JPH0694377B2 - Infrared UV absorbing glass and its manufacturing method - Google Patents

Infrared UV absorbing glass and its manufacturing method

Info

Publication number
JPH0694377B2
JPH0694377B2 JP40584090A JP40584090A JPH0694377B2 JP H0694377 B2 JPH0694377 B2 JP H0694377B2 JP 40584090 A JP40584090 A JP 40584090A JP 40584090 A JP40584090 A JP 40584090A JP H0694377 B2 JPH0694377 B2 JP H0694377B2
Authority
JP
Japan
Prior art keywords
glass
infrared
tio
ultraviolet
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP40584090A
Other languages
Japanese (ja)
Other versions
JPH04224133A (en
Inventor
繁樹 森本
正 野口
泰史 田口
大和 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP40584090A priority Critical patent/JPH0694377B2/en
Priority to EP91120063A priority patent/EP0488110B1/en
Priority to DE69120509T priority patent/DE69120509T2/en
Publication of JPH04224133A publication Critical patent/JPH04224133A/en
Priority to US08/112,913 priority patent/US5362689A/en
Publication of JPH0694377B2 publication Critical patent/JPH0694377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は比較的高い透視性をもち
赤外線紫外線を吸収して高居住性、高安全性となって軽
量化ができ得る赤外線紫外線吸収ガラスおよびその製法
に関し、建築用窓ガラスや各種ガラス物品はもちろん、
殊に車両用窓ガラスに有用な前記ガラスとその製法を提
供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared ray absorbing glass which has a relatively high transparency and absorbs infrared rays and ultraviolet rays so that it can be made highly comfortable and highly safe, and can be made lighter. Not to mention glass and various glass articles,
Particularly, the present invention provides the above-mentioned glass useful for a window glass for vehicles and a method for producing the same.

【0002】[0002]

【従来技術】近年富みに、冷房負荷の低減等省エネルギ
ー化あるいは有機物における劣化ならびに退色等から、
赤外線や紫外線の反射吸収等多機能化をガラス自体また
はガラス表面に付加することにより、人的にも物的にも
より高居住性に繋がる板ガラス物品のニーズが急激に高
まってきている。
2. Description of the Related Art In recent years, due to abundant energy saving such as cooling load reduction or deterioration and fading of organic matter,
By adding multi-functionalization such as reflection and absorption of infrared rays and ultraviolet rays to the glass itself or the glass surface, there is a rapidly increasing need for a flat glass article that leads to higher habitability both physically and physically.

【0003】そこで、従来の赤外線吸収ガラスに加えて
紫外線吸収を意識したガラスがさらに提案されつつあ
り、例えば特開昭64ー18938 号公報にはFe2O3 として表
して少なくとも0.45重量%の鉄を有する溶融ガラスの連
続流を送り、溶融操作中の酸化還元条件をFeO として表
される第一鉄状態の鉄を少なくとも35%与えるように制
御し、そしてガラスを成形操作で平板ガラス製品へ成形
することを含み、しかも前記平板ガラスが少なくとも65
%の光透過率及び15%以下の赤外線透過率を有する、連
続的方法でソーダ・石灰・シリカ平板ガラスを製造する
方法が開示され、ガラス中でFe2O3 として表して0.65%
より少ない全鉄含有量が与えられていることあるいは製
品ガラスの硫黄含有量がSO3 として表して0.02%より少
ないこと等にすることが好ましいものであると記載さ
れ、またFe2O3 として表して少なくとも0.45重量%の全
鉄で、そのうち少なくとも50%がFeO として表した第一
鉄状態にある鉄、及びSO3 として表して0.02重量%より
少ない硫黄を有し、少なくとも65%の光透過率及び15%
以下の全太陽赤外線透過率を示すソーダ・石灰・シリカ
ガラス物品が開示されており、ガラス物品が、重量に基
づいて、66〜75%のSiO2、12〜20%のNa2O、7 〜12%の
CaO 、0 〜5 %のMgO 、0 〜4 %のAl2O3 、0 〜3 %の
K2O 、0 〜1 %のFe2O3 、及びCeO2、TiO2、V2O5又はMo
O3の合計0 〜1.5 %から本質的になる組成を有するもの
が好ましいことが記載されている。さらに米国特許第47
01425 号には重量%で表して、60〜80%のSiO2、10〜20
%のNa2O、0 〜10%のK2O 、5 〜16%のCaO 、0 〜10%
のMgO 、0 〜5 %のAl2O3 、0 〜0.5 %のSO3 、0.29〜
0.6 %のFe2O3 、0.1 〜1.5 %のSnO2、0.1 〜1.6 %の
TiO2から実質的になる赤外線と紫外線を吸収するガラス
組成物が開示されている。
Therefore, in addition to the conventional infrared absorbing glass, glass considering ultraviolet absorption is being further proposed. For example, in JP-A-64-18938, at least 0.45% by weight of iron represented by Fe 2 O 3 is represented. A continuous flow of molten glass having a controlled flow rate, controlling the redox conditions during the melting operation to give at least 35% of iron in the ferrous state, expressed as FeO, and shaping the glass into a flat glass product in a shaping operation. And the flat glass has at least 65
Disclosed is a method for producing soda-lime-silica flat glass by a continuous method having a light transmittance of 15% and an infrared transmittance of 15% or less, and represented by Fe 2 O 3 in the glass is 0.65%.
It is stated that it is preferable that a lower total iron content is given or that the sulfur content of the product glass is represented as SO 3 and less than 0.02%, and is also represented as Fe 2 O 3. At least 0.45% by weight of total iron, of which at least 50% has iron in the ferrous state, expressed as FeO, and less than 0.02% by weight, expressed as SO 3 , with a light transmission of at least 65%. And 15%
Discloses a soda-lime-silica glass article having the following total solar infrared transmittance, the glass article, based on the weight, 66-75% of SiO 2, 12 to 20 percent of Na 2 O, 7 ~ 12%
CaO, 0-5% MgO, 0-4% Al 2 O 3 , 0-3%
K 2 O, 0 ~1% of Fe 2 O 3, and CeO 2, TiO 2, V 2 O 5 or Mo
Preference is given to those having a composition consisting essentially of 0 to 1.5% of total O 3 . Furthermore, U.S. Pat. No. 47
No. 01425, expressed as% by weight, 60-80% SiO 2 , 10-20
% Na 2 O, 0-10% K 2 O, 5-16% CaO, 0-10%
Of MgO, 0 to 5% of Al 2 O 3, 0 ~0.5% of SO 3, 0.29 to
0.6% Fe 2 O 3 , 0.1-1.5% SnO 2 , 0.1-1.6%
Glass compositions are disclosed for absorbing infrared light and ultraviolet light consisting essentially of TiO 2.

