JPH06102557B2 - Infrared UV absorbing glass and its manufacturing method - Google Patents
Infrared UV absorbing glass and its manufacturing methodInfo
- Publication number
- JPH06102557B2 JPH06102557B2 JP2321465A JP32146590A JPH06102557B2 JP H06102557 B2 JPH06102557 B2 JP H06102557B2 JP 2321465 A JP2321465 A JP 2321465A JP 32146590 A JP32146590 A JP 32146590A JP H06102557 B2 JPH06102557 B2 JP H06102557B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- infrared
- ultraviolet
- cao
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Glass Compositions (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は比較的高い透視性をもち赤外線紫外線を吸収し
て高居住性、高安全性となって軽量化ができ得る赤外線
紫外線吸収ガラスおよびその製法に関し、建築用窓ガラ
スや各種ガラス物品はもちろん、殊に車両用窓ガラスに
有用な前記ガラスとその製法を提供するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides an infrared and ultraviolet absorbing glass which has relatively high transparency and absorbs infrared and ultraviolet rays so as to have high habitability, high safety, and weight reduction. With respect to the manufacturing method, the present invention provides the above-mentioned glass and its manufacturing method which are useful not only for building window glass and various glass articles but also for vehicle window glass.
[従来技術〕 近年富みに、冷房負荷の低減等省エネルギー化あるいは
有機物における劣化ならびに退色等から、赤外線や紫外
線の反射吸収等多機能化をガラス自体またはガラス表面
に付加することにより、人的にも物的にもより高居住性
に繋がる板ガラス物品のニーズが急激に高まってきてい
る。[Prior Art] In recent years, from the viewpoint of energy saving such as reduction of cooling load or deterioration and fading of organic substances, multi-functionalization such as reflection and absorption of infrared rays and ultraviolet rays has been added to the glass itself or the surface of the glass. There is a rapidly increasing need for sheet glass articles that are physically more comfortable.
そこで、従来の赤外線吸収ガラスに加えて紫外線吸収を
意識したガラスがさらに提案されつつあり、例えば特開
昭64−18938号公報にはFe2O3として表して少なくとも0.
45重量%の鉄を有する溶融ガラスの連続流を送り、溶融
操作中の酸化還元条件をFeOとして表される第一鉄状態
の鉄を少なくとも35%与えるように制御し、そしてガラ
スを成形操作で平板ガラス製品へ成形することを含み、
しかも前記平板ガラスが少なくとも65%の光透過率及び
15%以下の赤外線透過率を有する、連続的方法でソーダ
・石炭・シリカ平板ガラスを製造する方法が開示され、
ガラス中でFe2O3として表して0.65%より少ない全鉄含
有量が与えられていることあるいは製品ガラスの硫黄含
有量がSO3として表して0.02%より少ないこと等にする
ことが好ましいものであると記載され、またFe2O3とし
て表して少なくとも0.45重量%の全鉄で、そのうち少な
くとも50%がFeOとして表した第一鉄状態にある鉄、及
びSO3として表して0.02重量%より少ない硫黄を有し、
少なくとも65%の光透過率及び15%以下の全太陽赤外線
透過率を示すソーダ・石灰・シリカガラス物品が開示さ
れており、ガラス物品が、重量に基づいて、66〜75%の
SiO2、12〜20%のNa2O、7〜12%のCaO、0〜5%のMg
O、0〜4%のAl2O3、0〜3%のK2O、0〜1%のFe
2O3、及びCeO2、TiO2、V2O5又はMoO3の合計0〜1.5%か
ら本質的になる組成を有するものが好ましいことが記載
されている。さらに米国特許第4701425号には重量%で
表して、60〜80%のSiO2、10〜20%のNa2O、0〜10%の
K2O、5〜16%のCaO、0〜10%のMgO、0〜5%のAl
2O3、0〜0.5%のSO3、0.29〜0.6%のFe2O3、0.1〜1.5
%のSnO2、0.1〜1.6%のTiO2から実質的になる赤外線と
紫外線を吸収するガラス組成物が開示されている。Therefore, there being proposed in addition to conventional infrared radiation absorbing glass glass conscious ultraviolet absorbing further example in JP 64-18938 discloses at least expressed as Fe 2 O 3 0.
A continuous stream of molten glass with 45% by weight of iron was sent, the redox conditions during the melting operation were controlled to give at least 35% of iron in the ferrous state, expressed as FeO, and the glass was subjected to shaping operations. Including shaping into flat glass products,
Moreover, the flat glass has a light transmittance of at least 65% and
Disclosed is a method for producing soda-coal-silica flat glass by a continuous method having an infrared transmittance of 15% or less,
It is preferable that the total iron content represented by Fe 2 O 3 in the glass is less than 0.65%, or the sulfur content of the product glass represented by SO 3 is less than 0.02%. And at least 0.45% by weight of total iron, expressed as Fe 2 O 3 , of which at least 50% is in the ferrous state, expressed as FeO, and less than 0.02% by weight, expressed as SO 3. Has sulfur,
Disclosed is a soda-lime-silica glass article having a light transmission of at least 65% and a total solar infrared transmission of 15% or less, wherein the glass article comprises 66 to 75% by weight.
SiO 2 , 12-20% Na 2 O, 7-12% CaO, 0-5% Mg
O, 0-4% Al 2 O 3 , 0-3% K 2 O, 0-1% Fe
It is stated that those having a composition essentially consisting of 0 to 1.5% of 2 O 3 , and CeO 2 , TiO 2 , V 2 O 5 or MoO 3 are described as being preferred. Further U.S. expressed in Patent No. 4701425 Patent weight percent, 60-80% of SiO 2, 10 to 20% of Na 2 O, 0-10%
K 2 O, 5-16% CaO, 0-10% MgO, 0-5% Al
2 O 3 , 0-0.5% SO 3 , 0.29-0.6% Fe 2 O 3 , 0.1-1.5
% Of SnO 2, glass compositions are disclosed for absorbing infrared light and ultraviolet light consisting essentially of 0.1 to 1.6% of TiO 2.
前述したような例えば特開昭64−18938号公報に記載の
ものは、SO3成分を0.02重量%より少なくし、通常のフ
ロート法による板ガラス製造での溶融操作手段では到底
所期の赤外線紫外線吸収ガラスを得ることが困難であっ
て、種々の複雑な手段工程、例えば液化段階、溶解段
階、清澄段階、撹拌室ならびに撹拌器等が必要となるよ
うなものであり、また米国特許第4701425号に記載のも
のは必ずしも充分易強化のガラス組成物であるとは言い
難く、しかも赤外線の吸収においても必ずしも充分優れ
るものとは言い難いものである。As described above, for example, in JP-A-64-18938, the content of SO 3 component is less than 0.02% by weight, and the infrared ray absorption of the desired infrared ray is absorbed by the melting operation means in the plate glass production by the ordinary float method. It is difficult to obtain glass and requires various complicated means steps such as a liquefaction step, a dissolution step, a fining step, a stirring chamber and a stirrer, and U.S. Pat. It is hard to say that the glass composition described above is a glass composition that is sufficiently easily strengthened, and it is hard to say that the glass composition is sufficiently excellent in absorbing infrared rays.
