JPH0749354A - Piezoelectric vibration sensor - Google Patents

Piezoelectric vibration sensor

Info

Publication number
JPH0749354A
JPH0749354A JP5193766A JP19376693A JPH0749354A JP H0749354 A JPH0749354 A JP H0749354A JP 5193766 A JP5193766 A JP 5193766A JP 19376693 A JP19376693 A JP 19376693A JP H0749354 A JPH0749354 A JP H0749354A
Authority
JP
Japan
Prior art keywords
electrode
axis
electrodes
pair
vibration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5193766A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takahashi
克彦 高橋
Satoshi Kunimura
智 國村
Takanori Narita
孝紀 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP5193766A priority Critical patent/JPH0749354A/en
Publication of JPH0749354A publication Critical patent/JPH0749354A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize a piezoelectric vibration sensor. CONSTITUTION:A piezoelectric vibration sensor comprises a piezoelectric body 31, a first electrode and second electrode disposed on both surfaces of the piezoelectric body 31, a substrate 32 to which an electrode 46 for electric circuit connected to the first electrode is provided, and a load body 33 installed in the second electrode. The second electrode has a pair of split electrodes for X axis disposed on an X axis and a pair of split electrodes for Y axis disposed on an Y axis. Electrodes for connection disposed on the X axis or the Y axis are stacked through insulating plates between the second electrode 40 and the load body 33. In these electrodes for connection and insulating plates, through holes penetrating these are formed. Connecting parts for electrically connecting the pair of split electrodes for X axis or the pair of split electrodes for Y axis with electrodes for connection are provided in the through holes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転機の監視、衝撃ス
ィッチ等に利用される圧電型振動センサにかかり、特
に、量産性を向上させた圧電型振動センサに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric vibration sensor used for monitoring a rotating machine, an impact switch, etc., and more particularly to a piezoelectric vibration sensor having improved mass productivity.

【0002】[0002]

【従来の技術】一般に、圧電型振動センサは、一方向の
振動のみを検出するようになっており、その他の方向の
振動は検出できない構造となっている。振動は方向と大
きさとを持つものであり、振動センサとしてはその両方
を評価できることが望ましい。そこで、従来の振動セン
サは、すべての振動を評価するため、図10に示すよう
に、少なくとも三つのセンサ1、2、3をその主感度軸
が互いに直交するように組み合わせた構造とするか、検
知部を三つ互いに直交するように組み込む必要があっ
た。このような振動センサによると、きわめて複雑な構
造となり、コスト的に高くなるとともに、大きなスペー
スが必要になり、また、汎用性に欠ける欠点がある。
2. Description of the Related Art Generally, a piezoelectric vibration sensor is designed to detect vibrations in only one direction, and cannot detect vibrations in other directions. Vibration has a direction and a magnitude, and it is desirable for a vibration sensor to be able to evaluate both of them. Therefore, in order to evaluate all vibrations, the conventional vibration sensor has a structure in which at least three sensors 1, 2 and 3 are combined so that their main sensitivity axes are orthogonal to each other, as shown in FIG. It was necessary to install three detectors so that they were orthogonal to each other. According to such a vibration sensor, it has an extremely complicated structure, becomes costly, requires a large space, and lacks versatility.

【0003】そこで提案された振動センサは、図11に
示すように、台座上に取り付けられた一枚の圧電体5
と、この圧電体5の上面に固定された荷重体(図示略)
と、圧電体5の裏面に設けられた第一の電極6と、圧電
体5の表面に設けられた第二の電極4とを有する構成に
されている。第一の電極6は、圧電体5の裏面全面にわ
たって設けられている。第二の電極4は、圧電体5の表
面に分割形成されており、圧電体5の表面に直交し、該
圧電体5のほぼ中心を通る直線をz軸とし、該z軸に垂
直な互いに直交する二本の直線をそれぞれx軸、y軸と
したとき、z軸方向の変位を検知するz軸用電極7と、
x軸方向の変位を検知するx軸用電極8、9と、y軸方
向の変位を検知するy軸用電極10、11とから構成に
されている。
The vibration sensor proposed there is, as shown in FIG. 11, a single piezoelectric body 5 mounted on a pedestal.
And a load body (not shown) fixed to the upper surface of the piezoelectric body 5.
And a first electrode 6 provided on the back surface of the piezoelectric body 5 and a second electrode 4 provided on the front surface of the piezoelectric body 5. The first electrode 6 is provided over the entire back surface of the piezoelectric body 5. The second electrode 4 is formed on the surface of the piezoelectric body 5 in a divided manner, and a straight line which is orthogonal to the surface of the piezoelectric body 5 and which passes through substantially the center of the piezoelectric body 5 is the z axis, and the second electrodes 4 are perpendicular to the z axis. A z-axis electrode 7 for detecting displacement in the z-axis direction when two orthogonal straight lines are respectively defined as the x-axis and the y-axis,
It is composed of x-axis electrodes 8 and 9 that detect displacement in the x-axis direction, and y-axis electrodes 10 and 11 that detect displacement in the y-axis direction.

【0004】z軸用電極7は、z軸を中心とするほぼ点
対称な形状に形成されている。x軸用電極8、9は、z
軸用電極7の周囲に形成され、y軸に関して互いに線対
称な位置に、かつ同一形状に一対形成されている。y軸
用電極10、11は、z軸用電極7の周囲に形成され、
x軸に関して互いに線対称な位置に、かつ同一形状に一
対形成されている。この振動センサは、その重心が圧電
体5の表面の中心を通る軸線上に位置された構成にされ
ている。
The z-axis electrode 7 is formed in a substantially point-symmetrical shape about the z-axis. x-axis electrodes 8 and 9 are z
A pair of electrodes are formed around the shaft electrode 7 and are line-symmetrical to each other with respect to the y-axis and have the same shape. The y-axis electrodes 10 and 11 are formed around the z-axis electrode 7,
A pair is formed in positions that are line-symmetric with respect to the x-axis and have the same shape. The center of gravity of this vibration sensor is located on an axis passing through the center of the surface of the piezoelectric body 5.

【0005】このような振動センサでは、図12に示す
ように、振動のz軸方向の成分は第一の電極6とz軸用
電極7との間に生じる電位差Vzに基づいて測定され
る。振動のx軸方向の成分は、一方のx軸用電極8及び
第一の電極6の間に生じる電位差と、他方のx軸用電極
9及び第一の電極6の間に生じる電位差との電位差Vx
に基づいて測定される。振動のy軸方向の成分は、一方
のy軸用電極10及び第一の電極6の間に生じる電位差
と、他方のy軸用電極11及び第一の電極6の間に生じ
る電位差との差Vyに基づいて測定される。
In such a vibration sensor, as shown in FIG. 12, the z-axis component of vibration is measured based on the potential difference Vz generated between the first electrode 6 and the z-axis electrode 7. The component of the vibration in the x-axis direction is the potential difference between the potential difference generated between the one x-axis electrode 8 and the first electrode 6 and the potential difference generated between the other x-axis electrode 9 and the first electrode 6. Vx
It is measured based on. The component of the vibration in the y-axis direction is the difference between the potential difference generated between the one y-axis electrode 10 and the first electrode 6 and the potential difference generated between the other y-axis electrode 11 and the first electrode 6. It is measured based on Vy.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、圧電体
5と垂直な面を除き、他のx、y軸方向の出力の測定時
に、各軸の入力信号の一方を接地できないために、汎用
の測定器での測定が困難であった。汎用の測定器におい
ては、通常の入力信号の片側は、接地されており、振動
センサの出力測定の際、x軸及びy軸方向の出力測定に
ついては、特殊な方法にて接地されないようにしなけれ
ばならないからである。
However, except for a surface perpendicular to the piezoelectric body 5, one of the input signals of each axis cannot be grounded when measuring the output in the other x and y axis directions. It was difficult to measure with a container. In a general-purpose measuring instrument, one side of the normal input signal is grounded, and when measuring the output of the vibration sensor, the output measurement in the x-axis and y-axis directions must not be grounded by a special method. This is because it must be done.

