JPH04224133A - Ir and uv absorbing glass and its manufacture - Google Patents

Ir and uv absorbing glass and its manufacture

Info

Publication number
JPH04224133A
JPH04224133A JP40584090A JP40584090A JPH04224133A JP H04224133 A JPH04224133 A JP H04224133A JP 40584090 A JP40584090 A JP 40584090A JP 40584090 A JP40584090 A JP 40584090A JP H04224133 A JPH04224133 A JP H04224133A
Authority
JP
Japan
Prior art keywords
glass
infrared
cao
al2o3
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40584090A
Other languages
Japanese (ja)
Other versions
JPH0694377B2 (en
Inventor
Shigeki Morimoto
森本 繁樹
Tadashi Noguchi
正 野口
Yasushi Taguchi
泰史 田口
Yamato Taniguchi
大和 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP40584090A priority Critical patent/JPH0694377B2/en
Priority to EP91120063A priority patent/EP0488110B1/en
Priority to DE69120509T priority patent/DE69120509T2/en
Publication of JPH04224133A publication Critical patent/JPH04224133A/en
Priority to US08/112,913 priority patent/US5362689A/en
Publication of JPH0694377B2 publication Critical patent/JPH0694377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve transparency by allowing a glass composition to incorporate SiO2, Al2O3, CaO, MgO, Na2O, K2O, SO3, Fe2O3, CeO2, TiO2 and MnO with specified weight ratios respectively. CONSTITUTION:Raw materials of glass incorporating silica sand and ilumenite are blended with specified weight ratio and heated and melted to obtain a glassy material. Thereafter, it is formed to obtain >=98% total quantity of glass composition incorporating by weight 68-72% SiO2, 1.6-3.0% Al2O3, 8.5-11.0% CaO, 2.0-4.2% MgO, 12.0-16.0% Ma2O, 0.5-3.0% K2O, 0.08-0.30% So3, 0.65-0.75% Fe2O3, 0.20-0.35% CeO, 0.1-0.2% TiO2, 5-700ppm MnO and 70.0-74.0% SiO2+Al2 O3+TiO2, 12-15.5% CaO+MnO2, 13.5-17.0% Na2O+K2O. This IR and UV absorbing glass hase >67% transmitivity of visible ray from light source A, 37-45% transmitivity of sun light and 7-13% transmitivity of UV light in term of 5mm thickness.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は比較的高い透視性をもち
赤外線紫外線を吸収して高居住性、高安全性となって軽
量化ができ得る赤外線紫外線吸収ガラスおよびその製法
に関し、建築用窓ガラスや各種ガラス物品はもちろん、
殊に車両用窓ガラスに有用な前記ガラスとその製法を提
供するものである。
[Industrial Application Field] The present invention relates to infrared and ultraviolet absorbing glass that has relatively high transparency and absorbs infrared and ultraviolet rays, resulting in high livability, safety, and weight reduction, and a method for producing the same. As well as glass and various glass items,
The object of the present invention is to provide the above-mentioned glass, which is particularly useful for vehicle window glasses, and a method for manufacturing the same.

【0002】0002

【従来技術】近年富みに、冷房負荷の低減等省エネルギ
ー化あるいは有機物における劣化ならびに退色等から、
赤外線や紫外線の反射吸収等多機能化をガラス自体また
はガラス表面に付加することにより、人的にも物的にも
より高居住性に繋がる板ガラス物品のニーズが急激に高
まってきている。
[Prior Art] In recent years, energy saving such as reduction of cooling load, deterioration and discoloration of organic substances, etc.
There is a rapidly increasing need for plate glass products that can be made more comfortable for people and property by adding multi-functionality such as reflection and absorption of infrared rays and ultraviolet rays to the glass itself or the glass surface.

【0003】そこで、従来の赤外線吸収ガラスに加えて
紫外線吸収を意識したガラスがさらに提案されつつあり
、例えば特開昭64ー18938 号公報にはFe2O
3 として表して少なくとも0.45重量%の鉄を有す
る溶融ガラスの連続流を送り、溶融操作中の酸化還元条
件をFeO として表される第一鉄状態の鉄を少なくと
も35%与えるように制御し、そしてガラスを成形操作
で平板ガラス製品へ成形することを含み、しかも前記平
板ガラスが少なくとも65%の光透過率及び15%以下
の赤外線透過率を有する、連続的方法でソーダ・石灰・
シリカ平板ガラスを製造する方法が開示され、ガラス中
でFe2O3 として表して0.65%より少ない全鉄
含有量が与えられていることあるいは製品ガラスの硫黄
含有量がSO3 として表して0.02%より少ないこ
と等にすることが好ましいものであると記載され、また
Fe2O3 として表して少なくとも0.45重量%の
全鉄で、そのうち少なくとも50%がFeO として表
した第一鉄状態にある鉄、及びSO3 として表して0
.02重量%より少ない硫黄を有し、少なくとも65%
の光透過率及び15%以下の全太陽赤外線透過率を示す
ソーダ・石灰・シリカガラス物品が開示されており、ガ
ラス物品が、重量に基づいて、66〜75%のSiO2
、12〜20%のNa2O、7 〜12%のCaO 、
0 〜5 %のMgO 、0 〜4 %のAl2O3 
、0 〜3 %のK2O 、0 〜1 %のFe2O3
 、及びCeO2、TiO2、V2O5又はMoO3の
合計0 〜1.5 %から本質的になる組成を有するも
のが好ましいことが記載されている。さらに米国特許第
4701425 号には重量%で表して、60〜80%
のSiO2、10〜20%のNa2O、0 〜10%の
K2O 、5 〜16%のCaO 、0 〜10%のM
gO 、0 〜5 %のAl2O3 、0 〜0.5 
%のSO3 、0.29〜0.6 %のFe2O3 、
0.1 〜1.5 %のSnO2、0.1 〜1.6 
%のTiO2から実質的になる赤外線と紫外線を吸収す
るガラス組成物が開示されている。
Therefore, in addition to the conventional infrared absorbing glass, glasses with ultraviolet absorption in mind are being proposed.
3, and controlling the redox conditions during the melting operation to provide at least 35% iron in the ferrous state, expressed as FeO. , and forming the glass into a flat glass product in a molding operation, wherein said flat glass has a light transmission of at least 65% and an infrared transmission of no more than 15%.
A method for producing silica flat glass is disclosed, providing a total iron content in the glass of less than 0.65% expressed as Fe2O3 or a sulfur content of the product glass of less than 0.02% expressed as SO3. and at least 0.45% by weight of total iron, expressed as Fe2O3, of which at least 50% is in the ferrous state, expressed as FeO2; 0 expressed as SO3
.. 0.02% by weight sulfur and at least 65%
A soda-lime-silica glass article is disclosed that exhibits a light transmittance of 66-75% SiO2, by weight, and a total solar infrared transmittance of 15% or less.
, 12-20% Na2O, 7-12% CaO,
0-5% MgO, 0-4% Al2O3
, 0-3% K2O, 0-1% Fe2O3
, and a total of 0 to 1.5% of CeO2, TiO2, V2O5 or MoO3 is preferred. Further, in U.S. Pat. No. 4,701,425, expressed in weight percent, 60 to 80%
SiO2, 10-20% Na2O, 0-10% K2O, 5-16% CaO, 0-10% M
gO, 0-5% Al2O3, 0-0.5
% SO3, 0.29-0.6% Fe2O3,
0.1-1.5% SnO2, 0.1-1.6
An infrared and ultraviolet absorbing glass composition is disclosed consisting essentially of % TiO2.