[問題点を解決するための手段] 本発明は、従来のかかる欠点に鑑みてなしたものであっ
て、熱膨張係数、ヤング率およびポアソン比を大きい方
にかつ熱伝導率を小さい方になるようにするとともに、
赤外線と紫外線を充分所期の吸収を有するものであっ
て、比較的透視性がある縁系の色調を発現し、しかも耐
候性、成形性も充分に有する易強化性の赤外線紫外線吸
収ガラスおよびその製法を提供するものである。[Means for Solving the Problems] The present invention has been made in view of the above-mentioned drawbacks of the related art, and has a large thermal expansion coefficient, a Young's modulus and a Poisson's ratio and a small thermal conductivity. As well as
An infrared and ultraviolet absorbing glass which has sufficient absorption of infrared rays and ultraviolet rays, develops a relatively transparent rim system color tone, and has sufficient weather resistance and moldability, and an easily toughened infrared and ultraviolet absorbing glass. It provides a manufacturing method.
すなわち、本発明は、重量%で表示して、実質的に下記
酸化物であり、68〜72%SiO2、1.6〜3.0%Al2O3、8.5〜
11.0%CaO、2.0〜4.2%MaO、12.0〜16.0%Na2O、0.5〜
3.0%K2O、0.10〜0.30%SO3、0.65〜0.75%Fe2O3、0.20
〜0.35%CeO2、0.2〜0.4%TiO2、これら成分の総和が98
%以上であって、かつ70.0〜74.0%SiO2+Al2O3+Ti
O2、12.0〜15.0%CaO+MgO、13.5〜17.0%Na2O+K2Oで
あることを特徴とする赤外線紫外線吸収ガラス。ならび
に5mm厚換算で、A光源による可視光線透過率が70%以
上、日射透過率が41〜45%、紫外線透過率が7〜11%、
主波長が509〜515nm、刺激純度が3.5以下であることを
特徴とする前記赤外線紫外線吸収ガラス。さらに前記赤
外線紫外線吸収ガラスを製造するに当たり、原料として
イルメナイト、あるいは/および微量原料として炭素、
またはZn、Sn等の金属粉もしくは酸化物、のうち少なく
とも一つを用いることを特徴とする赤外線紫外線吸収ガ
ラスの製法を提供するものである。That is, the present invention is, in% by weight, substantially following oxides, 68~72% SiO 2, 1.6~3.0% Al 2 O 3, 8.5~
11.0% CaO, 2.0-4.2% MaO, 12.0-16.0% Na 2 O, 0.5-
3.0% K 2 O, 0.10 to 0.30% SO 3 , 0.65 to 0.75% Fe 2 O 3 , 0.20
~ 0.35% CeO 2 , 0.2-0.4% TiO 2 , the sum of these components is 98
% Or more and 70.0 to 74.0% SiO 2 + Al 2 O 3 + Ti
Infrared UV absorbing glass, which is O 2 , 12.0 to 15.0% CaO + MgO, and 13.5 to 17.0% Na 2 O + K 2 O. Also, in terms of 5 mm thickness, the visible light transmittance by the A light source is 70% or more, the solar radiation transmittance is 41 to 45%, the ultraviolet transmittance is 7 to 11%,
The infrared-ultraviolet-absorbing glass having a dominant wavelength of 509 to 515 nm and a stimulus purity of 3.5 or less. Further, in producing the infrared and ultraviolet absorbing glass, ilmenite as a raw material, and / or carbon as a trace amount of raw material,
Another object of the present invention is to provide a method for producing an infrared and ultraviolet absorbing glass, which is characterized by using at least one of metal powder or oxide such as Zn and Sn.
ここで、SiO2成分を重量%で68〜72%としたのは、68%
未満では表面にやけ等が発生しやすく耐候性が下がり実
用上の問題が生じてくるものであり、72%を超えるとそ
の易強化性が下がり、溶融も難しくなるものであり、Al
2O3成分を重量%で1.6〜3.0%としたのは、1.6%未満で
は耐候性が下がり表面にやけ等が発生しやすく実用上の
問題が生じてくるものであり、3%を超えると失透が生
じやすくなり成形温度範囲が狭くなり製造が難しくなる
ものであり、CaO成分を重量%で8.5〜11.0%としたの
は、8.5%未満では易強化性が下がり、また融剤として
不足気味となり溶融温度も高くなりまた流動温度を低く
しないので製造しにくくなり、11%を超えると失透し易
くなり、成形作業範囲が狭くなり製造が難しくなるもの
であり、MgO成分を重量%で2.0〜4.2%としたのは、2.0
%未満では溶融温度が上がり操作範囲を狭めるので製造
がしにくくなり、4.2%を超えると易強化性が下がるも
のであり、Na2O成分を重量%で12.0〜16.0%としたの
は、12.0未満では易強化性が下がり、成形性が難しくな
り、失透も生じ易くなるので操作範囲が狭まり製造しに
くくなり、16%を超えると耐候性が下がり、表面にやけ
等が発生しやすくなり実用上の問題が生じてくるもので
あり、K2O成分を重量%で0.5〜3.0%としたのは、0.5%
未満では易強化性が下がり、3.0%を超えると耐候性が
下がりかつコストも高くなるものであり、SO3成分を重
量%で0.10〜0.30%としたのは、0.10%未満では例えば
通常の溶融において脱泡あるいは均質性上不充分となり
易い程度にしかできなくなり、0.30%を超えると特にガ
ラスの着色状態に影響を与え、例えば黄色やアンバー色
がかった色調に移行し易くなる等が発現し所期の緑系色
調が得られなくなるためであり、好ましくは0.15%前後
とどちらかと言えば範囲内でも低いところがよい、Fe2O
3成分を重量%で0.65〜0.75%したのは、赤外線を吸収
するFeO成分量と紫外線を吸収し所期の色調を確保するF
e2O3成分量との総量として、前述した各種光学特性を安
定して得るために、他のCeO2、TiO2等の各成分量ととも
にことに必要であり、0.65%未満では上述に対する作用
が劣り、0.75%を超えると特に可視光線透過率が劣るこ
ととなる等好ましくないからであり、CeO2とTiO2成分は
紫外線の吸収作用を有し、CeO2成分を0.20〜0.35%と
し、TiO2成分を0.2〜0.4%としたのは、ガラスにおける
還元率をほとんど変化させないしかも紫外線吸収能がCe
O2成分より小さいTiO2成分と、ガラスにおける還元率を
比較的大きく変化させしかも紫外線吸収能を充分与える
CeO2成分とを上述の特定範囲内に限定して組み合わすこ
とで、僅かの含有量で所期の特性を効率的に得ることで
き、従来の還元率をほとんど変化させないようにしつ
つ、Ceのガラス中での価数をCe4+、Ce3+のうち、ほぼ無
色のCe3+が主になるようにし、前述した全鉄におけるFe
2O3とFeOとの割合を制御して、可視光領域の透過率を全
体的に低下させないようにしかつ紫外線吸収や赤外線吸
収等所期の光学特性を達成し得るようにするためであ
る。Here, 68% to 72% by weight of the SiO 2 component is 68%
If it is less than 72%, it is likely that the surface will be burnt or the like and the weather resistance will be lowered, causing practical problems, and if it exceeds 72%, its easiness of strengthening will be lowered and melting will be difficult.
The content of the 2 O 3 component in the range of 1.6 to 3.0% by weight means that if it is less than 1.6%, the weather resistance is lowered and the surface is liable to cause burns and the like, which causes practical problems. Since devitrification is likely to occur and the molding temperature range is narrowed, it becomes difficult to manufacture. The CaO content of 8.5 to 11.0% is that if less than 8.5%, the easy strengthening property deteriorates and it is insufficient as a fluxing agent. It becomes difficult to manufacture because it tends to be high and the melting temperature does not decrease the flow temperature, and if it exceeds 11%, devitrification is likely to occur, the molding work range becomes narrow, and manufacturing becomes difficult. 2.0-4.2% was 2.0
If it is less than%, the melting temperature rises and the operating range is narrowed, making it difficult to manufacture, and if it exceeds 4.2%, the easy strengthening property decreases, and the Na 2 O component is set to 12.0 to 16.0% by weight, which is 12.0%. If it is less than 16%, the strengthening property is lowered, the moldability becomes difficult, and devitrification easily occurs, so the operating range is narrowed and it becomes difficult to manufacture.If it exceeds 16%, the weather resistance is lowered, and the surface is liable to burn, etc. The above problem will occur, and the K 2 O content of 0.5 to 3.0% is 0.5%.
Easy reinforcing lowers less than are those in excess of 3.0% when the weather resistance is lowered and the cost becomes high, had a 0.10 to 0.30 percent of the SO 3 component in weight percent, for example conventional melt at less than 0.10% In the case of defoaming or inhomogeneity, it can only be made to such an extent that it becomes insufficient, and if it exceeds 0.30%, it particularly affects the coloring state of glass, for example, it tends to shift to a yellowish or amberish color tone. This is because the greenish color tone of the period is not obtained, and it is preferable that it is around 0.15%, which is rather low even within the range. Fe 2 O
0.65 to 0.75% by weight of the three components is the amount of FeO component that absorbs infrared rays and F that secures the desired color tone by absorbing ultraviolet rays.
As a total amount with the e 2 O 3 component amount, in order to stably obtain the various optical characteristics described above, it is necessary to be together with other component amounts such as CeO 2 and TiO 2 , and if less than 0.65%, the action against the above Is inferior, because if it exceeds 0.75% is not preferable because it becomes particularly inferior in visible light transmittance, CeO 2 and TiO 2 components have an ultraviolet absorbing effect, and the CeO 2 component is 0.20 to 0.35%, The content of TiO 2 is 0.2 to 0.4% because it does not change the reduction rate in glass and the ultraviolet absorption capacity is Ce.
TiO 2 component, which is smaller than O 2 component, changes the reduction rate in glass comparatively greatly and gives sufficient UV absorption ability
By limiting the combination with the CeO 2 component within the above-mentioned specific range, it is possible to efficiently obtain the desired characteristics with a small content, while hardly changing the conventional reduction rate, the valence of in a glass Ce 4+, among Ce 3+, as nearly colorless Ce 3+ becomes main, Fe in total iron described above
This is for controlling the ratio of 2 O 3 and FeO so as not to reduce the transmittance in the visible light region as a whole and to achieve desired optical characteristics such as ultraviolet absorption and infrared absorption.
また、SiO2、Al2O3、CaO、MgO、Na2O、K2O、Fe2O3、S
O3、CeO2、TiO2の成分の総和を重量百分率で98%以上と
したのは、例えばZnO、SnO2等微量成分を2%を超えな
い量に制御するためである。なかでもV2O5成分を任意成
分として0〜0.25%程度添加することがあり、該V2O5は
還元率をほとんど変化させることがなくしかも紫外線吸
収能がCeO2成分より小さく影響が少ないからで微調整に
添加用いるものであり、Vのガラス中での価数を黄色を
呈するV5+が極力少なくし緑色を呈するV3+に主になるよ
うにする必要がある等のためである。In addition, SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Fe 2 O 3 , S
The reason why the sum of the components of O 3 , CeO 2 and TiO 2 is set to 98% or more by weight is to control the trace components such as ZnO and SnO 2 to an amount not exceeding 2%. Of these, the V 2 O 5 component may be added as an optional component in an amount of about 0 to 0.25%, and the V 2 O 5 hardly changes the reduction rate and has a smaller ultraviolet absorption capacity than the CeO 2 component and little influence. This is because it is used for fine adjustment in V. It is necessary to reduce the valence of V in glass to V 5+ which exhibits yellow and to be mainly V 3+ which exhibits green. is there.
さらに、SiO2+Al2O3+TiO2を重量百分率で70.0〜74.0
%としたのは、70%未満では耐候性が下がり、74%を超
えると易強化性が下がる問題が生じるものであり、CaO
+MgOを重量百分率で12.0〜15.0%としたのは、CaOおよ
びMgO成分は溶融温度を下げるために用いられるととも
に、12%未満では易強化性が下がり、15%を超えると失
透しやすくなり製造上難しくなるものであり、Na2O+K2
Oを百分率で13.5〜17%としたのは、13.5%未満では易
強化性が下がり、失透も生じやすくなって成形において
作業温度範囲が狭くなり、製造が難しくなり、17%を超
えると耐候性が下がり実用上の問題を生じるものである
とともにコスト的にも高くなるものである。In addition, the weight percentage of SiO 2 + Al 2 O 3 + TiO 2 is 70.0 to 74.0.
%, The weather resistance deteriorates when the content is less than 70%, and the easy strengthening property deteriorates when the content exceeds 74%.