【0004】[0004]

【発明が解決しようとする問題点】前述したような例え
ば特開昭64ー18938 号公報に記載のものは、SO3 成分を
0.02重量%より少なくし、通常のフロート法による板ガ
ラス製造での溶融操作手段では到底所期の赤外線紫外線
吸収ガラスを得ることが困難であって、種々の複雑な手
段工程、例えば液化段階、溶解段階、清澄段階、攪拌室
ならびに攪拌器等が必要となるようなものであり、また
米国特許第4701425 号に記載のものは必ずしも充分易強
化のガラス組成物であるとは言い難く、しかも赤外線の
吸収においても必ずしも充分優れるものとは言い難いも
のである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, for example, the one disclosed in JP-A-64-18938, the SO 3 component is
Since it is less than 0.02% by weight, it is difficult to obtain a desired infrared-ultraviolet-absorbing glass by a melting operation means in the production of a flat glass by a normal float method, and various complicated means steps such as a liquefaction step and a melting step. , A fining stage, a stirring chamber, a stirrer, etc. are required, and it is difficult to say that the one described in US Pat. However, it is hard to say that it is always sufficiently excellent.

【0005】[0005]

【問題点を解決するための手段】本発明は、従来のかか
る欠点に鑑みてなしたものであって、熱膨張係数、ヤン
グ率およびポアソン比を大きい方にかつ熱伝導率を小さ
い方になるようにするとともに、赤外線と紫外線を充分
所期の吸収を有するものであって、比較的透視性がある
緑系の色調を発現し、しかも耐候性、成形性も充分に有
する易強化性の赤外線紫外線吸収ガラスおよびその製法
を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has a large thermal expansion coefficient, a Young's modulus and a Poisson's ratio and a small thermal conductivity. In addition, the infrared ray having sufficient absorption of infrared rays and ultraviolet rays, exhibits a relatively transparent green color tone, and has sufficient weather resistance and moldability. An ultraviolet absorbing glass and a method for producing the same are provided.

【0006】すなわち、本発明は、重量%で表示して、
実質的に下記酸化物であり、68〜72%SiO2、1.6 〜3.0
%Al2O3 、8.5 〜11.0%CaO 、2.0 〜4.2 %MgO 、12.0
〜16.0%Na2O、0.5 〜3.0 %K2O 、0.08〜0.30%SO3
0.65〜0.75%Fe2O3 、0.20〜0.35%CeO2、0.1 〜0.2 %
TiO2、ならびに微量成分としてMnO 5 〜300ppmを含み、
これら成分の総和が98%以上であって、かつ70.0〜74.0
%SiO2+Al2O3 +TiO2、 12.0〜15.0%CaO +MgO 、1
3.5〜17.0%Na2O+K2O であることを特徴とする赤外線
紫外線吸収ガラス。ならびに5mm 厚換算で、A 光源によ
る可視光線透過率が67%以上、日射透過率が37〜45%、
紫外線透過率が7〜13%、主波長が506 〜518 nm、刺激
純度が3.5 以下であることを特徴とする前記赤外線紫外
線吸収ガラス。さらに前記赤外線紫外線吸収ガラスを製
造するに当たり、原料としてイルメナイト、あるいは/
および微量原料として炭素、Zn、Sn等の金属粉または酸
化物のうち少なくとも一つを用いることを特徴とする赤
外線紫外線吸収ガラスの製法を提供するものである。
That is, the present invention is expressed in% by weight,
Substantially the following oxides, 68-72% SiO 2 , 1.6-3.0
% Al 2 O 3 , 8.5-11.0% CaO, 2.0-4.2% MgO, 12.0
~ 16.0% Na 2 O, 0.5 ~ 3.0% K 2 O, 0.08 ~ 0.30% SO 3 ,
0.65 to 0.75% Fe 2 O 3 , 0.20 to 0.35% CeO 2 , 0.1 to 0.2%
TiO 2 , as well as MnO 5 ~ 300ppm as a trace component,
The sum of these components is 98% or more, and 70.0 to 74.0
% SiO 2 + Al 2 O 3 + TiO 2 , 12.0 ~ 15.0% CaO + MgO, 1
Infrared UV absorbing glass characterized by 3.5 to 17.0% Na 2 O + K 2 O. Also, in terms of 5 mm thickness, visible light transmittance by A light source is 67% or more, solar radiation transmittance is 37 ~ 45%,
The above infrared-ray ultraviolet absorbing glass, which has an ultraviolet transmittance of 7 to 13%, a main wavelength of 506 to 518 nm, and a stimulus purity of 3.5 or less. Furthermore, when manufacturing the infrared-ultraviolet-absorbing glass, ilmenite as a raw material, or
And a method for producing an infrared and ultraviolet absorbing glass, characterized in that at least one of metal powder or oxide such as carbon, Zn, Sn or the like is used as a trace amount raw material.

【0007】ここで、SiO2成分を重量%で68〜72%とし
たのは、68%未満では表面にやけ等が発生しやすく耐候
性が下がり実用上の問題が生じてくるものであり、72%
を超えるとその易強化性が下がり、溶融も難しくなるも
のであり、Al2O3 成分を重量%で1.6 〜3.0 %としたの
は、1.6 %未満では耐候性が下がり表面にやけ等が発生
しやすく実用上の問題が生じてくるものであり、3%を
超えると失透が生じやすくなり成形温度範囲が狭くなり
製造が難しくなるものであり、CaO 成分を重量%で8.5
〜11.0%としたのは、8.5 %未満では易強化性が下が
り、また融剤として不足気味となり溶融温度も高くなり
また流動温度を低くしないので製造しにくくなり、11%
を超えると失透し易くなり、成形作業範囲が狭くなり製
造が難しくなるものであり、MgO 成分を重量%で2.0 〜
4.2 %としたのは、2.0 %未満では溶融温度が上がり操
作範囲を狭めるので製造がしにくくなり、4.2 %を超え
ると易強化性が下がるものであり、Na2O成分を重量%で
12.0〜16.0%としたのは、12.0未満では易強化性が下が
り、成形性が難しくなり、失透も生じ易くなるので操作
範囲が狭まり製造しにくくなり、16%を超えると耐候性
が下がり、表面にやけ等が発生しやすくなり実用上の問
題が生じてくるものであり、K2O 成分を重量%で0.5 〜
3.0 %としたのは、0.5 %未満では易強化性が下がり、
3.0 %を超えると耐候性が下がりかつコストも高くなる
ものであり、SO3 成分を重量%で0.08〜0.30%としたの
は、0.08%未満では例えば通常の溶融において脱泡ある
いは均質性上不充分となり易い程度にしかできなくな
り、0.30%を超えると特にガラスの着色状態に影響を与
え、例えば黄色やアンバー色がかった色調に移行し易く
なる等が発現し所期の緑系色調が得られなくなるためで
あり、好ましくは0.15%前後とどちらかと言えば範囲内
でも低いところがよいものである。
Here, the reason why the SiO 2 component is 68 to 72% by weight is that if it is less than 68%, the surface is likely to be burnt or the like, and the weather resistance is lowered to cause a practical problem. 72%
If it exceeds 1.0%, its easy strengthening property decreases and it becomes difficult to melt it. The reason why the Al 2 O 3 component is 1.6 to 3.0% by weight is that if it is less than 1.6%, the weather resistance decreases and the surface is burnt. If it exceeds 3%, devitrification is likely to occur, the molding temperature range is narrowed, and the manufacturing becomes difficult, and the CaO component is 8.5% by weight.
〜11.0% means that if it is less than 8.5%, the easy strengthening property will decrease, and as a fluxing agent, it will be insufficient and the melting temperature will rise, and the flow temperature will not be lowered, making it difficult to manufacture.
If it exceeds, devitrification is likely to occur, the molding work range is narrowed, and manufacturing becomes difficult, and the MgO component is 2.0% by weight.
4.2% and was of, in less than 2.0% less likely to manufacture since narrow the operating range melting temperature rises, which decreases ease reinforcing exceeds 4.2%, by weight of Na 2 O component
The range of 12.0 to 16.0% is that if it is less than 12.0, the easy strengthening property decreases, moldability becomes difficult, and devitrification easily occurs, so the operating range is narrowed and it becomes difficult to manufacture, and if it exceeds 16%, the weather resistance decreases, are those made burnt like easily occurs practical problems arise in the surface, 0.5 a K 2 O component in weight%
The reason for setting 3.0% is that if it is less than 0.5%, the easiness of strengthening decreases.
Exceeds 3.0%, the weather resistance is lowered and cost is intended also increased, to that with 0.08 to 0.30% of SO 3 component in weight percent, on degassing or homogeneity is less than 0.08% for example, in conventional melt non It can be made only to the extent that it easily becomes sufficient, and when it exceeds 0.30%, it particularly affects the coloring state of the glass, and it is easy to shift to a yellowish or amberish tone, for example, and the desired greenish tone is obtained. This is because it disappears, and it is preferable that it is around 0.15%, which is rather low even within the range.