【0004】0004

【発明が解決しようとする問題点】前述したような例え
ば特開昭64ー18938 号公報に記載のものは、S
O3 成分を0.02重量%より少なくし、通常のフロ
ート法による板ガラス製造での溶融操作手段では到底所
期の赤外線紫外線吸収ガラスを得ることが困難であって
、種々の複雑な手段工程、例えば液化段階、溶解段階、
清澄段階、攪拌室ならびに攪拌器等が必要となるような
ものであり、また米国特許第4701425 号に記載
のものは必ずしも充分易強化のガラス組成物であるとは
言い難く、しかも赤外線の吸収においても必ずしも充分
優れるものとは言い難いものである。
Problems to be Solved by the Invention: For example, the problem described in Japanese Unexamined Patent Application Publication No. 18938/1983, as mentioned above, is
It is difficult to reduce the O3 component to less than 0.02% by weight and obtain the desired infrared and ultraviolet absorbing glass using the melting operation means used in the production of sheet glass using the ordinary float method, and various complicated means and processes are required, e.g. liquefaction stage, dissolution stage,
The glass composition described in US Pat. No. 4,701,425 cannot be said to be sufficiently easily strengthened, and moreover, it is difficult to say that the glass composition described in US Pat. No. 4,701,425 is sufficiently easy to strengthen. However, it is difficult to say that it is necessarily sufficiently superior.

【0005】[0005]

【問題点を解決するための手段】本発明は、従来のかか
る欠点に鑑みてなしたものであって、熱膨張係数、ヤン
グ率およびポアソン比を大きい方にかつ熱伝導率を小さ
い方になるようにするとともに、赤外線と紫外線を充分
所期の吸収を有するものであって、比較的透視性がある
緑系の色調を発現し、しかも耐候性、成形性も充分に有
する易強化性の赤外線紫外線吸収ガラスおよびその製法
を提供するものである。
[Means for Solving the Problems] The present invention has been made in view of the above-mentioned drawbacks of the conventional art. In addition, it has sufficient absorption of infrared rays and ultraviolet rays, exhibits a relatively translucent green tone, and has sufficient weather resistance and moldability, and is easily reinforced. The present invention provides an ultraviolet absorbing glass and a method for producing the same.

【0006】すなわち、本発明は、重量%で表示して、
実質的に下記酸化物であり、68〜72%SiO2、1
.6 〜3.0 %Al2O3 、8.5 〜11.0
%CaO 、2.0 〜4.2 %MgO 、12.0
〜16.0%Na2O、0.5 〜3.0 %K2O 
、0.08〜0.30%SO3 、0.65〜0.75
%Fe2O3 、0.20〜0.35%CeO2、0.
1 〜0.2 %TiO2、ならびに微量成分としてM
nO 5 〜300ppmを含み、これら成分の総和が
98%以上であって、かつ70.0〜74.0%SiO
2+Al2O3 +TiO2、  12.0〜15.0
%CaO +MgO 、13.5〜17.0%Na2O
+K2O であることを特徴とする赤外線紫外線吸収ガ
ラス。ならびに5mm 厚換算で、A 光源による可視
光線透過率が67%以上、日射透過率が37〜45%、
紫外線透過率が7〜13%、主波長が506 〜518
 nm、刺激純度が3.5 以下であることを特徴とす
る前記赤外線紫外線吸収ガラス。さらに前記赤外線紫外
線吸収ガラスを製造するに当たり、原料としてイルメナ
イト、あるいは/および微量原料として炭素、Zn、S
n等の金属粉または酸化物のうち少なくとも一つを用い
ることを特徴とする赤外線紫外線吸収ガラスの製法を提
供するものである。
[0006] That is, in the present invention, expressed in weight%,
Substantially the following oxide, 68-72% SiO2,1
.. 6-3.0% Al2O3, 8.5-11.0
%CaO, 2.0-4.2% MgO, 12.0
~16.0% Na2O, 0.5 ~3.0% K2O
, 0.08-0.30% SO3, 0.65-0.75
%Fe2O3, 0.20-0.35%CeO2, 0.
1 to 0.2% TiO2, as well as M as a minor component
nO 5 to 300 ppm, the sum of these components is 98% or more, and 70.0 to 74.0% SiO
2+Al2O3 +TiO2, 12.0~15.0
%CaO + MgO, 13.5-17.0% Na2O
An infrared and ultraviolet absorbing glass characterized by +K2O. And in terms of 5 mm thickness, visible light transmittance by A light source is 67% or more, solar transmittance is 37-45%,
Ultraviolet transmittance is 7-13%, main wavelength is 506-518
The infrared and ultraviolet absorbing glass has an excitation purity of 3.5 nm or less. Furthermore, in producing the infrared and ultraviolet absorbing glass, ilmenite is used as a raw material, and/or carbon, Zn, and S are used as trace raw materials.
The present invention provides a method for producing an infrared and ultraviolet absorbing glass characterized by using at least one of metal powder or oxide such as metal powder such as n.