【0007】そこで、本発明者等は、図13ないし図1
4に示すように、汎用性に富み、方向性のある振動を分
離測定できる圧電型振動センサを提案した(特願平3ー
254807号)。この圧電型振動センサは、基板15
上に圧電体16と荷重体17とが積層されている。圧電
体16では、図14に示すように、下面に、x軸に線対
称に、かつx軸とy軸との交点に対して点対称にy軸用
分割電極18、19を形成するとともに、y軸に線対称
に、かつ前記交点を含み、該交点に対して点対称にx軸
用分割電極20を形成する。一方、圧電体16の上面
に、x軸に線対称に、かつ前記交点を含み、該交点に対
して点対称にy軸用分割電極21を形成するとともに、
y軸に線対称に、かつ前記交点に対して点対称にx軸用
分割電極22、23を形成する。かかる圧電型振動セン
サでは、x軸、y軸に対し共有する電極を設けていない
ので、測定器に入力の一方を接地することができ、測定
の安定化を図ることができる。
Therefore, the inventors of the present invention have shown in FIGS.
As shown in Fig. 4, a piezoelectric vibration sensor having a high versatility and capable of separately measuring directional vibration has been proposed (Japanese Patent Application No. 3-254807). This piezoelectric type vibration sensor has a substrate 15
A piezoelectric body 16 and a load body 17 are laminated on top. In the piezoelectric body 16, as shown in FIG. 14, y-axis split electrodes 18, 19 are formed on the lower surface in line symmetry with respect to the x-axis and with point symmetry with respect to the intersection of the x-axis and the y-axis. The split electrode 20 for the x-axis is formed in line symmetry with respect to the y-axis and including the intersection, and in point symmetry with respect to the intersection. On the other hand, the y-axis divided electrode 21 is formed on the upper surface of the piezoelectric body 16 so as to be line-symmetrical to the x-axis and include the intersection, and to be symmetrical about the intersection.
The split electrodes 22 and 23 for the x-axis are formed line-symmetrically with respect to the y-axis and point-symmetrically with respect to the intersection. In such a piezoelectric vibration sensor, since no electrode shared by the x-axis and the y-axis is provided, one of the inputs can be grounded to the measuring instrument, and the measurement can be stabilized.

【0008】ところで、前記圧電型振動センサでは、圧
電体16上に電極が一層のみ形成されるため、x方向の
出力が圧電体16の一方の面から取り出され、y方向の
出力が圧電体16の他方の面から取り出されていた。こ
のため、図13に示すように、x軸、またはy軸用分割
電極からリード線25を取り出すためのスペーサ26が
必要になり、圧電体16と荷重体17との間にスペーサ
26が配設される場合があった。かかる場合、各電極か
らリード線25を取り出すためにスペーサ26が厚く形
成され、圧電型振動センサが厚く形成されるという問題
があった。また、x軸、またはy軸用分割電極からリー
ド線25を取り出すためのワイヤーボンダー等の装置が
必要になり、リード線の取り出し工程が必要になり、圧
電型振動センサの製造作業が煩雑になった。
In the piezoelectric vibration sensor, since only one electrode is formed on the piezoelectric body 16, the output in the x direction is taken out from one surface of the piezoelectric body 16 and the output in the y direction is produced in the piezoelectric body 16. Had been taken from the other side of. Therefore, as shown in FIG. 13, a spacer 26 is required to take out the lead wire 25 from the x-axis or y-axis split electrode, and the spacer 26 is provided between the piezoelectric body 16 and the load body 17. There was a case. In such a case, there is a problem that the spacer 26 is formed thick in order to take out the lead wire 25 from each electrode, and the piezoelectric vibration sensor is formed thick. Further, a device such as a wire bonder for taking out the lead wire 25 from the x-axis or y-axis divided electrode is required, and a lead wire take-out step is required, which complicates the manufacturing work of the piezoelectric vibration sensor. It was

【0009】本発明は前記課題を有効に解決するもの
で、圧電型振動センサを小型化でき、この圧電型振動セ
ンサの汎用性を維持でき、圧電型振動センサの製造作業
性を向上できる圧電型振動センサを提供することを目的
とする。
The present invention effectively solves the above-mentioned problems. The piezoelectric vibration sensor can be miniaturized, the versatility of the piezoelectric vibration sensor can be maintained, and the manufacturing workability of the piezoelectric vibration sensor can be improved. An object is to provide a vibration sensor.

【0010】[0010]

【課題を解決するための手段】本発明の圧電型振動セン
サは、圧電体と、該圧電体の両面に配設される一対の複
層積層電極と、これら複層積層電極の一方に接続される
電気回路用電極が設けられた基板と、複層積層電極の他
方に取り付けられた荷重体とを具備し、該他方の複層積
層電極は、圧電体の平面におけるx軸の変位を検出する
一対のx軸用分割電極とy軸の変位を検出する一対のy
軸用分割電極とを有し、これらx軸用分割電極およびy
軸用分割電極と荷重体との間には、x軸上またはy軸上
に配された接続用電極が絶縁板を介して積み重ねられ、
これら接続用電極と絶縁板とには、これらを貫通するス
ルーホールが形成され、該スルーホールには、前記一対
のx軸用分割電極または一対のy軸用分割電極と接続用
電極とを電気的に接続する接続部が設けられていること
を特徴とするものである。
A piezoelectric vibration sensor of the present invention is provided with a piezoelectric body, a pair of multi-layer laminated electrodes disposed on both surfaces of the piezoelectric body, and one of these multi-layer laminated electrodes. And a load body attached to the other of the multi-layer laminated electrodes, the other multi-layer laminated electrode detects the displacement of the x-axis in the plane of the piezoelectric body. A pair of split electrodes for the x-axis and a pair of y for detecting the displacement of the y-axis.
A split electrode for the axis, and a split electrode for the x-axis and y
Between the split electrode for the shaft and the load body, the connecting electrodes arranged on the x-axis or the y-axis are stacked via the insulating plate,
A through hole is formed through the connecting electrode and the insulating plate, and the through electrode is electrically connected to the pair of x-axis divided electrodes or the pair of y-axis divided electrodes and the connecting electrode. It is characterized in that a connecting portion for electrically connecting is provided.

【0011】接続用電極は、絶縁板を介して二層の電極
で構成してもよい。これら二層の電極の一方に、x軸上
に、圧電体の平面の中心でx軸とy軸との交点を含むx
軸接続用電極を形成し、他方に、y軸上に、交点を含む
y軸接続用電極を形成してもよい。x軸接続用電極に
は、一対のx軸用分割電極が接続部を介して電気的に接
続され、y軸接続用電極には、一対のy軸用分割電極が
接続部を介して電気的に接続されている。
The connecting electrode may be composed of two layers of electrodes via an insulating plate. On one of these two layers of electrodes, x including the intersection of the x axis and the y axis at the center of the plane of the piezoelectric body on the x axis.
The electrode for axis connection may be formed, and on the other hand, the electrode for y axis connection including the intersection may be formed on the y axis. A pair of x-axis divided electrodes are electrically connected to the x-axis connecting electrode via a connecting portion, and a pair of y-axis dividing electrodes are electrically connected to the y-axis connecting electrode via a connecting portion. It is connected to the.

【0012】一方、接続用電極は、x軸またはy軸のい
ずれか一方の上に配され、前記交点を含む帯状電極と、
x軸またはy軸の他方の上に一対配され、前記帯状電極
に対して間隔をあけて配されたL字状電極とで構成して
もよい。帯状電極には、第二の電極の一対のx軸用、ま
たはy軸用分割電極のいずれか一方が接続部を介して接
続され、L字状電極には、第二の電極の一対のx軸用、
またはy軸用分割電極の他方が接続部を介して接続され
ている。
On the other hand, the connecting electrode is arranged on either the x-axis or the y-axis and has a strip-shaped electrode including the intersection.
A pair of L-shaped electrodes may be provided on the other of the x-axis and the y-axis, and the L-shaped electrodes may be spaced apart from the strip electrodes. Either one of the pair of x-axis or y-axis split electrodes of the second electrode is connected to the strip electrode via the connecting portion, and the L-shaped electrode is connected to the pair of x-axis of the second electrode. For axes,
Alternatively, the other of the y-axis divided electrodes is connected via the connecting portion.