【0008】また、Fe2O3 成分を重量%で0.65〜0.75%
したのは、赤外線を吸収するFeO 成分量と紫外線を吸収
し所期の色調を確保するFe2O3 成分量との総量として、
前述した各種光学特性を安定して得るために、他のCe
O2、TiO2等の各成分量とともにことに必要であり、0.65
%未満では上述に対する作用が劣り、0.75%を超えると
特に可視光線透過率が劣ることとなる等好ましくないか
らであり、CeO2とTiO2成分は紫外線の吸収作用を有し、
CeO2成分を0.20〜0.35%とし、TiO2成分を0.1 〜0.2 %
としたのは、ガラスにおける還元率をほとんど変化させ
ないしかも紫外線吸収能がCeO2成分より小さいTiO2成分
と、ガラスにおける還元率を比較的大きく変化させしか
も紫外線吸収能を充分与えるCeO2成分とを上述の特定範
囲内に限定して組み合わすことで、僅かの含有量で所期
の特性を効率的に得ることでき、従来の還元率をほとん
ど変化させないようにしつつ、Ceのガラス中での価数を
Ce4+、Ce3+のうち、ほぼ無色のCe3+が主になるように
し、前述した全鉄におけるFe2O3 とFeO との割合を制御
して、可視光領域の透過率を全体的に低下させないよう
にしかつ紫外線吸収や赤外線吸収等所期の光学特性を達
成し得るようにするためであり、さらにMnO 成分を5 〜
300ppmとしたのは、FeとMnとの関係ではFeが酸化される
方向でかつ微量ながら還元率が低い方向になる傾向があ
り、CeとMnとの関係ではMnが酸化される方向であって還
元率には影響が殆どないものである等によって、MnがFe
とCeらとあいまって中性的に相互作用させながら、約50
0nm 付近にあるMnO の吸収波長でもって前記色調調整
を、大きな影響を与えないで微力ながら調整できるよう
にしたものであり、またMnO 成分を多量に用いれば例え
ばソラリゼーション等の現象を発現するように成り易く
なるなどから300ppmを超えないようにしたものである。
Further, the Fe 2 O 3 component is 0.65 to 0.75% by weight.
The total amount of FeO component that absorbs infrared rays and Fe 2 O 3 component that absorbs ultraviolet rays and secures the desired color tone is
In order to stably obtain the various optical characteristics described above, other Ce
It is necessary to be together with the amount of each component such as O 2 and TiO 2 , and 0.65
%, The action against the above is inferior, and if it exceeds 0.75%, the visible light transmittance is particularly inferior, which is not preferable, and the CeO 2 and TiO 2 components have an ultraviolet absorbing action,
CeO 2 component is 0.20 to 0.35%, TiO 2 component is 0.1 to 0.2%
And the is given a little varied Moreover ultraviolet absorptivity CeO 2 component is less than TiO 2 component reduction rate of the glass, giving sufficiently relatively greatly varied Moreover ultraviolet absorbing ability of the reduction rate of the glass and a CeO 2 component By limiting the combination within the above-mentioned specific range, the desired characteristics can be efficiently obtained with a small content, while the conventional reduction rate is hardly changed, while the value of Ce in the glass is reduced. The number
Ce 4+, among Ce 3+, as nearly colorless Ce 3+ is mainly to control the ratio of the FeO and Fe 2 O 3 in the total iron as described above, the entire transmittance of visible light region In order to achieve desired optical characteristics such as ultraviolet absorption and infrared absorption.
The reason for setting 300 ppm is that the relationship between Fe and Mn tends to oxidize Fe and the reduction rate tends to be low although it is a small amount, and the relationship between Ce and Mn indicates that Mn is oxidized. Mn is Fe
And Ce et al.
It is possible to adjust the color tone with a slight force without having a great influence on the absorption wavelength of MnO near 0 nm, and if a large amount of MnO component is used, for example, a phenomenon such as solarization is expressed. It is made so as not to exceed 300ppm because it becomes easier.

【0009】また、SiO2、Al2O3 、CaO 、MgO 、Na2O、
K2O 、Fe2O3 、SO3 、CeO2、TiO2、MnO の成分の総和を
重量百分率で98%以上としたのは、例えばZnO 、SnO2
微量成分を2 %を超えない量に制御するためである。な
かでもV2O5成分を任意成分として0 〜0.25%程度添加す
ることがあり、該V2O5は還元率をほとんど変化させるこ
とがなくしかも紫外線吸収能がCeO2成分より小さく影響
が少ないからで微調整に添加用いるものであり、V のガ
ラス中での価数を黄色を呈するV5+ が極力少なくし緑色
を呈するV3+ に主になるようにする必要がある等のため
である。
Further, SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O,
The sum of the components of K 2 O, Fe 2 O 3 , SO 3 , CeO 2 , TiO 2 , and MnO was defined as 98% or more by weight percentage because the amount of trace components such as ZnO and SnO 2 does not exceed 2%. This is because it is controlled. Of these, the V 2 O 5 component may be added as an optional component in an amount of 0 to 0.25%, and the V 2 O 5 hardly changes the reduction rate and has a smaller ultraviolet absorption capacity than the CeO 2 component and less influence. This is because it is used for fine adjustment, and it is necessary to reduce the valence of V in the glass from V 5+, which exhibits yellow, to V 3+ , which exhibits green, as much as possible. is there.