【0007】ここで、SiO2成分を重量%で68〜7
2%としたのは、68%未満では表面にやけ等が発生し
やすく耐候性が下がり実用上の問題が生じてくるもので
あり、72%を超えるとその易強化性が下がり、溶融も
難しくなるものであり、Al2O3 成分を重量%で1
.6 〜3.0 %としたのは、1.6 %未満では耐
候性が下がり表面にやけ等が発生しやすく実用上の問題
が生じてくるものであり、3%を超えると失透が生じや
すくなり成形温度範囲が狭くなり製造が難しくなるもの
であり、CaO 成分を重量%で8.5 〜11.0%
としたのは、8.5 %未満では易強化性が下がり、ま
た融剤として不足気味となり溶融温度も高くなりまた流
動温度を低くしないので製造しにくくなり、11%を超
えると失透し易くなり、成形作業範囲が狭くなり製造が
難しくなるものであり、MgO 成分を重量%で2.0
 〜4.2 %としたのは、2.0 %未満では溶融温
度が上がり操作範囲を狭めるので製造がしにくくなり、
4.2 %を超えると易強化性が下がるものであり、N
a2O成分を重量%で12.0〜16.0%としたのは
、12.0未満では易強化性が下がり、成形性が難しく
なり、失透も生じ易くなるので操作範囲が狭まり製造し
にくくなり、16%を超えると耐候性が下がり、表面に
やけ等が発生しやすくなり実用上の問題が生じてくるも
のであり、K2O 成分を重量%で0.5 〜3.0 
%としたのは、0.5 %未満では易強化性が下がり、
3.0 %を超えると耐候性が下がりかつコストも高く
なるものであり、SO3 成分を重量%で0.08〜0
.30%としたのは、0.08%未満では例えば通常の
溶融において脱泡あるいは均質性上不充分となり易い程
度にしかできなくなり、0.30%を超えると特にガラ
スの着色状態に影響を与え、例えば黄色やアンバー色が
かった色調に移行し易くなる等が発現し所期の緑系色調
が得られなくなるためであり、好ましくは0.15%前
後とどちらかと言えば範囲内でも低いところがよいもの
である。
[0007] Here, the SiO2 component is 68 to 7% by weight.
The reason why it is set at 2% is that if it is less than 68%, the surface will easily become burnt, weather resistance will decrease, and practical problems will occur.If it exceeds 72%, its easy strengthening properties will decrease and it will be difficult to melt. The Al2O3 component is 1% by weight.
.. The reason why the content is set at 6 to 3.0% is that if it is less than 1.6%, the weather resistance will deteriorate and the surface will easily become stained, causing practical problems, whereas if it exceeds 3%, devitrification will occur. The CaO content is 8.5 to 11.0% by weight, which makes the molding temperature range narrow and difficult to manufacture.
The reason for this is that if it is less than 8.5%, the ease of strengthening will decrease, and it will tend to be insufficient as a flux, resulting in a high melting temperature and will not lower the flow temperature, making it difficult to manufacture.If it exceeds 11%, it will tend to devitrify. This narrows the molding work range and makes manufacturing difficult, and the MgO component is 2.0% by weight.
-4.2% is because if it is less than 2.0%, the melting temperature will rise and the operating range will be narrowed, making it difficult to manufacture.
If it exceeds 4.2%, the ease of reinforcement decreases, and N
The reason why the a2O component is set to 12.0 to 16.0% by weight is that if it is less than 12.0, the ease of strengthening will decrease, moldability will be difficult, and devitrification will easily occur, so the operating range will be narrowed and manufacturing will be difficult. If the K2O content exceeds 16%, the weather resistance will decrease and the surface will easily become stained, causing practical problems.
% because if it is less than 0.5%, the ease of reinforcement will decrease.
If it exceeds 3.0%, the weather resistance will decrease and the cost will increase.
.. The reason why it is set at 30% is that if it is less than 0.08%, it will only be possible to achieve defoaming or have insufficient homogeneity in normal melting, and if it exceeds 0.30%, it will particularly affect the coloring state of the glass. This is because, for example, the color tone tends to shift to yellow or amber, making it impossible to obtain the desired green color tone. Preferably, it should be around 0.15%, which is rather low within the range. It is something.

【0008】また、Fe2O3 成分を重量%で0.6
5〜0.75%したのは、赤外線を吸収するFeO 成
分量と紫外線を吸収し所期の色調を確保するFe2O3
 成分量との総量として、前述した各種光学特性を安定
して得るために、他のCeO2、TiO2等の各成分量
とともにことに必要であり、0.65%未満では上述に
対する作用が劣り、0.75%を超えると特に可視光線
透過率が劣ることとなる等好ましくないからであり、C
eO2とTiO2成分は紫外線の吸収作用を有し、Ce
O2成分を0.20〜0.35%とし、TiO2成分を
0.1 〜0.2 %としたのは、ガラスにおける還元
率をほとんど変化させないしかも紫外線吸収能がCeO
2成分より小さいTiO2成分と、ガラスにおける還元
率を比較的大きく変化させしかも紫外線吸収能を充分与
えるCeO2成分とを上述の特定範囲内に限定して組み
合わすことで、僅かの含有量で所期の特性を効率的に得
ることでき、従来の還元率をほとんど変化させないよう
にしつつ、Ceのガラス中での価数をCe4+、Ce3
+のうち、ほぼ無色のCe3+が主になるようにし、前
述した全鉄におけるFe2O3 とFeO との割合を
制御して、可視光領域の透過率を全体的に低下させない
ようにしかつ紫外線吸収や赤外線吸収等所期の光学特性
を達成し得るようにするためであり、さらにMnO 成
分を5 〜300ppmとしたのは、FeとMnとの関
係ではFeが酸化される方向でかつ微量ながら還元率が
低い方向になる傾向があり、CeとMnとの関係ではM
nが酸化される方向であって還元率には影響が殆どない
ものである等によって、MnがFeとCeらとあいまっ
て中性的に相互作用させながら、約500nm 付近に
あるMnO の吸収波長でもって前記色調調整を、大き
な影響を与えないで微力ながら調整できるようにしたも
のであり、またMnO 成分を多量に用いれば例えばソ
ラリゼーション等の現象を発現するように成り易くなる
などから300ppmを超えないようにしたものである
[0008] Also, the Fe2O3 component is 0.6% by weight.
The content of 5% to 0.75% is FeO, which absorbs infrared rays, and Fe2O3, which absorbs ultraviolet rays and maintains the desired color tone.
In order to stably obtain the various optical properties described above, the total amount of the components is particularly necessary together with the amounts of other components such as CeO2 and TiO2, and if it is less than 0.65%, the above effects will be poor This is because if it exceeds .75%, the visible light transmittance will deteriorate, which is undesirable.
eO2 and TiO2 components have an ultraviolet absorbing effect, and Ce
The reason why the O2 component is set to 0.20 to 0.35% and the TiO2 component is set to 0.1 to 0.2% is that they hardly change the reduction rate in the glass, and the ultraviolet absorption ability is higher than that of CeO2.
By combining the TiO2 component, which is smaller than the two components, and the CeO2 component, which changes the reduction rate in glass relatively significantly and provides sufficient ultraviolet absorption ability, within the above-mentioned specific range, the desired amount can be achieved with a small content. It is possible to efficiently obtain the characteristics of Ce4+ and Ce3 while keeping the conventional reduction rate almost unchanged.
Among the +, the almost colorless Ce3+ is made to be the main one, and the ratio of Fe2O3 and FeO2 in the total iron mentioned above is controlled so as not to reduce the overall transmittance in the visible light region, and to prevent ultraviolet absorption and infrared ray absorption. This was to achieve the desired optical properties such as absorption, and the reason why the MnO content was set at 5 to 300 ppm was that in the relationship between Fe and Mn, Fe would be oxidized and the reduction rate would be reduced, albeit in a small amount. There is a tendency toward lower values, and in the relationship between Ce and Mn, M
Because n is in the direction of oxidation and has little effect on the reduction rate, Mn interacts neutrally with Fe, Ce, etc., and the absorption wavelength of MnO is around 500 nm. Therefore, it is possible to adjust the color tone in a small way without having a large effect, and if a large amount of MnO is used, phenomena such as solarization are likely to occur, so if the amount exceeds 300 ppm. I tried to avoid it.