The weight percentage of + MgO is set to 12.0 to 15.0% because CaO and MgO components are used to lower the melting temperature, and if less than 12%, the easy strengthening property deteriorates, and if it exceeds 15%, devitrification is likely to occur. It becomes difficult, Na 2 O + K 2
The percentage of O is set to 13.5 to 17% because if it is less than 13.5%, the easy strengthening property will decrease, devitrification will occur easily, the working temperature range will be narrow in molding, and the manufacturing will be difficult. The cost is high and the cost is high.
さらにまた、5mm厚換算で、A光源による可視光線透過
率が70%以上、日射透過率が41〜45%、紫外線透過率が
7〜11%、主波長が509〜515nm、刺激純度が3.5以下で
あることが好ましいとしたのは、前記可視光線透過率が
70%以下では特に自動車のフロント窓ガラスにおいてガ
ラスの透視性、ことに日暮れ、夜間あるいは雨降りなど
に際し、物体の識別性の低下が発現しやすく好ましくな
く、より好ましくは75%前後であり、日射透過率が45%
を超えると冷房負荷の増大あるいは車内・室内での居住
性を向上することができないこととなり、41%未満では
透視性ことに前述した識別性の低下あるいは色調にも影
響を与え兼ねないこととなるので好ましくなく、紫外線
透過率が11%を超えると車内・室内での物品の脱色・劣
化あるいは肌焼け等人的影響により居住性の悪化に結び
付き易く、7%未満では例えば前記日射透過率が得られ
なくなる等の弊害が発生し易くなり、主波長が515nmを
超えると黄色あるいはアンバー色が影響して所期の緑色
調系に成らず、509nm未満ではブルー色が勝ち過ぎて所
期の緑色調系と成らないためであり、刺激純度が3.5を
超えると物体の識別性が低下するようになって例えば日
暮れやどんよりした雨降り等で乗員の透視性に支障を来
し、安全性の確保等が困難となるためである。なお紫外
線域は290〜390nmとし、可視域等は従来通りとした。Furthermore, in terms of 5 mm thickness, the visible light transmittance by the A light source is 70% or more, the solar radiation transmittance is 41 to 45%, the ultraviolet transmittance is 7 to 11%, the main wavelength is 509 to 515 nm, and the stimulation purity is 3.5 or less. It is preferable that the visible light transmittance is
When it is 70% or less, it is not preferable because the visibility of the glass particularly in the windshield of an automobile, especially when the nightfall, nighttime or rain falls, is likely to cause the deterioration of the distinguishability of the object, and more preferably around 75%. 45% rate
If it exceeds, it will not be possible to increase the cooling load or improve the comfortability in the vehicle / indoors, and if it is less than 41%, it may affect the transparency and the aforementioned deterioration of the distinctiveness or the color tone. If the UV transmittance exceeds 11%, it is easy to lead to deterioration of habitability due to human influence such as discoloration / deterioration of articles inside or inside the vehicle or skin burn, and if the UV transmittance is less than 7%, for example, the above-mentioned solar radiation transmittance is obtained. If the main wavelength exceeds 515 nm, the yellow or amber color will not affect the desired green tone system, and if it is less than 509 nm, the blue color will win too much and the desired green tone will be generated. This is because the system does not become a system, and when the stimulus purity exceeds 3.5, the identification of the object decreases and the visibility of the occupant is impaired due to, for example, nightfall or overcast rain, ensuring safety, etc. Difficulty It is to become. The ultraviolet range was 290 to 390 nm, and the visible range was the same as before.
さらにまた、前記赤外線紫外線吸収ガラスを製造するに
当たり、原料としてイルメナイトを用いた方が好ましい
としたのは、FeOならびにTiO2からほぼ成るため、FeOの
ガラス中への取り込みが少しでも容易となり、しかも実
窯の操業条件等をほぼ不変とし、ガラスの酸化還元状態
を従来と出来るだけ変えないように、すなわち実窯で還
元率が約0.45程度であるのに対し本発明の赤外線紫外線
吸収ガラスの製造に当たってはCeO2等種々の作用を加味
し0.3〜0.4程度とするのに少しでも役立つためであり、
微量原料として炭素、またはZn、Sn等の金属粉もしくは
酸化物、のうち少なくともその一つを用いると好ましい
としたのは、例えば時として芒硝(Na2SO4)等清澄剤の
作用効果を助ける必要があり、一方では前記所期の色調
の確保に悪い影響を与えることともなり易く、Znあるい
はSn等還元剤もFe2O3とFeOとのバランスを調整するため
に必要な場合もあるためである。Furthermore, in producing the infrared and ultraviolet absorbing glass, it is preferable to use ilmenite as a raw material because it is almost composed of FeO and TiO 2, so that incorporation of FeO into the glass becomes easy, and Making the operating conditions of the actual kiln almost unchanged so that the oxidation-reduction state of the glass is not changed as much as possible, that is, the reduction rate of the actual kiln is about 0.45, whereas the infrared-ultraviolet absorbing glass of the present invention is manufactured. This is because it helps even a little to add various effects such as CeO 2 to about 0.3 to 0.4,
It is preferable to use at least one of carbon, or metal powder or oxide such as Zn or Sn as a trace amount raw material, for example, sometimes the action effect of a fining agent such as Glauber's salt (Na 2 SO 4 ) is assisted. On the other hand, on the other hand, it is likely to adversely affect the securing of the desired color tone, and a reducing agent such as Zn or Sn may also be necessary to adjust the balance between Fe 2 O 3 and FeO. Is.
なお、本発明の赤外線紫外線吸収ガラスは易強化ガラス
組成物であって、板厚1mm前後の薄板ガラスから10mm前
後の厚板ガラスで、平板または曲げ板として生成から強
度アップしたもの、半強化したもの、強化したもの等
で、単板ガラス、合せガラス、積層ガラスあるいは複層
ガラス等で用いることが、ことに車両用窓ガラスでもち
いることが有用である。The infrared and ultraviolet absorbing glass of the present invention is an easily tempered glass composition, which is a thin glass sheet having a thickness of about 1 mm to a thick glass sheet having a thickness of about 10 mm, which is a flat plate or a bent plate whose strength has been increased from its generation, and which has been semi-strengthened. It is useful to use as a reinforced glass or the like as a single plate glass, a laminated glass, a laminated glass or a double glazing, and especially for a window glass for a vehicle.
前述したとおり、本発明の赤外線紫外線吸収ガラスなら
びにその製法であって、特定酸化物成分を特定組成範囲
で組み合わせたガラスとし、あるいは特異な原料を易強
化性を持たせしかも還元率の低下を抑制するよう組み合
わせて用い、上述したガラスを製造することによって、
例えば溶融性、清澄性、耐候性、成形性、失透性、コス
ト等を考慮し、従来のフロートガラスの製造条件ならび
にそのガラスの性質等をほとんど変化させず、加えて易
強化性を持ち合わせかつ赤外線ならびに紫外線を吸収し
て人的物的に高居住性であって、物体の識別も優れた透
過性を充分持つものとなって高安全性を確保でき、グリ
ーン色調系で例えば車・室内外と充分調和のあるものと
なって環境的にも優れたものとなり、さらに、従来の熱
強化方法では得られなかった薄板ガラス等でも、充分な
強化度あるいは充分強度アップが得られるようになり、
建築用窓ガラスはもちろん家具用ガラス、調理用ガラ
ス、ことに自動車用等車両用窓ガラス等に有用な赤外線
紫外線吸収ガラスを提供できるものである。As described above, the infrared-ultraviolet-absorbing glass of the present invention and the method for producing the same are glass in which a specific oxide component is combined in a specific composition range, or a specific raw material is easily strengthened and the reduction of the reduction rate is suppressed. Used in combination to produce the glass described above,
For example, considering the meltability, clarification, weather resistance, moldability, devitrification, cost, etc., the manufacturing conditions of conventional float glass and the properties of the glass are hardly changed, and in addition, it has an easy strengthening property. It absorbs infrared rays and ultraviolet rays and has a high habitability for human beings, and it has excellent transparency for distinguishing objects to ensure high safety. It becomes a good harmony with and becomes environmentally superior, and further, even with thin sheet glass etc. which could not be obtained by the conventional heat strengthening method, it becomes possible to obtain a sufficient strengthening degree or a sufficient strength increase,
It is possible to provide an infrared and ultraviolet absorbing glass which is useful not only for architectural window glass but also for furniture glass, cooking glass, and especially window glass for vehicles such as automobiles.
[実施例] 以下本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.
実施例1 通常によって、ガラスは特選珪砂(共立窯業製)と1級
試薬であるAl2O3、Fe2O3、CaCO3、MgCO3、Na2SO3、KN
O3、CeO2、TiO2、イルメナイト等を用い、粘性温度が10
9ポイズで650〜685℃、1012ポイズで555〜585℃、かつ
両者の温度差が96〜103℃になるようになるガラス組成
を目標組成として秤量調合し、ことに実窯と多少低い程
度の還元率(0.35前後)を得るためカーボンを0.175重
量%程度添加調合したものであって、該調合原料をルツ
ボに入れ、約1450℃前後に保持した電気炉中で約3時間
程度溶融しガラス化して、さらに均質化および清澄のた
め、1420〜1430℃で約2時間程度保持した後、型に流し
出しガラスブロックとし、大きさ100mm×100mmで厚み約
5mmのガラス板に切り出し、研削研磨し、各試料とし
た。Example 1 Normally, glass is selected silica sand (manufactured by Kyoritsu Kiln Co., Ltd.) and first-grade reagents Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgCO 3 , Na 2 SO 3 , and KN.
O 3 , CeO 2 , TiO 2 , ilmenite, etc. are used, and the viscosity temperature is 10
650-685 ℃ at 9 poise, 555-585 ℃ at 10 12 poise, and weigh and mix the glass composition so that the temperature difference between them becomes 96-103 ℃. In order to obtain the reduction rate (about 0.35) of carbon, 0.175% by weight of carbon was added and compounded. The compounded raw material was put into a crucible and melted for about 3 hours in an electric furnace maintained at about 1450 ° C for about 3 hours. For further homogenization and clarification, hold at 1420 to 1430 ° C for about 2 hours, then cast into a mold to make a glass block and measure 100mm x 100mm in thickness.
Each sample was cut into a 5 mm glass plate, ground and polished.
この試料について、ガラス成分組成(重量%)について
はJIS R−3101に基づく湿式分析法等で行い、粘性温度
(℃)についてはベンディングアーム法により粘度曲線
を測定して109および1012ポイズの温温度を求めるとと
もに、リリー法によって歪点、リトルトン法によって軟
化点を測定し、光学特性(5mm厚みにおける)としの可
視光線透過率(A光源にて、%)、紫外線透過率
(%)、および日射透過率、主波長(nm)、刺激純度に
ついては340型自記分光光度計(日立製作所製)とJIS Z
−8722、JIS R−3106、ISO/DIS−9050にて測定計算して
求める等を行った。For this sample, the glass component composition (% by weight) was measured by a wet analysis method based on JIS R-3101, and the viscosity temperature (° C) was measured by a bending arm method to obtain a viscosity curve of 10 9 and 10 12 poises. In addition to obtaining the temperature, the strain point by the Lily method and the softening point by the Lyttelton method were measured, and the visible light transmittance (% at A light source), the ultraviolet transmittance (%) as the optical characteristics (at 5 mm thickness), For solar radiation transmittance, dominant wavelength (nm), and stimulus purity, 340 type self-recording spectrophotometer (manufactured by Hitachi, Ltd.) and JIS Z
Measured and calculated according to −8722, JIS R-3106 and ISO / DIS-9050.
その結果、ガラス成分組成は重量表示でSiO269.6%、Al
2O31.9%、CaO9.1%、MgO3.5%、Na2013.4%、K2O1.0
%、Fe2O30.695%、TiO20.26%、CeO20.27%、SO30.18
%と成り、成分の総和が99.905%であってかつSiO2+Al
2O3+TiO271.76%、CaO+MgO12.6%、Na2O+K2014.4%
であり、還元率(Fe2+/Fe3+)は0.30〜0.35程度となっ
た。As a result, the glass composition was SiO 2 69.6% by weight, Al
2 O 3 1.9%, CaO 9.1%, MgO 3.5%, Na 2 013.4%, K 2 O1.0
%, Fe 2 O 3 0.695%, TiO 2 0.26%, CeO 2 0.27%, SO 3 0.18
%, The sum of the components is 99.905%, and SiO 2 + Al
2 O 3 + TiO 2 71.76%, CaO + MgO 12.6%, Na 2 O + K 2 014.4%
The reduction ratio (Fe 2+ / Fe 3+ ) was about 0.30 to 0.35.
また光学特性は、可視光線透過率が71.3%、日射透過率
が43%、主波長が512.2nm、刺激純度が2.8であり、所期
のグリーン系色調であった。As for the optical characteristics, the visible light transmittance was 71.3%, the solar radiation transmittance was 43%, the main wavelength was 512.2 nm, and the stimulus purity was 2.8, which was the desired green color tone.
さらに易強化性については、上述したガラスが前述した
粘性温度が所期の特定範囲をクリヤーしていることなら
びに軟化点と歪点との温度差が大体200〜240℃の範囲に
あることを確認した上、前記試料を雰囲気温度約730℃
の炉内で約5分間前後加熱した後、エア圧約1300Apで通
常の風冷強化し、大きさ120mm×100mmで板厚約3.5mm程
度の強化ガラス板を得、該強化ガラス板のコーナー部の
角端面から約30mmの位置で衝撃を与えて破砕し、全面に
破砕された該ガラス板をJIS R−3211に従って調べたと
ころ、決められた規格を充分満足する高易強化性のもの
であった。Furthermore, regarding the easy strengthening property, it was confirmed that the above-mentioned glass had the above-mentioned viscous temperature clearing the desired specific range and that the temperature difference between the softening point and the strain point was in the range of approximately 200 to 240 ° C. In addition, the ambient temperature of the sample was about 730 ℃.
After about 5 minutes of heating in the furnace, the air pressure is about 1300Ap for normal air-cooling to obtain a tempered glass plate with a size of 120mm x 100mm and a plate thickness of about 3.5mm. The glass plate crushed by impacting at a position of about 30 mm from the corner end face, and the glass plate crushed on the entire surface was examined according to JIS R-3221, and it was a highly reinforced material that sufficiently satisfied the determined standard. .
なお、本発明の約2.5mm板厚の曲げ赤外線紫外線吸収ガ
ラスを外側に用い、内側に約2mm板厚の熱線反射膜被覆
曲げガラス板を配し、該膜側を内側にしてPVB中間膜を
介して積層した合せガラスを試作し、自動車の窓ガラス
に用いたところ、本発明の作用効果を高めるとともにさ
らに多機能化され、車内外の居住性なよびに安全性がよ
り優れたものと成るものであった。It should be noted that the bending infrared-ultraviolet absorbing glass of the present invention having a thickness of about 2.5 mm is used on the outside, and the heat ray reflective film-covered bending glass plate having a thickness of about 2 mm is arranged on the inside, and the PVB interlayer film with the film side facing inside When a laminated glass laminated through the above was used as a prototype and used for a window glass of an automobile, the function and effect of the present invention were enhanced and the multifunctionalization was achieved, and the habitability inside and outside the vehicle and the safety were further improved. It was a thing.
実施例2 前記実施例1と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。Example 2 The same glass raw material as in Example 1 was used, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled.
得られた試料について前記実施例1と同様に分析、測
定、評価した結果、ガラス成分組成は重量表示でSiO27
0.6%、Al2O31.6%、CaO09.5%、MgO2.5%、Na2O13.5
%、K2O0.9%、Fe2O30.687%、TiO20.26%、CeO20.31
%、SO30.13%と成り、成分の総和が99.987%であっ
て、SiO2+Al2O3+TiO272.46%、CaO+MgO12.0%、Na2O
+K2O14.4%であり、還元率は前記と同様に0.30〜0.35
程度となった。光学特性は可視光線透過率が70.6%、日
射透過率が42%、主波長が509.2nm、刺激純度が3.0であ
り、所期のグリーン系色調であった。The obtained sample was analyzed, measured and evaluated in the same manner as in Example 1, and as a result, the glass component composition was represented by SiO 2 7 by weight.
0.6%, Al 2 O 3 1.6%, CaO 09.5%, MgO 2.5%, Na 2 O 13.5
%, K 2 O 0.9%, Fe 2 O 3 0.687%, TiO 2 0.26%, CeO 2 0.31
%, SO 3 0.13%, the total of the components is 99.987%, SiO 2 + Al 2 O 3 + TiO 2 72.46%, CaO + MgO 12.0%, Na 2 O
+ K 2 O is 14.4%, and the reduction rate is 0.30 to 0.35 as above.
It became a degree. The optical characteristics were visible light transmittance of 70.6%, solar radiation transmittance of 42%, dominant wavelength of 509.2 nm, and stimulus purity of 3.0, and the desired green color tone.
さらに易強化性についても、前記実施例1と同様に実施
したところ、前記実施例1と同様にJISで決められた規
格を充分満足するものであって、薄いガラス板でも高効
率、高歩留りで前記規格に合格するものが得れるように
なるものであった。Further, as to the easy strengthening property, when it was carried out in the same manner as in the above-mentioned Example 1, it satisfied the standard determined by JIS similarly to the above-mentioned Example 1, and even a thin glass plate had high efficiency and high yield. It was possible to obtain a product that passed the standard.
実施例3 前記実施例1と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。Example 3 The same glass raw material as in Example 1 was used, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled.
得られた試料について前記実施例1と同様に分析、測
定、評価した結果、ガラス成分組成は重量表示でSiO26
9.2%、Al2O31.8%、CaO09.8%、MgO3.3%、Na2O13.4
%、K2O1.0%、Fe2O30.685%、TiO20.29%、CeO20.30
%、SO30.15%と成り、成分の総和が99.925%であっ
て、SiO2+Al2O3+TiO271.29%、CaO+MgO13.1%、Na2O
+K2O14.4%であり、還元率は前記と同様に0.30〜0.35
程度となった。光学特性は可視光線透過率が71.0%、日
射透過率が42.7%、主波長が514.9nm、刺激純度が2.8で
あり、所期のグリーン系色調であった。The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1 above. As a result, the glass component composition was represented by SiO 2 6 by weight.
9.2%, Al 2 O 3 1.8%, CaO 09.8%, MgO 3.3%, Na 2 O 13.4
%, K 2 O 1.0%, Fe 2 O 3 0.685%, TiO 2 0.29%, CeO 2 0.30
%, SO 3 0.15%, the total of the components is 99.925%, SiO 2 + Al 2 O 3 + TiO 2 71.29%, CaO + MgO 13.1%, Na 2 O
+ K 2 O is 14.4%, and the reduction rate is 0.30 to 0.35 as above.
It became a degree. The optical characteristics were visible light transmittance of 71.0%, solar radiation transmittance of 42.7%, dominant wavelength of 514.9 nm, stimulus purity of 2.8, and the desired green color tone.
さらに易強化性についても、前記実施例1と同様に実施
したところ、前記実施例1と同様にJISで決められた規
格を充分満足するものであって、薄いガラス板でも高効
率、高歩留りで前記規格に合格するものが得れるように
なるものであった。Further, as to the easy strengthening property, when it was carried out in the same manner as in the above-mentioned Example 1, it satisfied the standard determined by JIS similarly to the above-mentioned Example 1, and even a thin glass plate had high efficiency and high yield. It was possible to obtain a product that passed the standard.