【0010】さらに、SiO2+Al2O3 +TiO2を重量百分率
で70.0〜74.0%としたのは、70%未満では耐候性が下が
り、74%を超えると易強化性が下がる問題が生じるもの
であり、CaO +MgO を重量百分率で12.0〜15.0%とした
のは、CaO およびMgO 成分は溶融温度を下げるために用
いられるとともに、12%未満では易強化性が下がり、15
%を超えると失透しやすくなり製造上難しくなるもので
あり、Na2O+K2O を百分率で13.5〜17%としたのは、1
3.5%未満では易強化性が下がり、失透も生じやすくな
って成形において作業温度範囲が狭くなり、製造が難し
くなり、17%を超えると耐候性が下がり実用上の問題を
生じるものであるとともにコスト的にも高くなるもので
ある。
Furthermore, the reason that the weight percentage of SiO 2 + Al 2 O 3 + TiO 2 is 70.0 to 74.0% is that if it is less than 70%, the weather resistance is deteriorated, and if it exceeds 74%, the easy strengthening property is deteriorated. The reason why CaO + MgO is set to 12.0 to 15.0% by weight is that CaO and MgO components are used for lowering the melting temperature, and if less than 12%, the easy strengthening property deteriorates.
If it exceeds%, devitrification is likely to occur and it will be difficult to manufacture. Therefore, the percentage of Na 2 O + K 2 O of 13.5 to 17% is 1%.
If it is less than 3.5%, the easy strengthening property is deteriorated, devitrification is likely to occur, the working temperature range in molding is narrowed, and the manufacturing becomes difficult. If it exceeds 17%, the weather resistance is deteriorated and practical problems occur. The cost is also high.

【0011】さらにまた、5mm 厚換算で、A 光源による
可視光線透過率が67%以上、日射透過率が37〜45%、紫
外線透過率が7 〜13%、主波長が506 〜518 nm、刺激純
度が3.5 以下であることが好ましいとしたのは、前記可
視光線透過率が67%未満では特に自動車のフロント窓ガ
ラスにおいてガラスの透視性、ことに日暮れ、夜間ある
いは雨降りなどに際し、物体の識別性の低下が発現しや
すく好ましくなく、より好ましくは70%前後、さらに好
ましくは75%前後であり、日射透過率が45%を超えると
冷房負荷の増大あるいは車内・室内での居住性を向上す
ることができないこととなり、37%未満では透視性こと
に前述した識別性の低下あるいは色調にも影響を与え兼
ねないこととなるので好ましくなく、紫外線透過率が13
%を超えると車内・室内での物品の脱色・劣化あるいは
肌焼け等人的影響により居住性の悪化に結び付き易く、
7%未満では例えば前記日射透過率が得られなくなる等
の弊害が発生し易くなり、主波長が518nm を超えると黄
色あるいはアンバー色が影響して所期の緑色調系に成ら
ず、506nm 未満ではブルー色が勝ち過ぎて所期の緑色調
系と成らないためであり、好ましい主波長は509 〜515
であり、刺激純度が3.5 を超えると物体の識別性が低下
するようになって例えば日暮れやどんよりした雨降り等
で乗員の透視性に支障を来し、安全性の確保等が困難と
なるためである。なお紫外線域は290 〜390nmとし、可
視域等は従来通りとした。
Furthermore, in terms of 5 mm thickness, visible light transmittance by A light source is 67% or more, solar radiation transmittance is 37 to 45%, ultraviolet transmittance is 7 to 13%, dominant wavelength is 506 to 518 nm, and stimulation is It is preferable that the purity is 3.5 or less, because when the visible light transmittance is less than 67%, the visibility of the glass is particularly noticeable in the windshields of automobiles, especially in the case of nightfall, nighttime or rain, etc. Is less likely to occur, more preferably around 70%, even more preferably around 75%, and if the solar radiation transmittance exceeds 45%, the cooling load will increase or the habitability inside / inside the vehicle will be improved. If it is less than 37%, it is not preferable because the transparency may affect the deterioration of the above-mentioned distinctiveness or the color tone.
If it exceeds%, it is easy to lead to deterioration of habitability due to human influence such as discoloration / deterioration of articles in the car / room or skin burn,
If it is less than 7%, for example, adverse effects such as the inability to obtain the solar radiation transmittance tend to occur, and if the dominant wavelength exceeds 518 nm, the desired green tone system is not formed due to the influence of yellow or amber, and if it is less than 506 nm. This is because the blue color is too predominant to produce the desired green color tone, and the preferred dominant wavelength is 509 to 515.
If the stimulus purity exceeds 3.5, the identification of the object will be deteriorated and the visibility of the occupant will be hindered due to, for example, nightfall or heavy rain, making it difficult to secure safety. is there. The ultraviolet range was 290 to 390 nm, and the visible range was the same as before.

【0012】さらにまた、前記赤外線紫外線吸収ガラス
を製造するに当たり、原料としてイルメナイトを用いた
方が好ましいとしたのは、FeO ならびにTiO2からほぼ成
るため、FeO のガラス中への取り込みが少しでも容易と
なり、しかも実窯の操業条件等をほぼ不変とし、ガラス
の酸化還元状態を従来と出来るだけ変えないように、す
なわち実窯で還元率が約0.45程度であるのに対し本発明
の赤外線紫外線吸収ガラスの製造に当たってはCeO2等種
々の作用を加味し0.3 〜0.4 程度(例えば実窯の還元率
の約7割前後)とするのに少しでも役立つためであり、
微量原料として炭素、Zn、Sn等の金属粉または酸化物の
うち少なくともその一つを用いると好ましいとしたの
は、例えば時として芒硝(Na2SO4)等清澄剤の作用効果
を助ける必要があり、一方では前記所期の色調の確保に
悪い影響を与えることともなり易く、ZnあるいはSn等還
元剤もFe2O3 とFeO とのバランスを調整するために必要
な場合もあるためである。
Further, it is preferable to use ilmenite as a raw material in producing the infrared-ultraviolet-absorbing glass because FeO and TiO 2 are substantially contained, so that FeO can be easily incorporated into the glass. In addition, the operating conditions etc. of the actual kiln are almost unchanged, and the redox state of the glass is not changed as much as possible, that is, the reduction rate is about 0.45 in the actual kiln, whereas the infrared and ultraviolet absorption of the present invention is This is because in the production of glass, it is possible to add a variety of actions such as CeO 2 to make it about 0.3 to 0.4 (for example, about 70% of the reduction rate of the actual kiln), which is a little useful.
It is preferable to use at least one of metal powders and oxides such as carbon, Zn, and Sn as a trace amount of raw material. For example, it is sometimes necessary to help the effect of a fining agent such as Glauber's salt (Na 2 SO 4 ). On the other hand, on the other hand, it is likely to have a bad influence on ensuring the desired color tone, and a reducing agent such as Zn or Sn may be necessary in order to adjust the balance between Fe 2 O 3 and FeO. .

【0013】なお、本発明の赤外線紫外線吸収ガラスは
易強化ガラス組成物であって、板厚1mm 前後の薄板ガラ
スから10mm前後の厚板ガラスで、平板または曲げ板とし
て生板から強度アップしたもの、半強化したもの、強化
したもの等で、単板ガラス、合せガラス、積層ガラスあ
るいは複層ガラス等で用いることが、ことに車両用窓ガ
ラスで用いることが有用である。
The infrared and ultraviolet absorbing glass of the present invention is an easily tempered glass composition, which is a thin glass sheet having a thickness of about 1 mm to a thick glass sheet having a thickness of about 10 mm, which is a flat plate or a bent plate with an increased strength from a green plate, Semi-strengthened, reinforced, etc., which are useful as single-plate glass, laminated glass, laminated glass or multi-layered glass, and especially as window glass for vehicles.

【0014】[0014]

【作用】前述したとおり、本発明の赤外線紫外線吸収ガ
ラスならびにその製法であって、特定酸化物成分を特定
組成範囲で組み合わせたガラスとし、あるいは特異な原
料を易強化性を持たせしかも還元率の低下を抑制するよ
う組み合わせて用い、上述したガラスを製造することに
よって、例えば溶融性、清澄性、耐候性、成形性、失透
性、コスト等を考慮し、従来のフロートガラスの製造条
件ならびにそのガラスの性質等をほとんど変化させず、
加えて易強化性を持ち合わせかつ赤外線ならびに紫外線
を吸収して人的物的に高居住性であって、物体の識別も
優れた透視性を充分持つものとなって高安全性を確保で
き、グリーン色調系で例えば車・室内外と充分調和のあ
るものとなって環境的にも優れたものとなり、さらに、
従来の熱強化方法では得られなかった薄板ガラス等で
も、充分な強化度あるいは充分強度アップが得られるよ
うになり、建築用窓ガラスはもちろん家具用ガラス、調
理用ガラス、ことに自動車用等車両用窓ガラス等に有用
な赤外線紫外線吸収ガラスを提供できるものである。
As described above, in the infrared and ultraviolet absorbing glass of the present invention and the method for producing the same, a glass in which a specific oxide component is combined in a specific composition range is used, or a unique raw material is provided with an easily strengthening property and a reduction ratio of Used in combination to suppress the reduction, by producing the above-mentioned glass, for example, meltability, fining, weather resistance, formability, devitrification, cost, etc., in consideration of the conventional float glass production conditions and It hardly changes the properties of glass,
In addition, it has an easy strengthening property, absorbs infrared rays and ultraviolet rays, and has a high habitability in terms of human physical properties, and it has sufficient transparency for distinguishing objects, ensuring a high degree of safety. In the color tone system, for example, it is in good harmony with the interior and exterior of the car, making it environmentally superior.
Even thin glass, which could not be obtained by conventional heat strengthening methods, will be able to obtain a sufficient degree of strengthening or strength increase, and not only architectural window glass but also furniture glass, cooking glass, especially automobiles and other vehicles. It is possible to provide an infrared and ultraviolet absorbing glass which is useful as a window glass for windows.

【0015】[0015]

【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0016】実施例1 通常方法によって、ガラスは特選珪砂(共立窯業製)と
1級試薬であるAl2O3 、Fe2O3 、CaCO3 、MgCO3 、Na2S
O3、KNO3、CeO2、TiO2、MnO 、イルメナイト等を用い、
粘性温度が109 ポイズで650 〜685 ℃、1012ポイズで55
5 〜585 ℃、かつ両者の温度差が96〜103 ℃になるよう
になるガラス組成を目標組成として秤量調合し、ことに
実窯と多少低い程度の還元率(0.35前後)を得るためカ
ーボンを0.175 重量%程度添加調合したものであって、
該調合原料をルツボに入れ、約1450℃前後に保持した電
気炉中で約3時間程度溶融しガラス化して、さらに均質
化および清澄のため、1420〜1430℃で約2時間程度保持
した後、型に流し出しガラスブロックとし、大きさ100m
m ×100mm で厚み約5mmのガラス板に切り出し、研削研
磨し、各試料とした。
Example 1 According to a conventional method, glass is selected silica sand (manufactured by Kyoritsu Kiln Co., Ltd.) and first-grade reagents Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgCO 3 , Na 2 S.
Using O 3 , KNO 3 , CeO 2 , TiO 2 , MnO, ilmenite, etc.,
Viscosity temperature 650-685 ° C at 10 9 poise, 55 at 10 12 poise
Weigh and mix a glass composition that is 5 to 585 ℃ and the temperature difference between them is 96 to 103 ℃ as the target composition, especially carbon in order to obtain a slightly lower reduction rate (about 0.35) with the actual kiln. 0.175% by weight was added and blended,
The prepared raw material was put in a crucible and melted and vitrified for about 3 hours in an electric furnace kept at about 1450 ° C, and further held at 1420 to 1430 ° C for about 2 hours for homogenization and clarification, 100 m in size as a glass block poured into a mold
Each sample was cut into a glass plate having a size of m × 100 mm and a thickness of about 5 mm, ground and polished.

【0017】この試料について、ガラス成分組成(重量
%)についてはJISR-3101に基づく湿式分析法等で行
い、粘性温度(℃)についてはベンディングアーム法に
より粘度曲線を測定して109 および1012ポイズの温度を
求めるとともに、リリー法によって歪点、リトルトン法
によって軟化点を測定し、光学特性(5mm厚みにおけ
る)としての可視光線透過率(A光源にて、%)、紫外
線透過率(%)、および日射透過率、主波長(nm)、刺
激純度については340 型自記分光光度計(日立製作所
製)とJIS Z-8722、JIS R-3106、ISO/DIS-9050にて測定
計算して求める等を行った。
[0017] For this sample, the glass component composition (wt%) is carried out by a wet analytical method based on JISR-3101, for the viscosity temperature (℃) by measuring the viscosity curve by bending arms method 10 9 and 10 12 The poise temperature is calculated, the strain point is measured by the Lily method, and the softening point is measured by the Lyttelton method, and the visible light transmittance (% at A light source) and the ultraviolet transmittance (%) as optical characteristics (at a thickness of 5 mm) are measured. , And solar radiation transmittance, dominant wavelength (nm), and stimulus purity are obtained by measuring and calculating with 340 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) and JIS Z-8722, JIS R-3106, ISO / DIS-9050. And so on.

【0018】その結果、ガラス成分組成は重量表示でSi
O269.7%、Al2O31.9%、CaO9.1%、MgO3.5%、Na2O13.4
%、K2O1.0%、Fe2O30.695%、TiO20.15%、CeO20.27
%、SO 30.18 %、MnO 108ppmと成り、成分の総和が99.9
06%であってかつSiO2+Al2O3+TiO271.75 %、CaO +Mg
O12.6 %、Na2O+K2O14.4 %であり、還元率(Fe2+/Fe
3+)は0.30〜0.35程度となった。
As a result, the glass composition was
O269.7%, Al2O31.9%, CaO9.1%, MgO3.5%, Na2O13.4
%, K2O1.0%, Fe2O30.695%, TiO20.15%, CeO20.27
%, SO 30.18%, MnO 108ppm, the sum of the components is 99.9
06% and SiO2+ Al2O3+ TiO271.75%, CaO + Mg
O12.6%, Na2O + K2O14.4% and reduction rate (Fe2+/ Fe
3+) Was about 0.30 to 0.35.

【0019】また光学特性は、可視光線透過率が71.3
%、日射透過率が43%、主波長が512.2nm 、刺激純度が
2.8 であり、所期のグリーン系色調であった。
The optical characteristic is that the visible light transmittance is 71.3
%, Solar radiation transmittance 43%, dominant wavelength 512.2nm, stimulation purity
It was 2.8, which was the expected green color tone.

【0020】さらに易強化性については、上述したガラ
スが前述した粘性温度が所期の特定範囲をクリヤーして
いることならびに軟化点と歪点との温度差が大体200 〜
240 ℃の範囲にあることを確認した上、前記試料を雰囲
気温度約730 ℃の炉内で約5分間前後加熱した後、エア
圧約1300Apで通常の風冷強化し、大きさ120mm ×100mm
で板厚約3.5mm 程度の強化ガラス板を得、該強化ガラス
板のコーナー部の角端面から約30mmの位置で衝撃を与え
て破砕し、全面に破砕された該ガラス板をJIS R-3211に
従って調べたところ、決められた規格を充分満足する高
易強化性のものであった。
Further, regarding the easy strengthening property, the above-mentioned glass has the above-mentioned viscous temperature clearing a predetermined specific range, and the temperature difference between the softening point and the strain point is about 200-.
After confirming that the temperature is in the range of 240 ℃, after heating the sample for about 5 minutes in a furnace with an ambient temperature of about 730 ℃, normal air-cooling strengthening at an air pressure of about 1300 Ap, size 120mm × 100mm
To obtain a tempered glass plate with a plate thickness of about 3.5 mm, crush it by giving a shock at a position of about 30 mm from the corner end face of the corner portion of the tempered glass plate, and crushing the whole glass plate to JIS R-3211 According to the examination, it was found to be a material with high easiness of strengthening which sufficiently satisfies the specified standard.

【0021】なお、本発明の約2.5mm 板厚の曲げ赤外線
紫外線吸収ガラスを外側に用い、内側に約2mm板厚の熱
線反射膜被覆曲げガラス板を配し、該膜側を内側にして
PVB 中間膜を介して積層した合せガラスを試作し、自動
車の窓ガラスに用いたところ、本発明の作用効果を高め
るとともにさらに多機能化され、車内外の居住性なよび
に安全性がより優れたものと成るものであった。
The bent infrared and ultraviolet absorbing glass of the present invention having a thickness of about 2.5 mm is used on the outside, and the heat-reflecting film-covered bent glass plate having a thickness of about 2 mm is arranged on the inside, with the film side facing inside.
When a laminated glass laminated with a PVB interlayer film was prototyped and used as a window glass for automobiles, the function and effect of the present invention were enhanced, and it was further multifunctionalized, and it had better habitability inside and outside the vehicle and better safety. It was something that was

【0022】実施例2 前記実施例1と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。
Example 2 The same glass raw materials as in Example 1 were used, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled.

【0023】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示でSiO270.6%、Al2O31.6%、CaO9.5%、MgO 2.5 %、
Na2O13.5%、K2O0.9%、Fe2O30.687%、TiO20.17%、Ce
O20.31%、SO30.13 %、MnO 80ppm と成り、成分の総和
が99.905%であって、SiO2+Al2O3 +TiO272.37 %、Ca
O +MgO 12.0%、Na2O+K2O 14.4%であり、還元率は前
記と同様に0.30〜0.35程度となった。光学特性は可視光
線透過率が70.6%、日射透過率が42%、主波長が509.2n
m 、刺激純度が3.0 であり、所期のグリーン系色調であ
った。
The obtained sample was analyzed, measured and evaluated in the same manner as in Example 1, and as a result, the glass component composition was expressed by weight, SiO 2 70.6%, Al 2 O 3 1.6%, CaO 9.5%, MgO 2.5%. ,
Na 2 O 13.5%, K 2 O 0.9%, Fe 2 O 3 0.687%, TiO 2 0.17%, Ce
O 2 0.31%, SO 3 0.13%, MnO 80ppm, the sum of the components is 99.905%, SiO 2 + Al 2 O 3 + TiO 2 72.37%, Ca
The contents were O 2 + MgO 12.0% and Na 2 O + K 2 O 14.4%, and the reduction rate was about 0.30 to 0.35 as described above. The optical characteristics are visible light transmittance 70.6%, solar radiation transmittance 42%, dominant wavelength 509.2n.
m 2, stimulation purity was 3.0, and the desired green color tone.

【0024】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記実施例1と同様にJIS で
決められた規格を充分満足するものであって、薄いガラ
ス板でも高効率、高歩留りで前記規格に合格するものが
得れるようになるものであった。
Further, as to the easy strengthening property, the above-mentioned Example 1 was used.
When the same procedure as in Example 1 was performed, it was possible to obtain a product that sufficiently satisfied the standards determined by JIS and passed the above standards even with a thin glass plate with high efficiency and high yield. It was.

【0025】実施例3 前記実施例1と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。
Example 3 The same glass raw material as in Example 1 was used, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled.

【0026】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示でSiO269.3%、Al2O31.8%、CaO9.8%、MgO 3.3
%、Na 2O13.4%、K2O1.0%、Fe2O30.685%、TiO20.12
%、CeO20.30%、SO30.15 %、MnO 55ppm と成り、成分
の総和が99.919%であって、SiO2+Al2O3 +TiO271.23
%、CaO +MgO 13.1%、Na2O+K2O 14.4% であり、還
元率は前記と同様に0.30〜0.35程度となった。光学特性
は可視光線透過率が71.0%、日射透過率が42.7%、主波
長が514.9nm 、刺激純度が2.8 であり、所期のグリーン
系色調であった。
The sample obtained was the same as in Example 1 above.
As a result of analysis, measurement and evaluation,
Shows SiO269.3%, Al2O31.8%, CaO 9.8%, MgO 3.3
%, Na 2O13.4%, K2O1.0%, Fe2O30.685%, TiO20.12
%, CeO20.30%, SO30.15%, MnO 55ppm, composition
Is 99.919% and SiO2+ Al2O3+ TiO271.23
%, CaO + MgO 13.1%, Na2O + K2O 14.4% and return
The original rate was about 0.30 to 0.35, similar to the above. optical properties
Has visible light transmittance of 71.0%, solar radiation transmittance of 42.7%, main wave
The length is 514.9 nm, the stimulation purity is 2.8, and the desired green
It was a system color tone.