【0009】また、SiO2、Al2O3 、CaO 
、MgO 、Na2O、K2O 、Fe2O3 、SO
3 、CeO2、TiO2、MnO の成分の総和を重
量百分率で98%以上としたのは、例えばZnO 、S
nO2等微量成分を2 %を超えない量に制御するため
である。なかでもV2O5成分を任意成分として0 〜
0.25%程度添加することがあり、該V2O5は還元
率をほとんど変化させることがなくしかも紫外線吸収能
がCeO2成分より小さく影響が少ないからで微調整に
添加用いるものであり、V のガラス中での価数を黄色
を呈するV5+ が極力少なくし緑色を呈するV3+ 
に主になるようにする必要がある等のためである。
[0009] Also, SiO2, Al2O3, CaO
, MgO, Na2O, K2O, Fe2O3, SO
3. The sum of the components of CeO2, TiO2, and MnO was made to be 98% or more by weight, for example, ZnO, S
This is to control trace components such as nO2 to an amount that does not exceed 2%. Among them, the V2O5 component is an optional component of 0 ~
Approximately 0.25% of V2O5 is sometimes added, and V2O5 hardly changes the reduction rate, and its ultraviolet absorption ability is smaller than the CeO2 component, so it has less influence, so it is used for fine adjustment. The valence of V5+, which exhibits yellow color, is reduced as much as possible to create V3+, which exhibits green color.
This is mainly because you need to be like that.

【0010】さらに、SiO2+Al2O3 +TiO
2を重量百分率で70.0〜74.0%としたのは、7
0%未満では耐候性が下がり、74%を超えると易強化
性が下がる問題が生じるものであり、CaO +MgO
 を重量百分率で12.0〜15.0%としたのは、C
aO およびMgO 成分は溶融温度を下げるために用
いられるとともに、12%未満では易強化性が下がり、
15%を超えると失透しやすくなり製造上難しくなるも
のであり、Na2O+K2O を百分率で13.5〜1
7%としたのは、13.5%未満では易強化性が下がり
、失透も生じやすくなって成形において作業温度範囲が
狭くなり、製造が難しくなり、17%を超えると耐候性
が下がり実用上の問題を生じるものであるとともにコス
ト的にも高くなるものである。
[0010] Furthermore, SiO2+Al2O3 +TiO
The weight percentage of 2 is 70.0 to 74.0%, which means 7.
If it is less than 0%, the weather resistance will decrease, and if it exceeds 74%, there will be a problem that the easy strengthening property will decrease.
The weight percentage of C was set at 12.0 to 15.0%.
The aO and MgO components are used to lower the melting temperature, and if they are less than 12%, the easy strengthening property decreases,
If it exceeds 15%, devitrification tends to occur, making it difficult to manufacture.
The reason for setting it at 7% is that if it is less than 13.5%, the ease of strengthening will decrease and devitrification will occur easily, and the working temperature range in molding will be narrow, making manufacturing difficult.If it exceeds 17%, the weather resistance will decrease and it will not be practical. This not only causes the above problems, but also increases costs.

【0011】さらにまた、5mm 厚換算で、A 光源
による可視光線透過率が67%以上、日射透過率が37
〜45%、紫外線透過率が7 〜13%、主波長が50
6 〜518 nm、刺激純度が3.5 以下であるこ
とが好ましいとしたのは、前記可視光線透過率が67%
未満では特に自動車のフロント窓ガラスにおいてガラス
の透視性、ことに日暮れ、夜間あるいは雨降りなどに際
し、物体の識別性の低下が発現しやすく好ましくなく、
より好ましくは70%前後、さらに好ましくは75%前
後であり、日射透過率が45%を超えると冷房負荷の増
大あるいは車内・室内での居住性を向上することができ
ないこととなり、37%未満では透視性ことに前述した
識別性の低下あるいは色調にも影響を与え兼ねないこと
となるので好ましくなく、紫外線透過率が13%を超え
ると車内・室内での物品の脱色・劣化あるいは肌焼け等
人的影響により居住性の悪化に結び付き易く、7%未満
では例えば前記日射透過率が得られなくなる等の弊害が
発生し易くなり、主波長が518nm を超えると黄色
あるいはアンバー色が影響して所期の緑色調系に成らず
、506nm 未満ではブルー色が勝ち過ぎて所期の緑
色調系と成らないためであり、好ましい主波長は509
 〜515 であり、刺激純度が3.5 を超えると物
体の識別性が低下するようになって例えば日暮れやどん
よりした雨降り等で乗員の透視性に支障を来し、安全性
の確保等が困難となるためである。なお紫外線域は29
0 〜390nmとし、可視域等は従来通りとした。
Furthermore, in terms of 5 mm thickness, the visible light transmittance by light source A is 67% or more, and the solar transmittance is 37%.
~45%, UV transmittance 7~13%, dominant wavelength 50%
6 to 518 nm, and the excitation purity is preferably 3.5 or less because the visible light transmittance is 67%.
If it is less than 100%, the transparency of the glass, particularly in the front window of a car, is undesirable, as it tends to reduce the ability to distinguish objects, especially at dusk, at night, or in the rain.
More preferably, it is around 70%, and even more preferably around 75%. If the solar transmittance exceeds 45%, the cooling load will increase or the comfort inside the car will not be improved, and if it is less than 37%, This is undesirable as it may reduce the visibility and distinguishability mentioned above or affect the color tone.If the ultraviolet transmittance exceeds 13%, it may cause discoloration or deterioration of items in the car or interior, or may cause skin burns or other problems for people. If it is less than 7%, problems such as not being able to obtain the above-mentioned solar transmittance are likely to occur, and if the dominant wavelength exceeds 518nm, the yellow or amber color will be affected and the desired This is because if the wavelength is less than 506 nm, the blue color will be too dominant and the desired green tone will not be achieved.The preferable dominant wavelength is 509 nm.
~515, and when the stimulus purity exceeds 3.5, the ability to distinguish objects decreases, and for example, at dusk or in heavy rain, the visibility of the occupants becomes impaired, making it difficult to ensure safety. This is because. The UV range is 29
The wavelength range was 0 to 390 nm, and the visible range remained the same as before.

【0012】さらにまた、前記赤外線紫外線吸収ガラス
を製造するに当たり、原料としてイルメナイトを用いた
方が好ましいとしたのは、FeO ならびにTiO2か
らほぼ成るため、FeO のガラス中への取り込みが少
しでも容易となり、しかも実窯の操業条件等をほぼ不変
とし、ガラスの酸化還元状態を従来と出来るだけ変えな
いように、すなわち実窯で還元率が約0.45程度であ
るのに対し本発明の赤外線紫外線吸収ガラスの製造に当
たってはCeO2等種々の作用を加味し0.3 〜0.
4 程度(例えば実窯の還元率の約7割前後)とするの
に少しでも役立つためであり、微量原料として炭素、Z
n、Sn等の金属粉または酸化物のうち少なくともその
一つを用いると好ましいとしたのは、例えば時として芒
硝(Na2SO4)等清澄剤の作用効果を助ける必要が
あり、一方では前記所期の色調の確保に悪い影響を与え
ることともなり易く、ZnあるいはSn等還元剤もFe
2O3 とFeO とのバランスを調整するために必要
な場合もあるためである。
Furthermore, in manufacturing the infrared and ultraviolet absorbing glass, it is preferable to use ilmenite as a raw material because it is composed almost of FeO and TiO2, so it is easier to incorporate FeO into the glass. In addition, the operating conditions of the actual kiln are kept almost unchanged, and the oxidation-reduction state of the glass is kept as unchanged as possible from the conventional one. When producing absorbent glass, various effects such as CeO2 are taken into account and the absorption glass is 0.3 to 0.
4 (for example, around 70% of the reduction rate in a real kiln), and carbon and Z are used as trace raw materials.
The reason why it is preferable to use at least one of metal powders or oxides such as n, Sn, etc. is because, for example, sometimes it is necessary to support the action and effect of a fining agent such as sodium sulfate (Na2SO4), and on the other hand, Reducing agents such as Zn or Sn also tend to have a negative effect on securing the color tone.
This is because it may be necessary to adjust the balance between 2O3 and FeO.

【0013】なお、本発明の赤外線紫外線吸収ガラスは
易強化ガラス組成物であって、板厚1mm 前後の薄板
ガラスから10mm前後の厚板ガラスで、平板または曲
げ板として生板から強度アップしたもの、半強化したも
の、強化したもの等で、単板ガラス、合せガラス、積層
ガラスあるいは複層ガラス等で用いることが、ことに車
両用窓ガラスで用いることが有用である。
[0013] The infrared and ultraviolet absorbing glass of the present invention is an easily temperable glass composition, and can be made from a thin plate glass with a plate thickness of about 1 mm to a thick plate glass with a plate thickness of about 10 mm, which has been strengthened from a raw plate as a flat plate or a bent plate. It is semi-strengthened, reinforced, etc., and is useful for use in single-pane glass, laminated glass, laminated glass, double-layered glass, etc., and is particularly useful in vehicle window glass.

【0014】[0014]

【作用】前述したとおり、本発明の赤外線紫外線吸収ガ
ラスならびにその製法であって、特定酸化物成分を特定
組成範囲で組み合わせたガラスとし、あるいは特異な原
料を易強化性を持たせしかも還元率の低下を抑制するよ
う組み合わせて用い、上述したガラスを製造することに
よって、例えば溶融性、清澄性、耐候性、成形性、失透
性、コスト等を考慮し、従来のフロートガラスの製造条
件ならびにそのガラスの性質等をほとんど変化させず、
加えて易強化性を持ち合わせかつ赤外線ならびに紫外線
を吸収して人的物的に高居住性であって、物体の識別も
優れた透視性を充分持つものとなって高安全性を確保で
き、グリーン色調系で例えば車・室内外と充分調和のあ
るものとなって環境的にも優れたものとなり、さらに、
従来の熱強化方法では得られなかった薄板ガラス等でも
、充分な強化度あるいは充分強度アップが得られるよう
になり、建築用窓ガラスはもちろん家具用ガラス、調理
用ガラス、ことに自動車用等車両用窓ガラス等に有用な
赤外線紫外線吸収ガラスを提供できるものである。
[Function] As mentioned above, the infrared and ultraviolet absorbing glass of the present invention and the method for producing the same include a glass that combines specific oxide components in a specific composition range, or a glass that combines specific oxide components in a specific composition range, or uses specific raw materials to have easy strengthening properties and to reduce the reduction rate. By manufacturing the above-mentioned glasses in combination to suppress the deterioration, we can improve the conventional float glass manufacturing conditions and their It hardly changes the properties of glass,
In addition, it is easy to strengthen, absorbs infrared rays and ultraviolet rays, making it highly livable for people and physical objects, and has sufficient transparency with excellent object identification, ensuring high safety and making it green. The color tone is in perfect harmony with the interior and exterior of a car, for example, and is environmentally friendly.Furthermore,
It is now possible to obtain a sufficient degree of strengthening or sufficiently increased strength even for thin glass, etc., which could not be obtained using conventional thermal strengthening methods, and it is now possible to obtain a sufficient degree of reinforcement or increase in strength. It is possible to provide infrared and ultraviolet absorbing glass useful for window glasses and the like.

【0015】[0015]

【実施例】以下本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

【0016】実施例1 通常方法によって、ガラスは特選珪砂(共立窯業製)と
1級試薬であるAl2O3 、Fe2O3 、CaCO
3 、MgCO3 、Na2SO3、KNO3、CeO
2、TiO2、MnO 、イルメナイト等を用い、粘性
温度が109 ポイズで650 〜685 ℃、101
2ポイズで555 〜585 ℃、かつ両者の温度差が
96〜103 ℃になるようになるガラス組成を目標組
成として秤量調合し、ことに実窯と多少低い程度の還元
率(0.35前後)を得るためカーボンを0.175 
重量%程度添加調合したものであって、該調合原料をル
ツボに入れ、約1450℃前後に保持した電気炉中で約
3時間程度溶融しガラス化して、さらに均質化および清
澄のため、1420〜1430℃で約2時間程度保持し
た後、型に流し出しガラスブロックとし、大きさ100
mm ×100mm で厚み約5mmのガラス板に切り
出し、研削研磨し、各試料とした。
Example 1 Glass was prepared using specially selected silica sand (manufactured by Kyoritsu Ceramics) and primary reagents such as Al2O3, Fe2O3, and CaCO.
3, MgCO3, Na2SO3, KNO3, CeO
2. Using TiO2, MnO, ilmenite, etc., the viscosity temperature is 109 poise, 650 to 685 °C, 101
We weighed and prepared a glass composition with a target composition that would produce a temperature of 555 to 585 degrees Celsius at 2 poise and a temperature difference of 96 to 103 degrees Celsius, and in particular, the reduction rate was a little lower than that of the actual kiln (around 0.35). 0.175 carbon to obtain
The blended raw material is placed in a crucible, melted and vitrified for about 3 hours in an electric furnace maintained at around 1450°C, and further homogenized and clarified at 1420~ After keeping it at 1430℃ for about 2 hours, it was poured into a mold and made into a glass block with a size of 100℃.
Each sample was cut out into a glass plate measuring 100 mm x 100 mm and approximately 5 mm thick, and ground and polished.

【0017】この試料について、ガラス成分組成(重量
%)についてはJISR−3101に基づく湿式分析法
等で行い、粘性温度(℃)についてはベンディングアー
ム法により粘度曲線を測定して109 および1012
ポイズの温度を求めるとともに、リリー法によって歪点
、リトルトン法によって軟化点を測定し、光学特性(5
mm厚みにおける)としての可視光線透過率(A光源に
て、%)、紫外線透過率(%)、および日射透過率、主
波長(nm)、刺激純度については340 型自記分光
光度計(日立製作所製)とJIS Z−8722、JI
S R−3106、ISO/DIS−9050にて測定
計算して求める等を行った。
Regarding this sample, the glass component composition (wt%) was determined by a wet analysis method based on JISR-3101, and the viscosity temperature (°C) was determined by measuring the viscosity curve by the bending arm method.
In addition to determining the temperature of the poise, the strain point was measured using the Lilly method, the softening point was measured using the Littleton method, and the optical properties (5
Visible light transmittance (with A light source, %), UV transmittance (%), and solar transmittance, dominant wavelength (nm), and excitation purity as measured using a 340-type self-recording spectrophotometer (Hitachi, Ltd.). ) and JIS Z-8722, JI
Measurement and calculation were performed using SR-3106 and ISO/DIS-9050.

