient and has a high yield. The one that passed was able to be obtained.
Example 5
Using the same glass raw material as in Example 2, weighed and prepared, melted, and sampled the obtained glass in the same manner.
[0050]
As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition was expressed in terms of weight by SiO.270.70%, Al2O32.0%, CaO 8.4%, MgO 3.7%, Na2O 12.9%, K2O1.0%, Fe2O30.870%, TiO20.020%, CeO20.090%, SO30.19% and CoO 0.00006%, the total sum of the components is about 99.87%, and SiO 22+ Al2O3+ TiO272.72%, CaO + MgO 12.10%, Na2O + K2O was 13.9%, and the reduction rate was about 0.37 as in Example 2. Optical properties are visible light (380 to 780 nm) transmittance of 66.6%, solar radiation (340 to 1800 nm) transmittance of 38.5%, dominant wavelength of 506.1 to 508.7 nm, and stimulation purity of 2.4 to. It was 3.8%, and the transmittance of ultraviolet rays (297.5 to 377.5 nm) was 11.4%, which was the desired green color tone. In addition, for example, it also included about 0.0020 to 0.0250% of MnO 2 component.
[0051]
Comparative Example 1
Glass obtained in the same manner as described above was sampled in the same manner.
As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition is expressed by weight in terms of SiO.273.0%, Al2O31.7%, CaO 6.45%, MgO 3.0%, Na2O13.1%, K2O1.0%, Fe2O30.572%, TiO20.73%, CeO20.22%, SO30.22%, and the total of the components is about 99.992%, and SiO 22+ Al2O3+ TiO275.43%, CaO + MgO 9.45%, Na2O + K214.1% O and oxidizing CeO2In order to increase the reduction rate, a reduction agent such as carbon was added to adjust the reduction rate to about 40%. The optical properties are visible light transmittance of 70.9%, solar radiation transmittance of 42.8%, dominant wavelength of 538.6 nm, stimulation purity of 4.2, and it is not necessarily the desired green color tone. There wasn't.
[0052]
In addition, the appearance of a yellowish base was seen a little, so-called reams or distortions sometimes occurred, and it was not always sufficient, and it seemed that there was a need to further improve quality and productivity. .
[0053]
Further, with regard to easy strengthening, when carried out in the same manner as in Example 3, it was particularly different from those in Examples 3 to 4 and did not necessarily satisfy the standards defined in JIS, for example, R3211. . Further, the efficiency and yield are not necessarily improved by the strengthening process or the like.
[0054]
Each of the above-described embodiments shows an example of the present invention and is not limited to these embodiments.
[0055]
【The invention's effect】
According to the present invention, an ultraviolet-infrared-absorbing green glass in which specific oxide components are combined in a specific composition range, and TiO2And CeO2CoO.sub.2 can be added in a small amount while reducing the concentration of carbon dioxide, and it can also be used in combination with specific raw materials, suppresses the reduction in reduction rate, balances the absorption of infrared rays and ultraviolet rays, and has sufficient transparency. The glass with the desired green color tone is manufactured in a stable operation without increasing the actual kiln operating conditions and platemaking conditions in the float process, improving the quality and yield and improving the productivity. It is possible to reduce weight and have high habitability, high safety, high environmental performance in both human and physical aspects, and it can be applied to window glass for automobiles as well as architectural window glass. Thus, a more inexpensive ultraviolet and infrared absorbing green glass that is useful is provided.

Claims (3)