【0013】[0013]

【作用】本発明の圧電型振動センサでは、圧電体の両面
に生ずる電荷が一対の複層積層電極に伝達される。これ
ら複層積層電極の一方で検出された電荷が電気回路用電
極に伝達される。複層積層電極の他方では、各x軸用分
割電極が電気的に接続部に接続され、この接続部がスル
ーホールを通して接続用電極に接続されることにより、
一対のx軸用分割電極が接続される。一方、各y軸用分
割電極が電気的に接続部に接続され、この接続部がスル
ーホールを通して接続用電極に接続されることにより、
一対のy軸用分割電極が接続される。これら接続用電極
が絶縁板を介して圧電体に積み重ねられているため、隣
接するx軸用分割電極とy軸用分割電極との短絡が防止
される。
In the piezoelectric vibration sensor of the present invention, the charges generated on both surfaces of the piezoelectric body are transmitted to the pair of multi-layer laminated electrodes. The electric charge detected by one of these multi-layer laminated electrodes is transmitted to the electric circuit electrode. On the other side of the multi-layer laminated electrode, each x-axis split electrode is electrically connected to a connecting portion, and this connecting portion is connected to the connecting electrode through a through hole,
A pair of x-axis split electrodes are connected. On the other hand, each y-axis divided electrode is electrically connected to the connecting portion, and this connecting portion is connected to the connecting electrode through the through hole,
A pair of y-axis divided electrodes are connected. Since these connecting electrodes are stacked on the piezoelectric body via the insulating plate, a short circuit between the adjacent x-axis divided electrode and y-axis divided electrode is prevented.

【0014】接続用電極を二層の電極で構成すると、こ
れら二層の電極の一方のx軸接続用電極で一対のx軸用
分割電極を接続し、他方のy軸接続用電極で一対のy軸
用分割電極を接続する。
When the connecting electrode is composed of two layers of electrodes, one pair of electrodes for x-axis connection of one of these two layers of electrodes connects the pair of divided electrodes for x-axis, and the other electrode for connection of y-axis forms a pair of electrodes. The divided electrodes for y-axis are connected.

【0015】一方、接続用電極を帯状電極とL字状電極
とで構成すると、帯状電極が第二の電極の一対のx軸
用、またはy軸用分割電極のいずれか一方を接続し、L
字状電極は、他方を接続する。
On the other hand, if the connecting electrode is composed of a strip electrode and an L-shaped electrode, the strip electrode connects either one of the pair of x-axis or y-axis split electrodes of the second electrode, and L
The V-shaped electrode connects the other.

【0016】[0016]

【実施例】以下、本発明の圧電型振動センサの第一実施
例について、図1ないし図4を参照しながら説明する。
図1に示すように、符号30は圧電型振動センサであ
り、この圧電型振動センサ30は、圧電体31と、この
圧電体31の裏面に配設され、電気回路用電極46が設
けられた基板32と、圧電体31の表面に配設される荷
重体33とを具備する。これら基板32と荷重体33と
の間には、図2に分解して示すように、二層積層電極3
4(複層多層電極)と、圧電体31と、三層積層電極3
5(複層多層電極)とが基板32の電気回路用電極46
上に順次積み重ねられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the piezoelectric vibration sensor of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, reference numeral 30 is a piezoelectric vibration sensor. The piezoelectric vibration sensor 30 is provided with a piezoelectric body 31 and a back surface of the piezoelectric body 31, and an electric circuit electrode 46 is provided. It includes a substrate 32 and a load body 33 arranged on the surface of the piezoelectric body 31. Between the substrate 32 and the load body 33, as shown in the exploded view of FIG.
4 (multilayer multilayer electrode), piezoelectric body 31, and three-layer laminated electrode 3
5 (multilayer multilayer electrode) is an electrode 46 for electric circuit of the substrate 32.
Stacked on top.

【0017】二層積層電極34は、図3に示すように、
基板32上の電気回路用電極46に接続される出力用電
極36と、この出力用電極36上に配設されたポリイミ
ドフィルム等の絶縁体37と、この絶縁体37上に配設
された第一の電極38とを積み重ねた構成にされてい
る。この第一の電極38は、圧電体31の裏面の中心を
交点として直交する二本の直線をx軸、y軸としたと
き、x軸上に一対配され、前記交点に対して点対称に配
された一対のx軸用分割電極38aと、y軸上に一対配
され、前記交点に対して点対称に配された一対のy軸用
分割電極38bとを有する。出力用電極36は、第一の
電極38の各分割電極に対向する一対のx軸用分割電極
36aと一対のy軸用分割電極36bとを有する。これ
ら出力用電極36と第一の電極38と絶縁板37とに
は、これらを貫通するスルーホール36c、37c、3
8cが各分割電極の中央部にそれぞれ形成されている。
これらスルーホール36c、37c、38cの周壁に金
属メッキ層(接続部)が形成され、この金属メッキ層を
介して対向する各分割電極が接続されている。
The two-layer laminated electrode 34, as shown in FIG.
An output electrode 36 connected to the electric circuit electrode 46 on the substrate 32, an insulator 37 such as a polyimide film disposed on the output electrode 36, and a first electrode disposed on the insulator 37. One electrode 38 is stacked. When the two straight lines orthogonal to each other with the center of the back surface of the piezoelectric body 31 as an intersection are defined as the x axis and the y axis, the first electrodes 38 are arranged in a pair on the x axis and are point-symmetric with respect to the intersection. It has a pair of divided electrodes 38a for the x-axis, and a pair of divided electrodes 38b for the y-axis, which are arranged on the y-axis in a pair symmetrically with respect to the intersection. The output electrode 36 has a pair of x-axis divided electrodes 36a and a pair of y-axis divided electrodes 36b facing the respective divided electrodes of the first electrode 38. The output electrode 36, the first electrode 38, and the insulating plate 37 have through-holes 36c, 37c, and 3 penetrating them.
8c is formed in the center of each divided electrode.
Metal plating layers (connecting portions) are formed on the peripheral walls of the through holes 36c, 37c, 38c, and the divided electrodes facing each other are connected via the metal plating layers.

【0018】一方、三層積層電極35では、図4に分解
して示すように、圧電体31上に配設された第二の電極
40と、この第二の電極40上に配設された絶縁体37
と、この絶縁体37上に配設された中層電極(接続用電
極)41と、この中層電極41上に配設された絶縁体3
7と、この絶縁体37上に配設された上層電極(接続用
電極)42と、この上層電極42の上に配設された絶縁
体37とがそれぞれ積み重ねられている。かかる三層積
層電極35には、第二の電極40と中層電極41と上層
電極42と絶縁体37とを貫通するスルーホール40
c、41c、42c、37cがそれぞれ形成されてい
る。
On the other hand, in the three-layer laminated electrode 35, as shown in an exploded view in FIG. 4, the second electrode 40 provided on the piezoelectric body 31 and the second electrode 40 are provided. Insulator 37
An intermediate layer electrode (connection electrode) 41 disposed on the insulator 37, and an insulator 3 disposed on the intermediate layer electrode 41.
7, an upper layer electrode (connection electrode) 42 arranged on the insulator 37, and an insulator 37 arranged on the upper layer electrode 42 are stacked. The three-layer laminated electrode 35 has a through hole 40 penetrating the second electrode 40, the middle layer electrode 41, the upper layer electrode 42, and the insulator 37.
c, 41c, 42c, 37c are formed respectively.