比較例1 前記イルメナイトを使用しない以外は前記実施例1と同
様なガラス原料を用い、秤量調合し、溶融操作をし、得
たガラスを同様に試料化した。Comparative Example 1 The same glass raw materials as in Example 1 were used, except that the ilmenite was not used, weighed and blended, melted, and the obtained glass was similarly sampled.
得られた試料について前記実施例1と同様に分析、測
定、評価した結果、ガラス成分組成は重量表示でSiO27
2.1%、Al2O31.5%、CaO7.75%、MgO3.56%、Na2O12.5
%、K2O1.1%、Fe2O30.753%、TiO20.25%、CeO20.30
%、SO30.18%と成り、成分の総和が99.993%であっ
て、SiO2+Al2O3+TiO273.85%、CaO+MgO11.31%、Na2
O+K2O13.6%であり、還元率は前記と同様に0.30〜0.35
程度となった。光学特性は可視光線透過率が68.4%、日
射透過率が39.3%、主波長が510.5nm、刺激純度が3.3で
あり、所期のグリーン系色調であるとは必ずしも言えな
かった。The obtained sample was analyzed, measured and evaluated in the same manner as in Example 1, and as a result, the glass component composition was represented by SiO 2 7 by weight.
2.1%, Al 2 O 3 1.5%, CaO 7.75%, MgO 3.56%, Na 2 O 12.5
%, K 2 O 1.1%, Fe 2 O 3 0.753%, TiO 2 0.25%, CeO 2 0.30
%, SO 3 0.18%, the total of the components is 99.993%, SiO 2 + Al 2 O 3 + TiO 2 73.85%, CaO + MgO 11.31%, Na 2
O + K a 2 O13.6%, the reduction ratio as in the 0.30 to 0.35
It became a degree. As for optical characteristics, visible light transmittance was 68.4%, solar radiation transmittance was 39.3%, main wavelength was 510.5 nm, and stimulus purity was 3.3, which was not necessarily the desired green color tone.
さらに易強化性についても、前記実施例1と同様に実施
したところ、前記各実施例とは差異があるものであって
JISで決められた規格を必ずしも満足するものではなか
った。また強化処理等で必ずしも効率や歩留りを向上さ
せるものではなかった。Further, regarding the easy strengthening property, when the same operation as in the above-mentioned Example 1 was carried out, there was a difference from each of the above-mentioned Examples.
It did not necessarily meet the standards set by JIS. Moreover, the efficiency and the yield have not necessarily been improved by the strengthening treatment and the like.
比較例2 前記比較例1と同様にして得られたガラスを同様に試料
化した。Comparative Example 2 The glass obtained in the same manner as in Comparative Example 1 was similarly sampled.
得られた試料について前記実施例1と同様に分析、測
定、評価した結果、ガラス成分組成は重量表示でSiO26
7.0%、Al2O31.7%、CaO9.45%、MgO3.0%、Na2O16.1
%、K2O1.0%、Fe2O30.572%、TiO20.73%、CeO20.22
%、SO30.22%と成り、成分の総和が99.992%であっ
て、SiO2+Al2O3+TiO269.43%、CaO+MgO12.45%、Na2
O+K2O17.1%であり、還元率は多少増え約0.4前後なっ
た。光学特性は可視光線透過率が70.9%、日射透過率が
42.8%、主波長が538.6nm、刺激純度が4.2であり、所期
のグリーン系色調であるとは必ずしも言えなかった。The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1 above. As a result, the glass component composition was represented by SiO 2 6 by weight.
7.0%, Al 2 O 3 1.7%, CaO 9.45%, MgO 3.0%, Na 2 O 16.1
%, K 2 O 1.0%, Fe 2 O 3 0.572%, TiO 2 0.73%, CeO 2 0.22
%, SO 3 0.22%, the total of the components is 99.992%, SiO 2 + Al 2 O 3 + TiO 2 69.43%, CaO + MgO 12.45%, Na 2
O + K 2 O was 17.1%, and the reduction rate increased slightly to around 0.4. The optical characteristics are visible light transmittance 70.9%, solar radiation transmittance
It was 42.8%, the dominant wavelength was 538.6 nm, and the stimulus purity was 4.2, which was not necessarily the desired green color tone.
さらに易強化性についても、前記実施例1と同様に実施
したところ、前記各実施例とは差異があるものであって
JISで決められた規格を必ずしも満足するものではなか
った。また強化処理等で必ずしも効率や歩留りを向上さ
せるものではなかった。Further, regarding the easy strengthening property, when the same operation as in the above-mentioned Example 1 was carried out, there was a difference from each of the above-mentioned Examples.
It did not necessarily meet the standards set by JIS. Moreover, the efficiency and the yield have not necessarily been improved by the strengthening treatment and the like.
なお、上述した各実施例は本発明の一例を示すものであ
って、これら実施例に限られるものではない。The above-described embodiments are merely examples of the present invention, and the present invention is not limited to these embodiments.
本発明によれば、特定酸化物成分を特定組成範囲で組み
合わせた赤外線紫外線吸収ガラスとし、しかも特異な原
料を組み合わせて用いることで、還元率の低下を抑制
し、赤外線の吸収と紫外線の吸収とをバランス良く、充
分透過性を持ち、易強化性を保持させ、所期のグリーン
系色調を呈するガラスを、実窯の操業条件を大幅に変更
することなく製造することができ、人的物的両面で高居
住性、高安全性、高環境性を有し軽量化も可能であるも
のと成り、建築用窓ガラス等はもちろん、ことに自動車
用窓ガラスに適用して有用なものと成る赤外線紫外線吸
収ガラスとその製法を提供するものである。According to the present invention, an infrared and ultraviolet ray absorbing glass in which a specific oxide component is combined in a specific composition range, and by using a unique raw material in combination, the reduction of the reduction rate is suppressed, and the absorption of infrared rays and the absorption of ultraviolet rays. It is possible to manufacture glass with a well-balanced, sufficiently transparent, easy-to-strengthen property and the desired green color tone without drastically changing the operating conditions of the actual kiln. Infrared rays, which have high habitability, high safety, high environmental performance on both sides and can be made lighter, are useful not only for building window glass but also for automobile window glass. An ultraviolet absorbing glass and its manufacturing method are provided.
Claims (3)
あり、 SiO268〜72%、Al2O31.6〜3.0%、CaO8.5〜11.0%、MgO
2.0〜4.2%、Na2O12.0〜16.0%、K2O0.5〜3.0%、SO30.
10〜0.30%、Fe2O30.65〜0.75%、CeO20.20〜0.35%、T
iO20.2〜0.4%、これらの成分の総和が98%以上であっ
て、かつSiO2+Al2O3+TiO270.0〜74.0%、CaO+MgO12.