重量%表示で実質的に下記酸化物であり、SiO2 68〜73%、Al2O30.05〜3.0 %、CaO 7.5 〜11.0%、MgO2.0 〜4.2 %、Na2O 12.0〜16.0%、K2O 0.5 〜3.0 %、SO3 0.05〜0.19%、Fe2O3 0.60〜0.95%、CeO2 0.001 〜0.10%(但し、0.10%は除く)、TiO2 0.03〜0.15%、CoO 0.0001〜0.0015%、これら成分の総和が99.87%以上であって、かつSiO2+Al2O3+TiO2 70.0〜74.0%、CaO +Mg0 10.0〜15.0%、Na2O+K2O 13.0〜17.0%であり、さらに5mm 厚換算でA 光源による可視光線透過率が65%以上、日射透過率が35〜50%、紫外線透過率が7〜17%、D65 光源による主波長が500 〜515 nm、刺激純度が3.5 %以下であることを特徴とする紫外線赤外線吸収緑色系ガラス。It is substantially the following oxide in terms of weight%, SiO 2 68~73%, Al 2 O 3 0.05~3.0 %, CaO 7.5 ~11.0%, MgO2.0 ~4.2%, Na 2 O 12.0~16.0%, K 2 O 0.5 ~3.0%, SO 3 0.05~0.19%, Fe 2 O 3 0.60 to 0.95%, CeO 2 0.001 to 0.10% (excluding 0.10%), TiO 2 0.03 to 0.15%, CoO 0.0001 to 0.0015%, the sum of these components is 99.87 % or more, and SiO 2 + Al 2 O 3 + TiO 2 70.0-74.0%, CaO + Mg0 10.0-15.0%, Na 2 O + K 2 O 13.0-17.0% An ultraviolet-infrared-absorbing green glass characterized by an ultraviolet transmittance of 7 to 17%, a dominant wavelength of D 65 light source of 500 to 515 nm, and an excitation purity of 3.5% or less. 前記酸化物がさらにThe oxide further MnOMnO The 0.00050.0005 ~ 0.03700.0370 %含むことを特徴とする請求項1に記載の紫外線赤外線吸収緑色系ガラス。% Ultraviolet-absorbing green glass according to claim 1. 前記ガラスの還元率がThe reduction rate of the glass FeFe 2+2+ /Fe/ Fe 3+3+ 表示でIn display 3030 ~ 4040 %であることを特徴とする請求項1または請求項2に記載の紫外線赤外線吸収緑色系ガラス。The ultraviolet-infrared-absorbing green glass according to claim 1 or 2, wherein the glass is ultraviolet-absorbing green glass.
JP20747394A 1994-05-20 1994-08-31 UV-infrared absorbing green glass Expired - Fee Related JP3606607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20747394A JP3606607B2 (en) 1994-05-20 1994-08-31 UV-infrared absorbing green glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13097094 1994-05-20
JP6-130970 1994-05-20
JP20747394A JP3606607B2 (en) 1994-05-20 1994-08-31 UV-infrared absorbing green glass

Publications (2)

Publication Number Publication Date
JPH0834637A JPH0834637A (en) 1996-02-06
JP3606607B2 true JP3606607B2 (en) 2005-01-05

Family

ID=26465942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20747394A Expired - Fee Related JP3606607B2 (en) 1994-05-20 1994-08-31 UV-infrared absorbing green glass

Country Status (1)

Country Link
JP (1) JP3606607B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731696B1 (en) * 1995-03-16 1997-04-25 Saint Gobain Vitrage GLASS SHEETS FOR THE MANUFACTURE OF GLAZING
JP3899531B2 (en) * 1995-06-16 2007-03-28 日本板硝子株式会社 UV infrared absorbing glass

Also Published As

Publication number Publication date
JPH0834637A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JP2544035B2 (en) High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same
JP3086165B2 (en) UV-infrared absorbing green glass
EP1067098B1 (en) Soda-lime-silica float glass batch mixture
EP0814064B1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
JP2528579B2 (en) Frit glass with high iron content and high reduction rate, and ultraviolet / infrared absorbing green glass using it
US5364820A (en) Neutral gray-colored infrared and ultraviolet radiation absorbing glass
EP1023245B1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
EP0709344B1 (en) Glass having low solar radiation and ultraviolet ray transmittance
US6313053B1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
EP0453551A1 (en) Infrared and ultraviolet radiation absorbing green glass composition
EP0439602A1 (en) Infrared radiation absorbing blue glass composition
US9206072B2 (en) Colored glass plate and method for its production
JPH11217234A (en) Deep gray color glass
JPH10265239A (en) Ultraviolet ray and infrared ray absorption glass
US6455452B1 (en) Bronze privacy glass
JPH10226534A (en) Ultraviolet absorbing glass
JP2005132709A (en) Ultraviolet and infrared absorbing green glass
US9206073B2 (en) Colored glass plate and method for its production
JP3606607B2 (en) UV-infrared absorbing green glass
US6605555B2 (en) Methods of increasing the redox ratio of iron in a glass article
JPH09208251A (en) Ultraviolet rays and infrared rays absorbing green glass
JP2005162537A (en) Ultraviolet and infrared-absorbing green glass
JP4736465B2 (en) UV-infrared absorbing green glass
JP2513944B2 (en) Infrared UV absorbing glass
JPH04224133A (en) Ir and uv absorbing glass and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees