JPH09184774A - Piezoelectric type physical quantity sensor - Google Patents

Piezoelectric type physical quantity sensor

Info

Publication number
JPH09184774A
JPH09184774A JP7352955A JP35295595A JPH09184774A JP H09184774 A JPH09184774 A JP H09184774A JP 7352955 A JP7352955 A JP 7352955A JP 35295595 A JP35295595 A JP 35295595A JP H09184774 A JPH09184774 A JP H09184774A
Authority
JP
Japan
Prior art keywords
electrodes
physical quantity
piezoelectric
electrode
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352955A
Other languages
Japanese (ja)
Inventor
Kazuo Otaka
和雄 大高
Hiroyuki Kubota
宏幸 久保田
Hiroshi Aoki
浩 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Original Assignee
Miyota KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK filed Critical Miyota KK
Priority to JP7352955A priority Critical patent/JPH09184774A/en
Publication of JPH09184774A publication Critical patent/JPH09184774A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PROBLEM TO BE SOLVED: To reduce the cost by forming a sensor part of piezoelectric ceramics, providing a plurality of electrodes for detecting physical quantity on the upper surface of the sensor part and a facing electrode to the lower surface respectively, polarizing the piezoelectric ceramics with the upper and lower electrodes, and connecting respective electrodes as necessary. SOLUTION: A sensor 1 is constituted of a sensor part 1a, a sensor box 1b and a weight, and it is formed integrally with piezoelectric ceramics. The sensor part 1a is provided with electrodes 2 to 9 for detecting physical quantity on its upper surface and an electrode on its lower surface, and the piezoelectric ceramics is polarized by the upper and lower electrodes, then the respective electrodes are conencted with connecting electrodes 10 and 13, etc., as necessary, thereby constituting the sensor part 1a. The upper and lower electrodes forms a capacitor using a piezoelectric ceramics as a dielectric body. Then, when the sensor 1 is given any acceleration, the weight is moved and any deformation is generated in the sensor part 1a supporting the weight, so that the charges in the respective capacitors are changed thereby. The change in charge quantity is detected to detect the physical quantity working to the sensor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は圧電型物理量センサ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric type physical quantity sensor.

【0002】力、速度、加速度等の物理量を測定する需
要は多くの分野に存在し、その測定方法、測定素子が開
発されている。特に前記物理量の測定により物の制御を
目的とする分野では安定した感度のよい測定と同時に小
型化が望まれている
Demands for measuring physical quantities such as force, speed, and acceleration exist in many fields, and measuring methods and measuring elements have been developed. In particular, in the field where the physical quantity is measured to control the object, stable and sensitive measurement and simultaneous miniaturization are desired.

【0003】本発明の圧電型物理量センサは、センサ部
に圧電セラミックスを使用し、圧電セラミックスの上面
の所定位置に複数個の物理量検出用電極を設け、下面に
前記物理量検出用電極に対向する電極を設ける。上下の
電極により圧電セラミックスを分極処理し、その後必要
に応じて各電極を接続してセンサ部が完成する。12は
引出電極である。16、17、18はセンサ部の電極と
外部端子または駆動回路、検出回路と接続するための端
子電極であり、センサ筐体1b上に形成してある。
In the piezoelectric type physical quantity sensor of the present invention, a piezoelectric ceramic is used for the sensor portion, a plurality of physical quantity detecting electrodes are provided at predetermined positions on the upper surface of the piezoelectric ceramic, and an electrode facing the physical quantity detecting electrode is provided on the lower surface. To provide. The piezoelectric ceramics are polarized by the upper and lower electrodes, and then the electrodes are connected as necessary to complete the sensor section. Reference numeral 12 is an extraction electrode. Reference numerals 16, 17, and 18 denote terminal electrodes for connecting the electrodes of the sensor section to external terminals or drive circuits and detection circuits, which are formed on the sensor housing 1b.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0004】図1は本発明による圧電型物理量センサの
要部の斜視図である。図2は図1の圧電型物理量センサ
の正面断面図である。図3は図1の圧電型物理量センサ
の上面図である。
FIG. 1 is a perspective view of an essential part of a piezoelectric type physical quantity sensor according to the present invention. FIG. 2 is a front sectional view of the piezoelectric type physical quantity sensor of FIG. FIG. 3 is a top view of the piezoelectric type physical quantity sensor of FIG.