【0019】第二の電極40では、圧電体31の表面の
中心を交点として互いに直交する二本の線をx軸、y軸
としたとき、x軸上に一対配され、前記交点に対して点
対称に配された一対のx軸用分割電極40aと、y軸上
に一対配され、前記交点に対して点対称に配された一対
のy軸用分割電極40bとを有する。これら第二の電極
40のx軸用分割電極40aとy軸用分割電極40bと
は、第一の電極38のx軸用分割電極38aとy軸用分
割電極38bとに圧電体31を挟んでそれぞれ対向配設
されている。
In the second electrode 40, when two lines orthogonal to each other with the center of the surface of the piezoelectric body 31 as an intersection point are taken as the x-axis and the y-axis, one pair is arranged on the x-axis, and with respect to the intersection point. It has a pair of x-axis divided electrodes 40a arranged point-symmetrically, and a pair of y-axis divided electrodes 40b arranged on the y-axis point-symmetrically with respect to the intersection. The x-axis split electrode 40a and the y-axis split electrode 40b of the second electrode 40 are formed by sandwiching the piezoelectric body 31 between the x-axis split electrode 38a and the y-axis split electrode 38b of the first electrode 38. They are arranged to face each other.

【0020】中層電極41は、x軸上に間隔をあけて配
された一対のx軸接続用電極41aと、y軸上に配さ
れ、前記交点を含むy軸接続用電極41bとを有し、こ
れら各x軸接続用電極41aとy軸接続用電極41bと
を互いに接触させない間隔をあけて配設させている。上
層電極42は、中層電極41を90度回転させた形状に
形成され、x軸上に配され、前記交点を含むx軸接続用
電極42aと、y軸上に間隔をあけて配された一対のy
軸接続用電極42bとを有し、これらx軸接続用電極4
2aと各y軸接続用電極42bとを互いに接触させない
間隔をあけて配設させている。
The middle-layer electrode 41 has a pair of x-axis connecting electrodes 41a arranged at intervals on the x-axis and a y-axis connecting electrode 41b arranged on the y-axis and including the intersection. The x-axis connecting electrode 41a and the y-axis connecting electrode 41b are arranged with a space therebetween so as not to contact each other. The upper layer electrode 42 is formed in a shape obtained by rotating the middle layer electrode 41 by 90 degrees, and is arranged on the x axis, and an x axis connecting electrode 42a including the intersection and a pair arranged at a distance on the y axis. The y
And an x-axis connecting electrode 4b.
2a and each y-axis connecting electrode 42b are arranged with an interval so as not to contact each other.

【0021】すなわち、中層電極41のy軸接続用電極
41bと上層電極42のx軸接続用電極42aとが互い
に交差する方向に延在され、中層電極41のy軸接続用
電極41bで第二の電極40の一対のy軸用分割電極4
0bが下方の絶縁体37のスルーホール37c、37c
の金属メッキ層を介して短絡され、上層電極42のx軸
接続用電極42aで第二の電極40の一対のx軸用分割
電極40aが上方の絶縁体37のスルーホール37c、
37cの金属メッキ層を介して短絡されている。
That is, the y-axis connecting electrode 41b of the middle-layer electrode 41 and the x-axis connecting electrode 42a of the upper-layer electrode 42 extend in a direction intersecting with each other, and the y-axis connecting electrode 41b of the middle-layer electrode 41 serves as a second electrode. Pair of y-axis divided electrodes 4 of the electrode 40
0b is the lower part of the through hole 37c, 37c of the insulator 37
Through the metal plating layer, the pair of x-axis split electrodes 40a of the second electrode 40 in the x-axis connecting electrode 42a of the upper layer electrode 42 is the through hole 37c of the upper insulator 37,
It is short-circuited via the metal plating layer 37c.

【0022】基板32は、エポキシ樹脂にガラス繊維を
含浸させたガラス繊維強化エポキシ樹脂等の繊維強化樹
脂(FRP)からなる基板本体45と、この基板本体4
5の表面に設けられ、二層積層電極34の出力用電極3
6に接続される電気回路用電極46とを有する構成にさ
れている。この電気回路用電極46は、銅メッキ等によ
り形成され、出力用電極36の各分割電極に対向する位
置に配されている。
The substrate 32 is a substrate body 45 made of fiber reinforced resin (FRP) such as glass fiber reinforced epoxy resin obtained by impregnating epoxy resin with glass fiber, and the substrate body 4
5, the output electrode 3 of the two-layer laminated electrode 34 provided on the surface of
6 and an electric circuit electrode 46 connected to the circuit 6. The electric circuit electrode 46 is formed by copper plating or the like, and is arranged at a position facing each divided electrode of the output electrode 36.

【0023】圧電体31としては、ポリフッ化ビニリデ
ン、ポリフッ化ビニル、テトラフルオロエチレンとトリ
フルオロエチレンとの共重合体等の合成樹脂製圧電材料
や、チタン酸金属塩、ジルコン酸金属塩等のペロブスカ
イト構造をもつセラミックス製圧電材料を使用すること
ができる。
As the piezoelectric body 31, a synthetic resin piezoelectric material such as polyvinylidene fluoride, polyvinyl fluoride, a copolymer of tetrafluoroethylene and trifluoroethylene, or a perovskite such as metal titanate or metal zirconate is used. A ceramic piezoelectric material having a structure can be used.

【0024】次に、圧電型振動センサの製造方法につい
て説明する。あらかじめ二層積層電極34と三層積層電
極35とを組み立てておく。これら二層積層電極34の
スルーホール36c〜38cと三層積層電極35のスル
ーホール40c〜42c、37cとをメッキ処理するこ
とにより、これらスルーホール36c〜38c、40c
〜42cの周壁に金属メッキ層を設ける。そして、圧電
体31の両面に二層積層電極34と三層積層電極35と
を貼り付け、二層積層電極34を基板32の電気回路用
電極46上に貼り付ける。一方、三層積層電極35の上
に荷重体33を貼り付けることにより、圧電型振動セン
サが組み立てられる。
Next, a method of manufacturing the piezoelectric vibration sensor will be described. The two-layer laminated electrode 34 and the three-layer laminated electrode 35 are assembled in advance. By plating the through holes 36c to 38c of the two-layer laminated electrode 34 and the through holes 40c to 42c and 37c of the three-layer laminated electrode 35, the through holes 36c to 38c and 40c are plated.
A metal plating layer is provided on the peripheral wall of 42c. Then, the two-layer laminated electrode 34 and the three-layer laminated electrode 35 are attached to both surfaces of the piezoelectric body 31, and the two-layer laminated electrode 34 is attached on the electric circuit electrode 46 of the substrate 32. On the other hand, by attaching the load body 33 onto the three-layer laminated electrode 35, the piezoelectric vibration sensor is assembled.

【0025】このような圧電型振動センサ30は、圧電
体31の両面に生ずる電荷が二層積層電極34と三層積
層電極35とに伝達される。二層積層電極34は、圧電
体31の裏面の電荷が第一の電極38のx軸用分割電極
38aとy軸用分割電極38bとに伝達され、これらx
軸、y軸用分割電極38a、38bの電荷は各スルーホ
ール38c、37c、36c内の金属メッキ層を介して
出力用電極36のx軸用分割電極36a、y軸用分割電
極36bにそれぞれ伝達される。これら出力用電極36
のx軸、y軸用分割電極36a、36bの電荷が電気回
路用電極46に直接伝達される。
In the piezoelectric type vibration sensor 30 as described above, the charges generated on both surfaces of the piezoelectric body 31 are transmitted to the two-layer laminated electrode 34 and the three-layer laminated electrode 35. In the two-layer laminated electrode 34, the charges on the back surface of the piezoelectric body 31 are transferred to the x-axis divided electrode 38a and the y-axis divided electrode 38b of the first electrode 38, and these x
The electric charges of the axial and y-axis split electrodes 38a and 38b are transferred to the x-axis split electrode 36a and the y-axis split electrode 36b of the output electrode 36 through the metal plating layers in the through holes 38c, 37c and 36c, respectively. To be done. These output electrodes 36
The charges of the x-axis and y-axis split electrodes 36a and 36b are directly transmitted to the electric circuit electrode 46.