【0027】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記実施例1と同様にJIS で
決められた規格を充分満足するものであって、薄いガラ
ス板でも高効率、高歩留りで前記規格に合格するものが
得れるようになるものであった。
Further, as to the easy strengthening property, the above-mentioned Example 1 was used.
When the same procedure as in Example 1 was performed, it was possible to obtain a product that sufficiently satisfied the standards determined by JIS and passed the above standards even with a thin glass plate with high efficiency and high yield. It was.

【0028】比較例1 前記イルメナイトを使用しない以外は前記実施例1と同
様なガラス原料を用い、秤量調合し、溶融操作をし、得
たガラスを同様に試料化した。
Comparative Example 1 The same glass raw materials as in Example 1 were used, except that the ilmenite was not used, weighed and blended, melted, and the obtained glass was similarly sampled.

【0029】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示でSiO272.1%、Al2O31.5%、CaO7.75 %、MgO 3.56
%、Na 2O12.5%、K2O1.1%、Fe2O30.753%、TiO20.25
%、CeO20.30%、SO30.18 %と成り、成分の総和が99.9
93%であって、SiO2+Al2O3 +TiO273.85 %、CaO +Mg
O11.31%、Na2O+K2O 13.6% であり、還元率は前記と
同様に0.30〜0.35程度となった。光学特性は可視光線透
過率が68.4%、日射透過率が39.3%、主波長が510.5nm
、刺激純度が3.3 であり、所期のグリーン系色調であ
るとは 必ずしも言えなかった。
The obtained sample was the same as in Example 1 above.
As a result of analysis, measurement and evaluation,
Shows SiO272.1%, Al2O31.5%, CaO 7.75%, MgO 3.56
%, Na 2O12.5%, K2O1.1%, Fe2O30.753%, TiO20.25
%, CeO20.30%, SO30.18%, the sum of the components is 99.9
93%, SiO2+ Al2O3+ TiO273.85%, CaO + Mg
O11.31%, Na2O + K2O is 13.6% and the reduction rate is
Similarly, it was around 0.30 to 0.35. The optical characteristics are visible light transmission.
Excess ratio 68.4%, solar radiation transmittance 39.3%, dominant wavelength 510.5nm
 , The stimulation purity is 3.3, and the desired green color tone
I could not always say that.

【0030】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記各実施例とは差異がある
ものであってJIS で決められた規格を必ずしも満足する
ものではなかった。また強化処理等で必ずしも効率や歩
留りを向上させるものではなかった。
Further, regarding the easy strengthening property, the above-mentioned Example 1 was used.
When carried out in the same manner as above, there was a difference from each of the above-mentioned examples, and it did not always satisfy the standard determined by JIS. Moreover, the efficiency and the yield have not necessarily been improved by the strengthening treatment and the like.

【0031】比較例2 前記比較例1と同様にして得られたガラスを同様に試料
化した。得られた試料について前記実施例1と同様に分
析、測定、評価した結果、ガラス成分組成は重量表示で
SiO267.0%、Al2O31.7%、CaO9.45 %、MgO 3.0 %、Na
2O16.1%、K2O1.0%、Fe2O30.572%、TiO20.73%、CeO2
0.22%、SO30.22 %と成り、成分の総和が99.992%であ
って、SiO2+Al2O3 +TiO269.43 %、CaO +MgO12.45
%、Na2O+K2O 17.1% であり、還元率は多少増え約0.
4 前後となった。光学特性は可視光線透過率が70.9%、
日射透過率が42.8%、主波長が538.6nm 、刺激純度が4.
2 であり、所期のグリーン系色調であるとは必ずしも
言えなかった。
[0031]Comparative example 2 A glass obtained in the same manner as in Comparative Example 1 was similarly sampled.
Turned into The obtained sample was analyzed in the same manner as in Example 1 above.
As a result of the analysis, measurement and evaluation, the glass component composition is displayed in weight.
SiO267.0%, Al2O31.7%, CaO9.45%, MgO 3.0%, Na
2O16.1%, K2O1.0%, Fe2O30.572%, TiO20.73%, CeO2
0.22%, SO30.22%, and the sum of the components is 99.992%.
That's SiO2+ Al2O3+ TiO269.43%, CaO + MgO12.45
%, Na2O + K2O is 17.1%, and the reduction rate slightly increases to about 0.
It was around 4. The optical characteristics are visible ray transmittance 70.9%,
Solar transmittance is 42.8%, dominant wavelength is 538.6nm, and stimulation purity is 4.
2 is not always the desired green color tone.
I could not say.

【0032】さらに易強化性についても、前記実施例1
と同様に実施したところ、前記各実施例とは差異がある
ものであってJIS で決められた規格を必ずしも満足する
ものではなかった。また強化処理等で必ずしも効率や歩
留りを向上させるものではなかった。
Further, as to the easy strengthening property, the above-mentioned Example 1 was used.
When carried out in the same manner as above, there was a difference from each of the above-mentioned examples, and it did not always satisfy the standard determined by JIS. Moreover, the efficiency and the yield have not necessarily been improved by the strengthening treatment and the like.

【0033】なお、上述した各実施例は本発明の一例を
示すものであって、これら実施例に限られるものではな
い。
The above-mentioned embodiments are examples of the present invention, and the present invention is not limited to these embodiments.

【0034】[0034]