【0005】センサ1はセンサ部1aとセンサ筐体1b
及び重錘体15で構成され圧電セラミックスで一体に形
成されている。センサ部1aの上面の所定位置に複数個
の物理量検出用電極2、3、4、5、6、7、8及び9
を設け、下面に前記物理量検出用電極に対向する電極1
4を設ける。上下の電極により圧電セラミックスを分極
処理し、その後必要に応じて各電極を接続用電極10、
11、13で接続してセンサ部1aが完成する。
The sensor 1 includes a sensor portion 1a and a sensor housing 1b.
And the weight body 15 and are integrally formed of piezoelectric ceramics. A plurality of physical quantity detection electrodes 2, 3, 4, 5, 6, 7, 8 and 9 are provided at predetermined positions on the upper surface of the sensor unit 1a.
And an electrode 1 facing the physical quantity detection electrode on the lower surface.
4 is provided. The piezoelectric ceramics are polarized by the upper and lower electrodes, and then each electrode is connected to the connecting electrode 10 if necessary.
The sensor unit 1a is completed by connecting 11 and 13.

【0006】前記圧電型物理量センサを加速度の検出測
定に使用することとして以下説明する。上面電極と下面
電極は圧電セラミックスを誘電体とするコンデンサを構
成している。センサに加速度が作用すると、重錘体15
が移動し、重錘体15を支えているセンサ部1aに歪み
が発生する。歪みが発生すると各コンデンサ部の電荷が
変化する。本発明の圧電型物理量センサはこの電荷量の
変化を検出することでセンサに作用した物理量を検出す
るものである。
The use of the piezoelectric type physical quantity sensor for detecting and measuring acceleration will be described below. The upper surface electrode and the lower surface electrode form a capacitor having a piezoelectric ceramic as a dielectric. When acceleration acts on the sensor, the weight 15
Moves, and strain is generated in the sensor unit 1a supporting the weight body 15. When distortion occurs, the electric charge of each capacitor unit changes. The piezoelectric type physical quantity sensor of the present invention detects the physical quantity acting on the sensor by detecting the change in the charge quantity.

【0007】圧電セラミックス素子(センサ部1a)の
片面内の一点に原点を定義し、この原点を通りかつ圧電
セラミックス素子面に平行な方向にX軸を、原点におい
てX軸に直交しかつ圧電セラミックス素子面に平行な方
向にY軸を定義し、X軸の正の側に2つの電極2、6
を、負の側に2つの電極3、7を同心円状に配置し、Y
軸の正の側に2つの電極4、8を、負の側に2つの電極
5、9を同心円状に配置し、前記圧電セラミックス素子
の反対面に前記電極群と対向する電極14を配置して圧
電セラミックスのコンデンサを形成しセンサ部1aとす
る。センサ部1aの外周をセンサ筐体1bに固定し、前
記原点で対向する電極(2と3、4と5)を対称形状と
し、お互いに異極に分極処理後、内側の電極を圧電セラ
ミックス上の接続用電極13で接続し、外側の電極で同
軸上の電極を圧電セラミックス上の接続用電極(10、
11)で接続する。外部から作用する物理量に基づいて
発生した力を、前記原点に伝達する機能を有する作用体
(重錘体15)を形成し、前記作用体(重錘体15)に
発生した力で発生する圧電セラミックスの歪をコンデン
サの電荷量変化として前記電極群により検出する。
An origin is defined at a point on one surface of the piezoelectric ceramics element (sensor portion 1a), the X axis extends in a direction passing through the origin and parallel to the piezoelectric ceramics element surface, and the piezoelectric ceramics is orthogonal to the X axis at the origin. The Y axis is defined in the direction parallel to the element surface, and the two electrodes 2 and 6 are provided on the positive side of the X axis.
On the negative side, the two electrodes 3 and 7 are arranged concentrically, and Y
Two electrodes 4 and 8 are concentrically arranged on the positive side of the axis, two electrodes 5 and 9 are concentrically arranged on the negative side, and an electrode 14 facing the electrode group is arranged on the opposite surface of the piezoelectric ceramic element. A piezoelectric ceramic capacitor is formed as the sensor unit 1a. The outer periphery of the sensor portion 1a is fixed to the sensor housing 1b, the electrodes (2, 3, 4 and 5) facing each other at the origin are symmetrically formed, and after the electrodes are polarized to have different polarities, the inner electrode is placed on the piezoelectric ceramics. Connection electrode 13 on the piezoelectric ceramics connection electrode (10,
Connect in 11). Piezoelectric generated by the force generated in the acting body (weight body 15) by forming an acting body (weight body 15) having a function of transmitting a force generated based on a physical quantity acting from the outside to the origin. The distortion of the ceramics is detected by the electrode group as a change in the charge amount of the capacitor.