【0026】一方、三層積層電極35は、圧電体31の
表面の電荷が第二の電極40のx軸用分割電極40aと
y軸用分割電極40bとに伝達され、これらx軸、y軸
用分割電極40a、40bの電荷は各スルーホール40
c、37c、41c、37c、42c内の金属メッキ層
を介して中層電極41、上層電極42にそれぞれ伝達さ
れる。ここで、中層電極41のy軸接続用電極41bで
第二の電極40の一対のy軸用分割電極40bが短絡さ
れ、上層電極42のx軸接続用電極42aで第二の電極
40の一対のx軸用分割電極40aが短絡される。この
ため、三層積層電極35内の第二の電極40の各x軸用
分割電極40aが短絡され、各y軸用分割電極40bが
短絡される。
On the other hand, in the three-layer laminated electrode 35, charges on the surface of the piezoelectric body 31 are transmitted to the x-axis divided electrode 40a and the y-axis divided electrode 40b of the second electrode 40, and these x-axis and y-axis are divided. The charge of the split electrodes 40a, 40b for each through hole 40
It is transmitted to the middle layer electrode 41 and the upper layer electrode 42 via the metal plating layers in c, 37c, 41c, 37c and 42c, respectively. Here, the pair of y-axis divided electrodes 40b of the second electrode 40 are short-circuited by the y-axis connecting electrode 41b of the middle layer electrode 41, and the pair of the second electrode 40 is paired by the x-axis connecting electrode 42a of the upper layer electrode 42. The x-axis split electrode 40a is short-circuited. Therefore, each of the x-axis divided electrodes 40a of the second electrode 40 in the three-layer laminated electrode 35 is short-circuited, and each of the y-axis divided electrodes 40b is short-circuited.

【0027】このような圧電型振動センサ30によれ
ば、圧電体31と、該圧電体31の両面に配設される二
層積層電極34および三層積層電極35を有するので、
圧電体31の両面に生じた電荷が二層積層電極34およ
び三層積層電極35にそれぞれ伝達される。二層積層電
極34は、出力用電極36と、絶縁体37と、第一の電
極38とを積み重ねた構成にしたので、出力用電極36
と第一の電極38とが直接接続されるのを絶縁体37で
防止する。
According to such a piezoelectric vibration sensor 30, since it has the piezoelectric body 31, and the two-layer laminated electrode 34 and the three-layer laminated electrode 35 arranged on both surfaces of the piezoelectric body 31,
The charges generated on both surfaces of the piezoelectric body 31 are transmitted to the two-layer laminated electrode 34 and the three-layer laminated electrode 35, respectively. Since the two-layer laminated electrode 34 has a configuration in which the output electrode 36, the insulator 37, and the first electrode 38 are stacked, the output electrode 36
The insulator 37 prevents the first electrode 38 and the first electrode 38 from being directly connected.

【0028】第一の電極38は、x軸用分割電極38a
とy軸用分割電極38bとを有するので、圧電体31の
電荷をx軸用分割電極38aで検出することにより、x
軸方向の振動が検出され、圧電体31の電荷をy軸用分
割電極38bで検出することにより、y軸方向の振動が
検出される。そして、第一の電極38のx軸用、y軸用
分割電極38a、38bが出力用電極36のx軸用、y
軸用分割電極36a、36bに各々金属メッキ層を介し
てそれぞれ接続される。
The first electrode 38 is a split electrode 38a for the x-axis.
And the y-axis split electrode 38b, the charge of the piezoelectric body 31 is detected by the x-axis split electrode 38a.
The vibration in the axial direction is detected, and the electric charge of the piezoelectric body 31 is detected by the y-axis divided electrode 38b, whereby the vibration in the y-axis direction is detected. The divided electrodes 38a and 38b for the x-axis and the y-axis of the first electrode 38 are for the x-axis of the output electrode 36, and y.
The divided electrodes 36a and 36b for shafts are respectively connected via metal plating layers.

【0029】第一の電極38は圧電体31の裏面に配設
され、出力用電極36は電気回路用電極46に接続され
ているので、圧電体31の裏面に生じた電荷が第一の電
極38の各分割電極から金属メッキ層、出力用電極36
を介して電気回路用電極46の各分割電極に伝達され
る。このため、圧電体31の裏面の電荷をリード線等で
電気回路用電極46に接続する必要性をなくすことがで
き、ワイヤーボンダー等の装置を不要にできる。したが
って、全体を薄型にできる。
Since the first electrode 38 is disposed on the back surface of the piezoelectric body 31 and the output electrode 36 is connected to the electric circuit electrode 46, the charge generated on the back surface of the piezoelectric body 31 is applied to the first electrode. From each divided electrode 38, a metal plating layer, an output electrode 36
Is transmitted to each divided electrode of the electric circuit electrode 46 via. Therefore, it is possible to eliminate the need to connect the electric charges on the back surface of the piezoelectric body 31 to the electric circuit electrode 46 by a lead wire or the like, and to eliminate a device such as a wire bonder. Therefore, the whole can be made thin.

【0030】また、第二の電極40の一対のx軸用分割
電極40a、40aは電気的に接続され、第二の電極4
0の一対のy軸用分割電極40b、40bは電気的に接
続されるので、第二の電極40の一対の分割電極をそれ
ぞれ短絡でき、これら各分割電極にリード線を取り付け
る作業を不要にでき、ワイヤーボンダー等の装置を不要
にできるから、圧電型振動センサの製造コストを低減さ
せることができる。したがって、リード線が不要になる
ことから、リード線の断線による接続不良をなくすこと
ができ、リード線を取り出すためのスペーサーを不要に
できるから、圧電型振動センサを小型化できる。
The pair of x-axis divided electrodes 40a, 40a of the second electrode 40 are electrically connected to each other, and the second electrode 4
Since the pair of y-axis split electrodes 40b, 40b of 0 are electrically connected, the pair of split electrodes of the second electrode 40 can be short-circuited, and the work of attaching a lead wire to each of these split electrodes can be omitted. Since a device such as a wire bonder can be eliminated, the manufacturing cost of the piezoelectric vibration sensor can be reduced. Therefore, since the lead wire is not necessary, it is possible to eliminate the connection failure due to the disconnection of the lead wire, and the spacer for taking out the lead wire can be eliminated, so that the piezoelectric vibration sensor can be downsized.

【0031】(実験例)図1〜図4に示す構造の圧電型
振動センサを製作した。荷重体としては、3mm×3m
m×1mmtの大きさの直方体状の真鍮を用い、圧電体
としては、3mm×3mm×0.5mmtの大きさのP
ZT(チタン酸ジルコン酸鉛)を用いた。そして、二層
積層電極は、銅箔を電極として用い、ポリイミドフィル
ムを絶縁体として用いて、大きさを3mm×3mm×
0.06mmtに形成した。三層積層電極は、銅箔、ポ
リイミドフィルムを用いて、大きさを3mm×3mm×
0.1mmtに形成した。これら二層積層電極と三層積
層電極とで圧電体を挟み、二層積層電極を基板上の電気
回路用電極に半田で固定した。
Experimental Example A piezoelectric vibration sensor having the structure shown in FIGS. 1 to 4 was manufactured. As a load body, 3 mm x 3 m
A rectangular parallelepiped brass having a size of m × 1 mmt is used, and a piezoelectric body having a size of P of 3 mm × 3 mm × 0.5 mmt is used.
ZT (lead zirconate titanate) was used. Then, the two-layer laminated electrode uses a copper foil as an electrode and a polyimide film as an insulator, and has a size of 3 mm × 3 mm ×
It was formed to 0.06 mmt. The three-layer laminated electrode is made of copper foil and polyimide film and has a size of 3 mm × 3 mm ×
It was formed to 0.1 mmt. The piezoelectric body was sandwiched between the two-layer laminated electrode and the three-layer laminated electrode, and the two-layer laminated electrode was fixed to the electric circuit electrode on the substrate by soldering.