【0018】その結果、ガラス成分組成は重量表示でS
iO269.7%、Al2O31.9%、CaO9.1
%、MgO3.5%、Na2O13.4%、K2O1.
0%、Fe2O30.695%、TiO20.15%、
CeO20.27%、SO30.18 %、MnO 1
08ppmと成り、成分の総和が99.906%であっ
てかつSiO2+Al2O3+TiO271.75 %
、CaO +MgO12.6 %、Na2O+K2O1
4.4 %であり、還元率(Fe2+/Fe3+)は0
.30〜0.35程度となった。
As a result, the glass component composition was expressed as S in terms of weight.
iO269.7%, Al2O31.9%, CaO9.1
%, MgO3.5%, Na2O13.4%, K2O1.
0%, Fe2O30.695%, TiO20.15%,
CeO20.27%, SO30.18%, MnO1
08 ppm, and the sum of the components is 99.906%, and SiO2 + Al2O3 + TiO2 71.75%
, CaO + MgO12.6%, Na2O + K2O1
4.4%, and the reduction rate (Fe2+/Fe3+) is 0.
.. It was about 30 to 0.35.

【0019】また光学特性は、可視光線透過率が71.
3%、日射透過率が43%、主波長が512.2nm 
、刺激純度が2.8 であり、所期のグリーン系色調で
あった。
As for the optical properties, the visible light transmittance is 71.
3%, solar transmittance 43%, main wavelength 512.2nm
The stimulus purity was 2.8, and the desired green color tone was obtained.

【0020】さらに易強化性については、上述したガラ
スが前述した粘性温度が所期の特定範囲をクリヤーして
いることならびに軟化点と歪点との温度差が大体200
 〜240 ℃の範囲にあることを確認した上、前記試
料を雰囲気温度約730 ℃の炉内で約5分間前後加熱
した後、エア圧約1300Apで通常の風冷強化し、大
きさ120mm ×100mm で板厚約3.5mm 
程度の強化ガラス板を得、該強化ガラス板のコーナー部
の角端面から約30mmの位置で衝撃を与えて破砕し、
全面に破砕された該ガラス板をJIS R−3211に
従って調べたところ、決められた規格を充分満足する高
易強化性のものであった。
Furthermore, regarding ease of strengthening, the above-mentioned glass has a viscosity temperature that is within the desired specific range, and a temperature difference between the softening point and the strain point of approximately 200°C.
After confirming that the temperature is in the range of ~240 °C, the sample was heated in a furnace at an ambient temperature of about 730 °C for about 5 minutes, then strengthened with normal air cooling at an air pressure of about 1300 Ap, and was heated to a size of 120 mm x 100 mm. Plate thickness approximately 3.5mm
A tempered glass plate of about 100 mL was obtained, and the tempered glass plate was crushed by impact at a position approximately 30 mm from the corner end face of the corner portion,
When the glass plate, which had been completely crushed, was examined in accordance with JIS R-3211, it was found to be easily strengthenable, fully satisfying the established standards.

【0021】なお、本発明の約2.5mm 板厚の曲げ
赤外線紫外線吸収ガラスを外側に用い、内側に約2mm
板厚の熱線反射膜被覆曲げガラス板を配し、該膜側を内
側にしてPVB 中間膜を介して積層した合せガラスを
試作し、自動車の窓ガラスに用いたところ、本発明の作
用効果を高めるとともにさらに多機能化され、車内外の
居住性なよびに安全性がより優れたものと成るものであ
った。
The bent infrared and ultraviolet absorbing glass of the present invention with a thickness of about 2.5 mm is used on the outside, and the bent infrared and ultraviolet absorbing glass with a thickness of about 2 mm is used on the inside.
We fabricated a prototype laminated glass in which thick bent glass plates coated with a heat ray reflective film were laminated with a PVB interlayer between them with the film side facing inside, and used it in an automobile window glass. It was designed to increase the height of the vehicle, make it even more functional, and improve comfort and safety both inside and outside the vehicle.

【0022】実施例2 前記実施例1と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。
Example 2 Using the same glass raw materials as in Example 1, weighing and mixing,
A melting operation was performed, and the resulting glass was sampled in the same manner.

【0023】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示でSiO270.6%、Al2O31.6%、CaO
9.5%、MgO 2.5 %、Na2O13.5%、
K2O0.9%、Fe2O30.687%、TiO20
.17%、CeO20.31%、SO30.13 %、
MnO 80ppm と成り、成分の総和が99.90
5%であって、SiO2+Al2O3 +TiO272
.37 %、CaO +MgO 12.0%、Na2O
+K2O 14.4%であり、還元率は前記と同様に0
.30〜0.35程度となった。光学特性は可視光線透
過率が70.6%、日射透過率が42%、主波長が50
9.2nm 、刺激純度が3.0 であり、所期のグリ
ーン系色調であった。
The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1. As a result, the glass component composition was 70.6% SiO2, 1.6% Al2O3, and CaO2 in terms of weight.
9.5%, MgO 2.5%, Na2O 13.5%,
K2O0.9%, Fe2O30.687%, TiO20
.. 17%, CeO20.31%, SO30.13%,
MnO is 80ppm, and the sum of the components is 99.90.
5%, SiO2 + Al2O3 + TiO272
.. 37%, CaO + MgO 12.0%, Na2O
+K2O 14.4%, and the reduction rate is 0 as above.
.. It was about 30 to 0.35. Optical properties include visible light transmittance of 70.6%, solar transmittance of 42%, and dominant wavelength of 50%.
It had a wavelength of 9.2 nm, an excitation purity of 3.0, and the expected green color tone.

【0024】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記実施例1と同様にJIS
 で決められた規格を充分満足するものであって、薄い
ガラス板でも高効率、高歩留りで前記規格に合格するも
のが得れるようになるものであった。
[0024] Furthermore, regarding easy reinforcement, the above-mentioned Example 1
When carried out in the same manner as in Example 1, JIS
It fully satisfies the standards set by the above standards, and even thin glass plates that meet the standards can be obtained with high efficiency and high yield.

【0025】実施例3 前記実施例1と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。
Example 3 Using the same glass raw materials as in Example 1, weighing and mixing,
A melting operation was performed, and the resulting glass was sampled in the same manner.

【0026】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示でSiO269.3%、Al2O31.8%、CaO
9.8%、MgO   3.3 %、Na2O13.4
%、K2O1.0%、Fe2O30.685%、TiO
20.12%、CeO20.30%、SO30.15 
%、MnO 55ppm と成り、成分の総和が99.
919%であって、SiO2+Al2O3 +TiO2
71.23 %、CaO +MgO 13.1%、Na
2O+K2O 14.4%  であり、還元率は前記と
同様に0.30〜0.35程度となった。光学特性は可
視光線透過率が71.0%、日射透過率が42.7%、
主波長が514.9nm 、刺激純度が2.8 であり
、所期のグリーン系色調であった。
The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1. As a result, the glass component composition was 69.3% SiO2, 1.8% Al2O3, and CaO2 in terms of weight.
9.8%, MgO 3.3%, Na2O 13.4
%, K2O1.0%, Fe2O30.685%, TiO
20.12%, CeO20.30%, SO30.15
%, MnO is 55 ppm, and the total of the components is 99.
919%, SiO2 + Al2O3 + TiO2
71.23%, CaO + MgO 13.1%, Na
2O+K2O 14.4%, and the reduction rate was about 0.30 to 0.35 as above. Optical properties include visible light transmittance of 71.0%, solar transmittance of 42.7%,
The dominant wavelength was 514.9 nm, the stimulus purity was 2.8 nm, and the desired green color tone was obtained.