【発明の効果】本発明によれば、特定酸化物成分を特定
組成範囲で組み合わせた赤外線紫外線吸収ガラスとし、
しかも特異な原料を組み合わせて用いることで、還元率
の低下を抑制し、赤外線の吸収と紫外線の吸収とをバラ
ンス良く、充分透視性を持ち、易強化性を保持させ、所
期のグリーン系色調を呈するガラスを、実窯の操業条件
を大幅に変更することなく製造することができ、人的物
的両面で高居住性、高安全性、高環境性を有し軽量化も
可能であるものと成り、建築用窓ガラス等はもちろん、
ことに自動車用窓ガラスに適用して有用なものと成る赤
外線紫外線吸収ガラスとその製法を提供するものであ
る。
According to the present invention, an infrared and ultraviolet absorbing glass in which a specific oxide component is combined in a specific composition range,
Moreover, by using a combination of unique raw materials, the reduction of the reduction rate is suppressed, the absorption of infrared rays and the absorption of ultraviolet rays are well balanced, sufficient transparency is maintained, and easy strengthening is maintained, and the desired green color tone is obtained. It is possible to manufacture a glass exhibiting the above-mentioned properties without significantly changing the operating conditions of the actual kiln, and it is highly livable, safe and environmentally friendly in terms of both human and physical properties, and can be made lighter. And, of course, such as architectural window glass,
In particular, the present invention provides an infrared and ultraviolet absorbing glass which is useful when applied to a window glass for an automobile, and a method for producing the same.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で表示して、実質的に下記酸化物
であり、SiO268〜72%、Al2O3 1.6 〜3.0 %、CaO 8.5
〜11.0%、MgO 2.0 〜4.2 %、Na2O12.0〜16.0%、K2O
0.5 〜3.0 %、SO3 0.08〜0.30%、Fe2O3 0.65〜0.75
%、CeO20.20〜0.35%、TiO20.1 〜0.2 %、ならびに微
量酸化物としてMnO 5 〜300ppmを少なくとも含み、これ
ら成分の総和が98%以上であって、かつSiO2+Al2O3
TiO270.0〜74.0%、CaO +Mg0 12.0〜15.0%、Na2O+K2
O 13.5〜17.0%であることを特徴とする赤外線紫外線吸
収ガラス。
1. The following oxides are substantially represented by weight%: SiO 2 68-72%, Al 2 O 3 1.6-3.0%, CaO 8.5
~11.0%, MgO 2.0 ~4.2%, Na 2 O12.0~16.0%, K 2 O
0.5 to 3.0%, SO 3 0.08 to 0.30%, Fe 2 O 3 0.65 to 0.75
%, CeO 2 0.20 to 0.35%, TiO 2 0.1 to 0.2%, and at least MnO 5 to 300 ppm as a trace oxide, the sum of these components is 98% or more, and SiO 2 + Al 2 O 3 +
TiO 2 70.0 to 74.0%, CaO + Mg0 12.0 to 15.0%, Na 2 O + K 2
O 13.5 to 17.0% is an infrared and ultraviolet absorbing glass.
【請求項2】 前記ガラスが、5mm 厚換算で、A 光源に
よる可視光線透過率が67%以上、日射透過率が37〜45
%、紫外線透過率が7〜13%、主波長が506 〜518 nm、
刺激純度が3.5 以下であることを特徴とする請求項1記
載の赤外線紫外線吸収ガラス。
2. The glass has a visible light transmittance of 67% or more and a solar radiation transmittance of 37 to 45 with an A light source in terms of a thickness of 5 mm.
%, UV transmittance 7-13%, dominant wavelength 506-518 nm,
The infrared-ultraviolet-absorbing glass according to claim 1, which has a stimulation purity of 3.5 or less.
【請求項3】 前記請求項1または2記載の赤外線紫外
線吸収ガラスを製造するに当たり、原料としてイルメナ
イト、あるいは/および微量原料として炭素、Zn、Sn等
の金属粉または酸化物のうち少なくとも一つを用いるこ
とを特徴とする赤外線紫外線吸収ガラスの製法。
3. In producing the infrared and ultraviolet absorbing glass according to claim 1 or 2, at least one of ilmenite as a raw material and / or a metal powder or oxide of carbon, Zn, Sn or the like as a trace raw material is used. A method for producing infrared-ultraviolet absorbing glass, which is characterized by being used.
JP40584090A 1990-11-26 1990-12-25 Infrared UV absorbing glass and its manufacturing method Expired - Lifetime JPH0694377B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP40584090A JPH0694377B2 (en) 1990-12-25 1990-12-25 Infrared UV absorbing glass and its manufacturing method
EP91120063A EP0488110B1 (en) 1990-11-26 1991-11-25 Infrared and ultraviolet ray absorbing glass
DE69120509T DE69120509T2 (en) 1990-11-26 1991-11-25 Infrared and ultraviolet radiation absorbing glass
US08/112,913 US5362689A (en) 1990-11-26 1993-08-27 Infrared and ultraviolet ray absorbing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40584090A JPH0694377B2 (en) 1990-12-25 1990-12-25 Infrared UV absorbing glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04224133A JPH04224133A (en) 1992-08-13
JPH0694377B2 true JPH0694377B2 (en) 1994-11-24

Family

ID=18515449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40584090A Expired - Lifetime JPH0694377B2 (en) 1990-11-26 1990-12-25 Infrared UV absorbing glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0694377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103301A1 (en) 2012-12-28 2014-07-03 日本板硝子株式会社 Reduced pressure double glazed glass panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214008A (en) * 1992-04-17 1993-05-25 Guardian Industries Corp. High visible, low UV and low IR transmittance green glass composition
JP3361180B2 (en) * 1994-04-28 2003-01-07 セントラル硝子株式会社 Water-repellent ultraviolet-infrared absorbing glass and method for producing the same
JP3796069B2 (en) * 1999-07-15 2006-07-12 三洋電機株式会社 Solar cell module
KR101969627B1 (en) 2016-06-23 2019-04-16 주식회사 케이씨씨 Composition for green colored glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103301A1 (en) 2012-12-28 2014-07-03 日本板硝子株式会社 Reduced pressure double glazed glass panel
US9856692B2 (en) 2012-12-28 2018-01-02 Nippon Sheet Glass Company, Limited Reduced pressure double glazed glass panel

Also Published As

Publication number Publication date
JPH04224133A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JP2528579B2 (en) Frit glass with high iron content and high reduction rate, and ultraviolet / infrared absorbing green glass using it
US5362689A (en) Infrared and ultraviolet ray absorbing glass
JP2544035B2 (en) High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same
EP1067098B1 (en) Soda-lime-silica float glass batch mixture
US5364820A (en) Neutral gray-colored infrared and ultraviolet radiation absorbing glass
KR101271262B1 (en) Glass composition for production of glazing absorbing ultraviolet and infrared radiation
JP3086165B2 (en) UV-infrared absorbing green glass
JPH0688812B2 (en) Infrared and UV absorbing green glass, vehicle window glass and vehicle window material
AU6338490A (en) Infrared radiation absorbing blue glass composition
JP2013209224A (en) Ultraviolet and infrared ray absorbing glass
JP2000203877A (en) Glass absorbing and hardly transmitting ultraviolet and infrared rays
US6455452B1 (en) Bronze privacy glass
JPH0694377B2 (en) Infrared UV absorbing glass and its manufacturing method
JP2740103B2 (en) Neutral gray color glass
JP2513944B2 (en) Infrared UV absorbing glass
JP2740102B2 (en) Green color tone glass
JPH05270855A (en) Heat ray absorbing glass having neutral gray tone
JPH06102557B2 (en) Infrared UV absorbing glass and its manufacturing method
JP2513945B2 (en) Infrared and UV absorbing glass
JPH09208251A (en) Ultraviolet rays and infrared rays absorbing green glass
JP3606607B2 (en) UV-infrared absorbing green glass
KR20000075862A (en) Glass composition for making glazing sheets
JP2003342040A (en) Ultraviolet ray- and infrared ray-absorbing bronze glass
JPH061633A (en) Blue colored infrared and ultraviolet absorbing glass
JP2001019470A (en) Glass with dark gray color