【0032】(比較例)図13ないし図14に示す圧電
型振動センサを製作した。ここで、荷重体と圧電体とは
前記実施例と同様のものを用い、これら荷重体と圧電体
との間にリード線を取り出すためのスペーサーを挿入し
た。このスペーサーは、ガラス繊維をエポキシ樹脂に含
浸させた繊維強化樹脂を1mmの厚みに形成した。かか
る圧電型振動センサの製造では、圧電体上の電極にリー
ド線の一端を接続するとともに、このリード線の他端を
基板上に設けられた電気回路に接続した。一方、圧電体
の下面では、この圧電体の下側の電極を基板に設けられ
た電気回路用電極に半田で直接固定し、その他の部分は
エポキシ樹脂で固定した。
Comparative Example A piezoelectric vibration sensor shown in FIGS. 13 to 14 was manufactured. Here, as the load body and the piezoelectric body, the same ones as in the above embodiment were used, and a spacer for taking out a lead wire was inserted between the load body and the piezoelectric body. This spacer was formed of a fiber-reinforced resin having a glass fiber impregnated with an epoxy resin and a thickness of 1 mm. In manufacturing such a piezoelectric vibration sensor, one end of a lead wire was connected to an electrode on a piezoelectric body, and the other end of this lead wire was connected to an electric circuit provided on a substrate. On the other hand, on the lower surface of the piezoelectric body, the electrodes on the lower side of the piezoelectric body were directly fixed to the electric circuit electrodes provided on the substrate with solder, and the other portions were fixed with epoxy resin.

【0033】実験例と比較例とで圧電型振動センサをそ
れぞれ100個試作し、これら圧電型振動センサの性能
を評価した。実験例では、二方向間の感度のバラツキが
試作した全てについて10%以内に収まっていた。一
方、比較例では、感度のバラツキが10%以内に収まっ
ていたのは、全体の80%であった。これは、実験例は
基板への固定に半田だけを使用したのに対し、比較例
は、基板への固定に半田とエポキシ樹脂のように異なる
接着剤を用いたためと考えられる。
100 piezoelectric vibration sensors were made for each of the experimental example and the comparative example, and the performance of these piezoelectric vibration sensors was evaluated. In the experimental example, the variation in sensitivity between the two directions was within 10% for all prototypes. On the other hand, in the comparative example, the variation of sensitivity was within 10% in 80% of the whole. It is considered that this is because the experimental example used only solder for fixing to the substrate, whereas the comparative example used different adhesives such as solder and epoxy resin for fixing to the substrate.

【0034】また、圧電型振動センサ1個当りの製造コ
ストを見積った結果、実験例は比較例に対して約90%
になり、実験例の圧電型振動センサは比較例に対し低コ
ストで製造できる。さらに、圧電型振動センサの高さを
比べたときに、実施例の圧電型振動センサの高さは約
1.7mmに形成され、比較例の圧電型振動センサは
2.7mmに形成された。このため、実験例の圧電型振
動センサは、比較例に比べて非常に薄く形成され、小型
化に適している。
As a result of estimating the manufacturing cost per piezoelectric vibration sensor, the experimental example is about 90% of the comparative example.
Therefore, the piezoelectric vibration sensor of the experimental example can be manufactured at a lower cost than the comparative example. Further, when comparing the heights of the piezoelectric vibration sensors, the height of the piezoelectric vibration sensor of the example was formed to about 1.7 mm, and the height of the piezoelectric vibration sensor of the comparative example was formed to 2.7 mm. For this reason, the piezoelectric vibration sensor of the experimental example is formed to be much thinner than the comparative example, and is suitable for downsizing.

【0035】<変形例>前記実施例では、二層積層電極
34の出力用電極36を四つに分割形成したが、図5に
示すように、三つに分割形成してもよい。この三分割し
た出力用電極50は、前記四分割された出力用電極のう
ち隣り合う一組のx軸用分割電極とy軸用分割電極とが
一体に連続形成されている。一方、前記実施例では、基
板32上の電気回路用電極46を複数分割形成し、れら
分割された各電気回路用電極46に二層積層電極34の
出力用電極36をそれぞれ接続したが、この出力用電極
36を取り除いて、分割された各電気回路用電極46に
二層積層電極34の第一の電極38を金属メッキ層で直
接接続してもよい。
<Modification> In the above embodiment, the output electrode 36 of the two-layer laminated electrode 34 is divided into four parts, but may be divided into three parts as shown in FIG. In the three-divided output electrode 50, a pair of adjacent x-axis divided electrodes and y-axis divided electrodes of the four-divided output electrodes are integrally formed continuously. On the other hand, in the above-described embodiment, the electric circuit electrode 46 on the substrate 32 is divided into a plurality of parts, and the output electrode 36 of the two-layer laminated electrode 34 is connected to each of the divided electric circuit electrodes 46. The output electrode 36 may be removed, and the first electrode 38 of the two-layer laminated electrode 34 may be directly connected to each of the divided electric circuit electrodes 46 by a metal plating layer.

【0036】さらに、前記実施例では、三層積層電極3
5に中層電極41と上層電極42とを形成したが、図6
に示すように、単一層の短絡用電極51(接続用電極)
を形成してもよい。この短絡用電極51は、x軸または
y軸のいずれか一方の上に配され、これらx軸とy軸と
の交点を含む帯状電極51aと、x軸またはy軸の他方
の上に一対配され、圧電体31の縁部に沿って一体に連
続形成されたL字状電極51bとから構成されている。
これら帯状電極51aとL字状電極51bとの間には、
これらが互いに接触するのを防止するため、間隔があけ
られている。そして、帯状電極51aは、第二の電極4
0の一対のx軸用分割電極40aまたはy軸用分割電極
40bのいずれか一方に金属メッキ層を介して電気的に
接続されている。また、L字状電極51bは、第二の電
極40の一対のx軸用分割電極40aまたはy軸用分割
電極40bの他方に金属メッキ層を介して電気的に接続
されている。
Further, in the above embodiment, the three-layer laminated electrode 3
5, the middle layer electrode 41 and the upper layer electrode 42 were formed.
As shown in, a single-layer short-circuit electrode 51 (connection electrode)
May be formed. The short-circuiting electrode 51 is arranged on either the x-axis or the y-axis, and the strip electrode 51a including the intersection of the x-axis and the y-axis and the pair of short-circuiting electrodes 51 are arranged on the other of the x-axis and the y-axis. The L-shaped electrode 51b is integrally formed continuously along the edge of the piezoelectric body 31.
Between the strip-shaped electrode 51a and the L-shaped electrode 51b,
They are spaced to prevent them from touching each other. Then, the strip electrode 51a is the second electrode 4
It is electrically connected to either one of the pair of split electrodes 40a for the x-axis or split electrode 40b for the y-axis of 0 through a metal plating layer. The L-shaped electrode 51b is electrically connected to the other of the pair of x-axis divided electrodes 40a or y-axis divided electrode 40b of the second electrode 40 via a metal plating layer.

【0037】このように単一層の短絡用電極51を中層
電極41および上層電極42の替わりに使用することに
より、これら中層電極41および上層電極42とこれら
の間に配設された絶縁板37とを不要にでき、三層積層
電極35の厚みを薄く形成させることができる。
By thus using the single-layer short-circuit electrode 51 instead of the middle-layer electrode 41 and the upper-layer electrode 42, the middle-layer electrode 41 and the upper-layer electrode 42 and the insulating plate 37 disposed between them are Can be eliminated, and the thickness of the three-layer laminated electrode 35 can be reduced.

【0038】また、前記実施例では、第二の電極40を
正方形状の圧電体31の四隅に各分割形成したが、図7
に示すように、第二の電極55を正方形状の圧電体31
の対角線を境に四つに分割形成してもよい。かかる第二
の電極55にあっては、各分割電極の中心部にスルーホ
ール55cがそれぞれ形成されている。かかる場合、圧
電体上の三層積層電極では、図8に示すように、x軸ま
たはy軸のいずれか一方の上に沿って中層電極56を三
つの帯状に分割形成し、図9に示すように、x軸または
y軸の他方に沿って上層電極57を三つの帯状に分割形
成してもよい。
Further, in the above-mentioned embodiment, the second electrode 40 is divided and formed at each of the four corners of the square piezoelectric body 31, but FIG.
As shown in FIG.
It may be divided into four parts with the diagonal line as a boundary. In the second electrode 55, a through hole 55c is formed at the center of each divided electrode. In such a case, in the three-layer laminated electrode on the piezoelectric body, as shown in FIG. 8, the middle-layer electrode 56 is divided into three strips along one of the x-axis and the y-axis, and shown in FIG. As described above, the upper layer electrode 57 may be divided into three strips along the other of the x axis and the y axis.