【0027】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記実施例1と同様にJIS
 で決められた規格を充分満足するものであって、薄い
ガラス板でも高効率、高歩留りで前記規格に合格するも
のが得れるようになるものであった。
[0027] Furthermore, as for easy reinforcement, the above-mentioned Example 1
When carried out in the same manner as in Example 1, JIS
It fully satisfies the standards set by the above standards, and even thin glass plates that meet the standards can be obtained with high efficiency and high yield.

【0028】比較例1 前記イルメナイトを使用しない以外は前記実施例1と同
様なガラス原料を用い、秤量調合し、溶融操作をし、得
たガラスを同様に試料化した。
Comparative Example 1 The same glass raw materials as in Example 1 were used, except that the ilmenite was not used, and the glass materials were weighed and prepared, followed by a melting operation, and the resulting glass was made into a sample in the same manner.

【0029】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示でSiO272.1%、Al2O31.5%、CaO
7.75 %、MgO 3.56%、Na2O12.5
%、K2O1.1%、Fe2O30.753%、TiO
20.25%、CeO20.30%、SO30.18 
%と成り、成分の総和が99.993%であって、Si
O2+Al2O3 +TiO273.85 %、CaO
 +MgO11.31%、Na2O+K2O 13.6
%  であり、還元率は前記と同様に0.30〜0.3
5程度となった。光学特性は可視光線透過率が68.4
%、日射透過率が39.3%、主波長が510.5nm
 、刺激純度が3.3 であり、所期のグリーン系色調
であるとは  必ずしも言えなかった。
As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition was expressed by weight: SiO272.1%, Al2O31.5%, CaO
7.75%, MgO 3.56%, Na2O12.5
%, K2O1.1%, Fe2O30.753%, TiO
20.25%, CeO20.30%, SO30.18
%, the sum of the components is 99.993%, and Si
O2+Al2O3 +TiO273.85%, CaO
+MgO11.31%, Na2O+K2O 13.6
%, and the return rate is 0.30 to 0.3 as above.
It was about 5. Optical properties include visible light transmittance of 68.4
%, solar transmittance is 39.3%, dominant wavelength is 510.5nm
The stimulus purity was 3.3, and it could not necessarily be said that the desired green color tone was obtained.

【0030】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記各実施例とは差異がある
ものであってJIS で決められた規格を必ずしも満足
するものではなかった。また強化処理等で必ずしも効率
や歩留りを向上させるものではなかった。
[0030] Furthermore, with regard to easy reinforcement, Example 1
When carried out in the same manner as above, it was found that there were differences from each of the above-mentioned examples, and the results did not necessarily satisfy the standards determined by JIS. Furthermore, strengthening treatments and the like do not necessarily improve efficiency or yield.

【0031】比較例2 前記比較例1と同様にして得られたガラスを同様に試料
化した。得られた試料について前記実施例1と同様に分
析、測定、評価した結果、ガラス成分組成は重量表示で
SiO267.0%、Al2O31.7%、CaO9.
45 %、MgO 3.0 %、Na2O16.1%、
K2O1.0%、Fe2O30.572%、TiO20
.73%、CeO20.22%、SO30.22 %と
成り、成分の総和が99.992%であって、SiO2
+Al2O3 +TiO269.43 %、CaO +
MgO12.45%、Na2O+K2O 17.1% 
 であり、還元率は多少増え約0.4 前後となった。 光学特性は可視光線透過率が70.9%、日射透過率が
42.8%、主波長が538.6nm 、刺激純度が4
.2 であり、所期のグリーン系色調であるとは必ずし
も  言えなかった。
Comparative Example 2 Glass obtained in the same manner as in Comparative Example 1 was similarly prepared as a sample. As a result of analyzing, measuring and evaluating the obtained sample in the same manner as in Example 1, the glass component composition was 67.0% SiO2, 1.7% Al2O3, and 9.9% CaO in terms of weight.
45%, MgO 3.0%, Na2O 16.1%,
K2O1.0%, Fe2O30.572%, TiO20
.. 73%, CeO20.22%, SO30.22%, and the total of the components is 99.992%, and SiO2
+Al2O3 +TiO269.43%, CaO +
MgO 12.45%, Na2O+K2O 17.1%
The return rate increased slightly to around 0.4. Optical properties include visible light transmittance of 70.9%, solar transmittance of 42.8%, dominant wavelength of 538.6 nm, and excitation purity of 4.
.. 2, and it could not necessarily be said that it was the expected green tone.

【0032】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記各実施例とは差異がある
ものであってJIS で決められた規格を必ずしも満足
するものではなかった。また強化処理等で必ずしも効率
や歩留りを向上させるものではなかった。
[0032] Furthermore, with regard to easy reinforcement, Example 1
When carried out in the same manner as above, it was found that there were differences from each of the above-mentioned examples, and the results did not necessarily satisfy the standards determined by JIS. Furthermore, strengthening treatments and the like do not necessarily improve efficiency or yield.

【0033】なお、上述した各実施例は本発明の一例を
示すものであって、これら実施例に限られるものではな
い。
It should be noted that each of the above-mentioned embodiments shows an example of the present invention, and the present invention is not limited to these embodiments.

【0034】[0034]