0〜15.0%、Na2O+K2O13.5〜17.0%であることを特徴と
する赤外線紫外線吸収ガラス。1. The following oxides are substantially represented by weight%: SiO 2 68-72%, Al 2 O 3 1.6-3.0%, CaO 8.5-11.0%, MgO
2.0~4.2%, Na 2 O12.0~16.0%, K 2 O0.5~3.0%, SO 3 0.
10 to 0.30%, Fe 2 O 3 0.65 to 0.75%, CeO 2 0.20 to 0.35%, T
iO 2 0.2 to 0.4%, the sum of these components is 98% or more, and SiO 2 + Al 2 O 3 + TiO 2 70.0 to 74.0%, CaO + MgO 12.
0 to 15.0%, infrared ultraviolet absorbing glass, which is a Na 2 O + K 2 O13.5~17.0% .
る可視光線透過率が70%以上、日射透過率が41〜45%、
紫外線透過率が7〜11%、主波長が509〜515nm、刺激純
度が3.5以下であることを特徴とする請求項1記載の赤
外線紫外線吸収ガラス。2. The glass has a visible light transmittance of 70% or more and a solar radiation transmittance of 41 to 45% by a light source A, converted to a thickness of 5 mm.
The infrared ray absorbing glass according to claim 1, wherein the ultraviolet ray transmittance is 7 to 11%, the main wavelength is 509 to 515 nm, and the stimulus purity is 3.5 or less.
吸収ガラスを製造するに当たり、原料としてイルメナイ
ト、あるいは/および微量原料として炭素、またはZn、
Sn等の金属粉もしくは酸化物、のうち少なくとも一つを
用いることを特徴とする赤外線紫外線吸収ガラスの製
法。3. In producing the infrared and ultraviolet absorbing glass according to claim 1 or 2, ilmenite as a raw material, and / or carbon as a trace amount raw material, or Zn,
A method for producing infrared and ultraviolet absorbing glass, which comprises using at least one of metal powder or oxide such as Sn.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2321465A JPH06102557B2 (en) | 1990-11-26 | 1990-11-26 | Infrared UV absorbing glass and its manufacturing method |
EP91120063A EP0488110B1 (en) | 1990-11-26 | 1991-11-25 | Infrared and ultraviolet ray absorbing glass |
DE69120509T DE69120509T2 (en) | 1990-11-26 | 1991-11-25 | Infrared and ultraviolet radiation absorbing glass |
US08/112,913 US5362689A (en) | 1990-11-26 | 1993-08-27 | Infrared and ultraviolet ray absorbing glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2321465A JPH06102557B2 (en) | 1990-11-26 | 1990-11-26 | Infrared UV absorbing glass and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04193738A JPH04193738A (en) | 1992-07-13 |
JPH06102557B2 true JPH06102557B2 (en) | 1994-12-14 |
Family
ID=18132870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2321465A Expired - Lifetime JPH06102557B2 (en) | 1990-11-26 | 1990-11-26 | Infrared UV absorbing glass and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06102557B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014103301A1 (en) | 2012-12-28 | 2014-07-03 | 日本板硝子株式会社 | Reduced pressure double glazed glass panel |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10101368A (en) * | 1996-10-01 | 1998-04-21 | Nippon Sheet Glass Co Ltd | Ultraviolet ray and infrared ray absorbing glass |
WO1999025660A1 (en) | 1997-11-13 | 1999-05-27 | Nippon Sheet Glass Co., Ltd. | Ultraviolet/infrared absorbing glass, ultraviolet/infrared absorbing glass sheet, ultraviolet/infrared absorbing glass sheet coated with colored film, and window glass for vehicles |
KR101969627B1 (en) * | 2016-06-23 | 2019-04-16 | 주식회사 케이씨씨 | Composition for green colored glass |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701425A (en) | 1986-05-19 | 1987-10-20 | Libbey-Owens-Ford Co. | Infrared and ultraviolet absorbing glass compositions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0166355B1 (en) * | 1989-11-16 | 1999-01-15 | 앨런 제이. 밀러 | Infrared and ultraviolet radiation absorbing green glass composition |
-
1990
- 1990-11-26 JP JP2321465A patent/JPH06102557B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4701425A (en) | 1986-05-19 | 1987-10-20 | Libbey-Owens-Ford Co. | Infrared and ultraviolet absorbing glass compositions |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014103301A1 (en) | 2012-12-28 | 2014-07-03 | 日本板硝子株式会社 | Reduced pressure double glazed glass panel |
US9856692B2 (en) | 2012-12-28 | 2018-01-02 | Nippon Sheet Glass Company, Limited | Reduced pressure double glazed glass panel |
Also Published As
Publication number | Publication date |
---|---|
JPH04193738A (en) | 1992-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2528579B2 (en) | Frit glass with high iron content and high reduction rate, and ultraviolet / infrared absorbing green glass using it | |
JP2544035B2 (en) | High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same | |
US5688727A (en) | Infrared and ultraviolet radiation absorbing blue glass composition | |
EP1023245B1 (en) | Infrared and ultraviolet radiation absorbing blue glass composition | |
JP3086165B2 (en) | UV-infrared absorbing green glass | |
US5362689A (en) | Infrared and ultraviolet ray absorbing glass | |
US6313053B1 (en) | Infrared and ultraviolet radiation absorbing blue glass composition | |
JPH0688812B2 (en) | Infrared and UV absorbing green glass, vehicle window glass and vehicle window material | |
JP2006175877A (en) | Pane with low energy transmittance for transport vehicle | |
JP4851006B2 (en) | Blue concealment glass | |
JP4223617B2 (en) | Silica-soda-lime type glass composition | |
US6455452B1 (en) | Bronze privacy glass | |
JP2740103B2 (en) | Neutral gray color glass | |
JP2005132709A (en) | Ultraviolet and infrared absorbing green glass | |
JPH06102557B2 (en) | Infrared UV absorbing glass and its manufacturing method | |
JP2513944B2 (en) | Infrared UV absorbing glass | |
JP2740102B2 (en) | Green color tone glass | |
JPH0694377B2 (en) | Infrared UV absorbing glass and its manufacturing method | |
JPH05270855A (en) | Heat ray absorbing glass having neutral gray tone | |
JP2513945B2 (en) | Infrared and UV absorbing glass | |
JPH09208251A (en) | Ultraviolet rays and infrared rays absorbing green glass | |
JP2005162537A (en) | Ultraviolet and infrared-absorbing green glass | |
JP4736465B2 (en) | UV-infrared absorbing green glass | |
JP3606607B2 (en) | UV-infrared absorbing green glass | |
JPH061633A (en) | Blue colored infrared and ultraviolet absorbing glass |