【0039】[0039]

【発明の効果】以上説明したように、本発明の圧電型振
動センサによれば、圧電体と、該圧電体の両面に配設さ
れる一対の複層積層電極と、これら複層積層電極の一方
に接続される電気回路用電極が設けられた基板と、複層
積層電極の他方に取り付けられた荷重体とを具備するか
ら、圧電体の両面に生じた電荷が複層多層電極に伝達さ
れて電気回路用電極に伝達される。そして、圧電体と荷
重体との間に取り付けられた複層積層電極は、圧電体の
平面におけるx軸の変位を検出する一対のx軸用分割電
極とy軸の変位を検出する一対のy軸用分割電極とを有
し、これらx軸用分割電極およびy軸用分割電極と荷重
体との間には、x軸上またはy軸上に配された接続用電
極が絶縁板を介して積み重ねられ、これら接続用電極と
絶縁板とには、これらを貫通するスルーホールが形成さ
れ、該スルーホールには、前記一対のx軸用分割電極ま
たは一対のy軸用分割電極と接続用電極とを電気的に接
続する接続部が設けられている構成にしたから、この接
続部と接続用電極とを介して一対のx軸用分割電極が電
気的に接続され、または、接続部と接続用電極とを介し
て一対のy軸用分割電極が電気的に接続される。このた
め、x軸用分割電極またはy軸用分割電極を短絡できる
から、これら各分割電極にリード線を取り付ける作業を
なくすことができ、圧電型振動センサの製造工程を減少
でき、圧電型振動センサの製造に要するコストを低減さ
せることができる。
As described above, according to the piezoelectric vibration sensor of the present invention, the piezoelectric body, the pair of multi-layer laminated electrodes disposed on both surfaces of the piezoelectric body, and the multi-layer laminated electrodes Since the substrate provided with the electric circuit electrode connected to one side and the load body attached to the other side of the multilayer laminated electrode are provided, the charges generated on both surfaces of the piezoelectric body are transferred to the multilayer multilayer electrode. Are transmitted to the electrodes for electric circuits. The multi-layer laminated electrode mounted between the piezoelectric body and the load body is a pair of x-axis split electrodes for detecting the displacement of the x-axis in the plane of the piezoelectric body, and a pair of y for detecting the displacement of the y-axis. A split electrode for the axis and a split electrode for the x-axis and the split electrode for the y-axis and the load body, and a connecting electrode disposed on the x-axis or the y-axis via an insulating plate. Through-holes are stacked in the connecting electrodes and the insulating plate to penetrate them, and the pair of x-axis divided electrodes or the pair of y-axis divided electrodes and connecting electrodes are formed in the through holes. Since the configuration is such that a connection portion for electrically connecting the and is provided, the pair of split electrodes for the x-axis is electrically connected via the connection portion and the connection electrode, or connected to the connection portion. The pair of y-axis divided electrodes are electrically connected to each other via the working electrode. Therefore, since the x-axis divided electrode or the y-axis divided electrode can be short-circuited, the work of attaching a lead wire to each of these divided electrodes can be eliminated, the manufacturing process of the piezoelectric vibration sensor can be reduced, and the piezoelectric vibration sensor can be reduced. It is possible to reduce the cost required for manufacturing.

【0040】そして、リード線を不要にできたことか
ら、リード線の断線による接続不良をなくすことがで
き、圧電体と荷重体との間にリード線を取り出すための
スペーサーを不要にでき、圧電型振動センサの厚みを薄
く形成できるから、圧電型振動センサを小型化できる。
Since the lead wire can be eliminated, the connection failure due to the disconnection of the lead wire can be eliminated, the spacer for taking out the lead wire between the piezoelectric body and the load body can be eliminated, and the piezoelectric Since the die vibration sensor can be formed thin, the piezoelectric vibration sensor can be downsized.

【0041】請求項2記載の圧電型振動センサによれ
ば、接続用電極を二層の電極で構成したので、これら二
層の電極の一方のx軸接続用電極で一対のx軸用分割電
極が電気的に接続され、他方のy軸接続用電極で一対の
y軸用分割電極が電気的に接続されるので、これら各分
割電極にリード線等を取り付ける作業を不要にできる。
According to the piezoelectric vibration sensor of the second aspect, since the connecting electrodes are composed of two layers of electrodes, one x-axis connecting electrode of the two layers of electrodes forms a pair of x-axis divided electrodes. Are electrically connected, and the pair of y-axis connecting electrodes are electrically connected by the other y-axis connecting electrode, so that the work of attaching a lead wire or the like to each of these divided electrodes can be omitted.

【0042】請求項3記載の圧電型振動センサによれ
ば、接続用電極を帯状電極とL字状電極とで構成したの
で、帯状電極で第二の電極の一対のx軸用、またはy軸
用分割電極のいずれか一方が電気的に接続され、他方が
L字状電極で接続される。このため、各分割電極にリー
ド線等を取り付ける作業を不要にできるという効果を奏
することができる。
According to the piezoelectric vibration sensor of the third aspect, since the connecting electrode is composed of the strip electrode and the L-shaped electrode, the strip electrode is for the pair of x axes of the second electrode, or the y axis. One of the divided electrodes for electrical connection is electrically connected, and the other is connected by an L-shaped electrode. Therefore, there is an effect that the work of attaching the lead wire or the like to each divided electrode can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の圧電型振動センサを示す斜視図であ
る。
FIG. 1 is a perspective view showing a piezoelectric vibration sensor of the present invention.

【図2】 図1に圧電型振動センサを示す展開斜視図で
ある。
FIG. 2 is a developed perspective view showing a piezoelectric vibration sensor in FIG.

【図3】 図2の二層積層電極を示す展開斜視図であ
る。
3 is a developed perspective view showing the two-layer laminated electrode of FIG.

【図4】 図2の三層積層電極を示す展開斜視図であ
る。
FIG. 4 is a developed perspective view showing the three-layer laminated electrode of FIG.

【図5】 図3の変形例を示す平面図である。5 is a plan view showing a modified example of FIG.

【図6】 図4の変形例を示す平面図である。FIG. 6 is a plan view showing a modified example of FIG.

【図7】 図4の第二の電極の変形例を示す平面図であ
る。
FIG. 7 is a plan view showing a modification of the second electrode of FIG.

【図8】 図4の中層電極の変形例を示す平面図であ
る。
FIG. 8 is a plan view showing a modified example of the middle layer electrode of FIG.

【図9】 図4の上層電極の変形例を示す平面図であ
る。
9 is a plan view showing a modified example of the upper layer electrode of FIG.

【図10】 従来の圧電型振動センサを示す斜視図であ
る。
FIG. 10 is a perspective view showing a conventional piezoelectric vibration sensor.

【図11】 従来の圧電体を示す斜視図である。FIG. 11 is a perspective view showing a conventional piezoelectric body.

【図12】 従来の圧電体の各電極間の出力電圧を示す
回路図である。
FIG. 12 is a circuit diagram showing an output voltage between electrodes of a conventional piezoelectric body.

【図13】 従来の圧電型振動センサを示す斜視図であ
る。
FIG. 13 is a perspective view showing a conventional piezoelectric vibration sensor.

【図14】 図13の圧電体の両面に配された電極を示
す平面図である。
14 is a plan view showing electrodes arranged on both surfaces of the piezoelectric body of FIG.