【発明の効果】本発明によれば、特定酸化物成分を特定
組成範囲で組み合わせた赤外線紫外線吸収ガラスとし、
しかも特異な原料を組み合わせて用いることで、還元率
の低下を抑制し、赤外線の吸収と紫外線の吸収とをバラ
ンス良く、充分透視性を持ち、易強化性を保持させ、所
期のグリーン系色調を呈するガラスを、実窯の操業条件
を大幅に変更することなく製造することができ、人的物
的両面で高居住性、高安全性、高環境性を有し軽量化も
可能であるものと成り、建築用窓ガラス等はもちろん、
ことに自動車用窓ガラスに適用して有用なものと成る赤
外線紫外線吸収ガラスとその製法を提供するものである
Effects of the Invention According to the present invention, an infrared and ultraviolet absorbing glass in which specific oxide components are combined in a specific composition range,
In addition, by using a combination of unique raw materials, we can suppress the reduction rate, have a good balance between infrared and ultraviolet absorption, have sufficient transparency, maintain easy reinforcement, and achieve the desired green color tone. glass that can be manufactured without significantly changing the operating conditions of the actual kiln, and has high livability, high safety, and high environmental friendliness in terms of both human and material aspects, and is also lightweight. As a result, it can be used not only for architectural window glass, etc.
The object of the present invention is to provide an infrared and ultraviolet absorbing glass that is particularly useful when applied to automobile window glasses, and a method for producing the same.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  重量%で表示して、実質的に下記酸化
物であり、SiO268〜72%、Al2O3 1.6
 〜3.0 %、CaO 8.5 〜11.0%、Mg
O 2.0 〜4.2 %、Na2O12.0〜16.
0%、K2O 0.5 〜3.0 %、SO3 0.0
8〜0.30%、Fe2O3 0.65〜0.75%、
CeO20.20〜0.35%、TiO20.1 〜0
.2 %、ならびに微量酸化物としてMnO 5 〜3
00ppmを少なくとも含み、これら成分の総和が98
%以上であって、かつSiO2+Al2O3 +TiO
270.0〜74.0%、CaO +Mg0 12.0
〜15.0%、Na2O+K2O 13.5〜17.0
%であることを特徴とする赤外線紫外線吸収ガラス。
Claim 1: Substantially the following oxides, expressed in weight%: SiO268-72%, Al2O3 1.6%
~3.0%, CaO 8.5 ~11.0%, Mg
O2.0-4.2%, Na2O12.0-16.
0%, K2O 0.5-3.0%, SO3 0.0
8-0.30%, Fe2O3 0.65-0.75%,
CeO20.20-0.35%, TiO20.1-0
.. 2%, as well as MnO 5 ~3 as trace oxides.
00 ppm, and the total of these components is 98
% or more, and SiO2 + Al2O3 + TiO
270.0-74.0%, CaO + Mg0 12.0
~15.0%, Na2O+K2O 13.5-17.0
% infrared and ultraviolet absorbing glass.
【請求項2】  前記ガラスが、5mm 厚換算で、A
 光源による可視光線透過率が67%以上、日射透過率
が37〜45%、紫外線透過率が7〜13%、主波長が
506 〜518 nm、刺激純度が3.5 以下であ
ることを特徴とする請求項1記載の赤外線紫外線吸収ガ
ラス。
[Claim 2] The glass has a thickness of A when converted to a thickness of 5 mm.
The visible light transmittance of the light source is 67% or more, the solar transmittance is 37-45%, the ultraviolet transmittance is 7-13%, the dominant wavelength is 506-518 nm, and the stimulus purity is 3.5 or less. The infrared and ultraviolet absorbing glass according to claim 1.
【請求項3】  前記請求項1または2記載の赤外線紫
外線吸収ガラスを製造するに当たり、原料としてイルメ
ナイト、あるいは/および微量原料として炭素、Zn、
Sn等の金属粉または酸化物のうち少なくとも一つを用
いることを特徴とする赤外線紫外線吸収ガラスの製法。
3. In producing the infrared and ultraviolet absorbing glass according to claim 1 or 2, ilmenite is used as a raw material, and/or carbon, Zn,
A method for producing infrared and ultraviolet absorbing glass, characterized by using at least one of a metal powder such as Sn or an oxide.
JP40584090A 1990-11-26 1990-12-25 Infrared UV absorbing glass and its manufacturing method Expired - Lifetime JPH0694377B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP40584090A JPH0694377B2 (en) 1990-12-25 1990-12-25 Infrared UV absorbing glass and its manufacturing method
EP91120063A EP0488110B1 (en) 1990-11-26 1991-11-25 Infrared and ultraviolet ray absorbing glass
DE69120509T DE69120509T2 (en) 1990-11-26 1991-11-25 Infrared and ultraviolet radiation absorbing glass
US08/112,913 US5362689A (en) 1990-11-26 1993-08-27 Infrared and ultraviolet ray absorbing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40584090A JPH0694377B2 (en) 1990-12-25 1990-12-25 Infrared UV absorbing glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04224133A true JPH04224133A (en) 1992-08-13
JPH0694377B2 JPH0694377B2 (en) 1994-11-24

Family

ID=18515449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40584090A Expired - Lifetime JPH0694377B2 (en) 1990-11-26 1990-12-25 Infrared UV absorbing glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0694377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166536A (en) * 1992-04-17 1994-06-14 Guardian Ind Corp Infrared ray and ultraviolet ray absorbing green glass
US5683804A (en) * 1994-04-28 1997-11-04 Central Glass Company, Limited Glass plate with ultraviolet and infrared absorbing film
JP2001036102A (en) * 1999-07-15 2001-02-09 Sanyo Electric Co Ltd Solar cell module
JP2019517986A (en) * 2016-06-23 2019-06-27 ケーシーシー コーポレーション Green glass composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809336B1 (en) 2012-12-28 2017-12-14 니혼 이타가라스 가부시키가이샤 Reduced pressure double glazed glass panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166536A (en) * 1992-04-17 1994-06-14 Guardian Ind Corp Infrared ray and ultraviolet ray absorbing green glass
US5683804A (en) * 1994-04-28 1997-11-04 Central Glass Company, Limited Glass plate with ultraviolet and infrared absorbing film
JP2001036102A (en) * 1999-07-15 2001-02-09 Sanyo Electric Co Ltd Solar cell module
JP2019517986A (en) * 2016-06-23 2019-06-27 ケーシーシー コーポレーション Green glass composition
US11066318B2 (en) 2016-06-23 2021-07-20 Kcc Glass Corporation Green glass composition

Also Published As

Publication number Publication date
JPH0694377B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP2528579B2 (en) Frit glass with high iron content and high reduction rate, and ultraviolet / infrared absorbing green glass using it
US5364820A (en) Neutral gray-colored infrared and ultraviolet radiation absorbing glass
US5344798A (en) Blue-colored infrared and ultraviolet radiation absorbing glass and method of producing same
JP3086165B2 (en) UV-infrared absorbing green glass
US5362689A (en) Infrared and ultraviolet ray absorbing glass
AU725178B2 (en) Infrared and ultraviolet radiation absorbing blue glass composition
CA2109059C (en) Ultraviolet absorbing green tinted glass
EP1034144B1 (en) Privacy glass
JPH03187946A (en) Infrared and ultraviolet ray absorbing green glass and window glass and window material for vehicular use
JPH10203844A (en) Glass plate for producing grazing panel
EP1132350A1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
KR20070102704A (en) Glass composition for production of glazing absorbing ultraviolet and infrared radiation
PL178656B1 (en) Glass composition
EP0527487B1 (en) Blue-colored infrared and ultraviolet radiation absorbing glass and method of producing same
EP1064233B1 (en) Bronze privacy glass
JPH04224133A (en) Ir and uv absorbing glass and its manufacture
JPH06247740A (en) Neutral grayish hue glass
JPH04193738A (en) Infrared and ultraviolet absorption glass and its manufacture
JPH05270855A (en) Heat ray absorbing glass having neutral gray tone
JPH09208251A (en) Ultraviolet rays and infrared rays absorbing green glass
JP2740102B2 (en) Green color tone glass
JP3434140B2 (en) Dens green color glass
JP2513944B2 (en) Infrared UV absorbing glass
JPH061633A (en) Blue colored infrared and ultraviolet absorbing glass
JP3606607B2 (en) UV-infrared absorbing green glass