【符号の説明】 30…圧電型振動センサ、31…圧電体、32…基板、
33…荷重体、34…二層積層電極(複層積層電極)、
35…三層積層電極(複層積層電極)、36…第一の電
極、37…絶縁体、40…第二の電極、40a…x軸用
分割電極、40b…y軸用分割電極、41…中層電極
(接続用電極)、42…上層電極(接続用電極)、46
…電気回路用電極。
[Explanation of reference numerals] 30 ... Piezoelectric vibration sensor, 31 ... Piezoelectric body, 32 ... Substrate,
33 ... Load body, 34 ... Two-layer laminated electrode (multi-layer laminated electrode),
35 ... Three-layer laminated electrode (multilayer laminated electrode), 36 ... First electrode, 37 ... Insulator, 40 ... Second electrode, 40a ... X-axis divided electrode, 40b ... Y-axis divided electrode, 41 ... Middle layer electrode (connection electrode), 42 ... Upper layer electrode (connection electrode), 46
... electric circuit electrodes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電体と、該圧電体の両面に配設される
一対の複層積層電極と、これら複層積層電極の一方に接
続される電気回路用電極が設けられた基板と、複層積層
電極の他方に取り付けられた荷重体とを具備し、該他方
の複層積層電極は、圧電体の平面におけるx軸の変位を
検出する一対のx軸用分割電極とy軸の変位を検出する
一対のy軸用分割電極とを有し、これらx軸用分割電極
およびy軸用分割電極と荷重体との間には、x軸上また
はy軸上に配された接続用電極が絶縁板を介して積み重
ねられ、これら接続用電極と絶縁板とには、これらを貫
通するスルーホールが形成され、該スルーホールには、
前記一対のx軸用分割電極または一対のy軸用分割電極
と接続用電極とを電気的に接続する接続部が設けられて
いることを特徴とする圧電型振動センサ。
1. A piezoelectric body, a pair of multi-layer laminated electrodes arranged on both surfaces of the piezoelectric body, and a substrate provided with an electric circuit electrode connected to one of the multi-layer laminated electrodes, And a load body attached to the other of the layer-stacked electrodes. The other multilayer-stacked electrode includes a pair of x-axis split electrodes for detecting displacement of the x-axis in the plane of the piezoelectric body, and a y-axis displacement. A pair of y-axis split electrodes for detection, and a connecting electrode disposed on the x-axis or the y-axis between the load electrode and the x-axis split electrode and the y-axis split electrode. Stacked via an insulating plate, a through hole is formed through the connecting electrode and the insulating plate, and the through hole is formed.
A piezoelectric vibration sensor, characterized in that a connecting portion for electrically connecting the pair of x-axis divided electrodes or the pair of y-axis divided electrodes and the connecting electrode is provided.
【請求項2】 請求項1記載の圧電型振動センサであっ
て、前記接続用電極は絶縁板を介して二層の電極を有
し、これら二層の電極の一方に、前記x軸上に配され、
前記圧電体の平面の中心でx軸とy軸との交点を含むx
軸接続用電極が形成され、他方に、y軸上に配され、前
記交点を含むy軸接続用電極が形成され、前記x軸接続
用電極には、第二の電極の一対のx軸用分割電極が接続
部を介して電気的に接続され、前記y軸接続用電極に
は、第二の電極の一対のy軸用分割電極が接続部を介し
て電気的に接続されていることを特徴とする圧電型振動
センサ。
2. The piezoelectric vibration sensor according to claim 1, wherein the connecting electrode has two layers of electrodes with an insulating plate interposed therebetween, and one of the two layers of electrodes is provided on the x-axis. Is arranged
X including the intersection of the x-axis and the y-axis at the center of the plane of the piezoelectric body
An axis-connecting electrode is formed, on the other hand, a y-axis connecting electrode that is arranged on the y-axis and includes the intersection is formed, and the x-axis connecting electrode is a pair of second electrodes for the x-axis. The divided electrodes are electrically connected through a connecting portion, and the pair of y-axis divided electrodes of the second electrode is electrically connected through the connecting portion to the y-axis connecting electrode. Characteristic piezoelectric vibration sensor.
【請求項3】 請求項1記載の圧電型振動センサであっ
て、前記接続用電極は、x軸またはy軸のいずれか一方
の上に配され、前記圧電体の平面の中心でx軸とy軸と
の交点を含む帯状電極と、x軸またはy軸の他方の上に
一対配され、前記帯状電極に対して間隔をあけて配され
たL字状電極とを有し、前記帯状電極には、第二の電極
の一対のx軸用、またはy軸用分割電極のいずれか一方
が接続部を介して接続され、L字状電極には、第二の電
極の一対のx軸用、またはy軸用分割電極の他方が接続
部を介して接続されていることを特徴とする圧電型振動
センサ。
3. The piezoelectric vibration sensor according to claim 1, wherein the connecting electrode is arranged on either the x-axis or the y-axis, and the x-axis is at the center of the plane of the piezoelectric body. The strip-shaped electrode includes a strip-shaped electrode including an intersection with the y-axis, and a pair of L-shaped electrodes disposed on the other of the x-axis and the y-axis and spaced apart from the strip-shaped electrode. Is connected to either one of a pair of split electrodes for the x-axis of the second electrode or a split electrode for the y-axis via a connecting portion, and the L-shaped electrode is for the pair of x-axis of the second electrode. , Or the other of the y-axis split electrodes is connected via a connecting portion.
JP5193766A 1993-08-04 1993-08-04 Piezoelectric vibration sensor Pending JPH0749354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5193766A JPH0749354A (en) 1993-08-04 1993-08-04 Piezoelectric vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5193766A JPH0749354A (en) 1993-08-04 1993-08-04 Piezoelectric vibration sensor

Publications (1)

Publication Number Publication Date
JPH0749354A true JPH0749354A (en) 1995-02-21

Family

ID=16313457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5193766A Pending JPH0749354A (en) 1993-08-04 1993-08-04 Piezoelectric vibration sensor

Country Status (1)

Country Link
JP (1) JPH0749354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122215A (en) * 2006-11-13 2008-05-29 Aisin Seiki Co Ltd Piezoelectric sensor and method of manufacturing the same
CN102564656A (en) * 2012-02-20 2012-07-11 大连理工大学 Piezoelectric quartz crystal group for measuring multi-dimensional force, and manufacturing method for piezoelectric quartz crystal group

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122215A (en) * 2006-11-13 2008-05-29 Aisin Seiki Co Ltd Piezoelectric sensor and method of manufacturing the same
US8314536B2 (en) 2006-11-13 2012-11-20 Aisin Seiki Kabushiki Kaisha Piezoelectric sensor and method for manufacturing the same
CN102564656A (en) * 2012-02-20 2012-07-11 大连理工大学 Piezoelectric quartz crystal group for measuring multi-dimensional force, and manufacturing method for piezoelectric quartz crystal group

Similar Documents

Publication Publication Date Title
JP3373032B2 (en) Acceleration sensor
US4836023A (en) Vibrational angular rate sensor
JP3040816B2 (en) Operation test method in device for detecting physical quantity using change in distance between electrodes, and physical quantity detection device having function of performing this method
US20140123754A1 (en) Physical quantity detecting device, electronic apparatus, and moving object
JPH05215766A (en) Inspectable acceleration sensor
US20230288444A1 (en) Acceleration transducer
US8256292B2 (en) Acceleration sensor with surface protection
JP4909607B2 (en) 2-axis acceleration sensor
US6786095B2 (en) Acceleration sensor
JP2009053141A (en) Acceleration sensor module
JPH0749354A (en) Piezoelectric vibration sensor
US6823735B2 (en) Acceleration sensor
JP2001027648A (en) Acceleration sensor
JP2732413B2 (en) Acceleration sensor
JP3070424B2 (en) Accelerometer mounting structure
JP5866891B2 (en) Force sensor, force detection device, robot hand, and robot
JPH07209070A (en) Piezoelectric vibration sensor
JPH11160348A (en) Semiconductor accelerometer
JP2581901B2 (en) Piezoelectric acceleration pickup
JPH09184774A (en) Piezoelectric type physical quantity sensor
JPH08201161A (en) Piezoelectric vibration sensor
WO2023079896A1 (en) Acceleration detection device
JPH06201722A (en) Piezoelectric type vibration sensor
JPS6246266A (en) Oscillation sensor
JP2689799B2 (en) Acceleration sensor