【0008】次に前記圧電型物理量センサの製造につい
て説明する。圧電セラミックスの材料は種々開発されて
いるが例えば、強誘電性で圧電性であるPZT(ジルコ
ン酸チタン酸鉛)を使用する。粉末を金型で成形(セン
サ部、センサ筐体部、重錘体部を一体で成形する)し焼
成する。センサ部の上下面に蒸着、スパッタリング、ス
クリーン印刷等の方法で電極を形成する。上下面の電極
を使用して圧電セラミックスの分極を行う。分極の方向
が2種類になるのでそれぞれの電極を分類して分極処理
をする。分極後前述のとおり接続用電極で異極に分極し
た上面電極を接続する。理由は
Next, the manufacture of the piezoelectric type physical quantity sensor will be described. Various piezoelectric ceramic materials have been developed, but for example, PZT (lead zirconate titanate), which is ferroelectric and piezoelectric, is used. The powder is molded with a mold (the sensor portion, the sensor housing portion, and the weight body portion are integrally molded) and fired. Electrodes are formed on the upper and lower surfaces of the sensor unit by a method such as vapor deposition, sputtering, and screen printing. The electrodes on the upper and lower surfaces are used to polarize the piezoelectric ceramic. Since there are two types of polarization directions, each electrode is classified and polarized. After the polarization, the upper electrodes polarized differently by the connecting electrodes are connected as described above. Reason

【0009】で説明する。A description will be given below.

【0009】電極形成が2度に分けて行われるが、蒸着
やスパッタリングの場合は一般に金属マスクを使用し、
スクリーン印刷ではスクリーンを使用し、印刷後に熱処
理をする。図4は蒸着による1度目の電極形成のマスク
形状で平面図、図5は同2度目の接続電極形成のマスク
形状例で平面図ある。分極後に再度治具にセットして重
ね合わせの電極を形成をするのは製造工数が増加する。
図6は一回の蒸着で電極を形成するためのマスク形状の
平面図である。本発明では図6の様なマスク形状とし、
接続電極の一部をマスクにより切断しておき、分極後に
導電ペーストで接続するようにした。これにより窓抜き
によるマスクの強度の劣化を接続電極の一部を切断する
ための桟部で補強することができ、電極形成も一度でで
きるようになり、製造工数を少なくできた。
The electrodes are formed in two steps, but in the case of vapor deposition or sputtering, a metal mask is generally used,
A screen is used in screen printing, and heat treatment is performed after printing. 4 is a plan view of a mask shape for the first electrode formation by vapor deposition, and FIG. 5 is a plan view of a mask shape for the second connection electrode formation. The number of manufacturing steps is increased if the electrodes are set again after polarization to form overlapping electrodes.
FIG. 6 is a plan view of a mask shape for forming electrodes by a single vapor deposition. In the present invention, the mask shape as shown in FIG.
A part of the connection electrode was cut with a mask, and after polarization, connection was made with a conductive paste. As a result, the deterioration of the strength of the mask due to the opening of the window can be reinforced by the crosspiece for cutting a part of the connection electrode, and the electrode can be formed at once, and the number of manufacturing steps can be reduced.

【0010】次に本発明の圧電型物理量センサで物理量
が検出測定できる理論について図1、及び図7、図8に
より説明する。
Next, the theory of detecting and measuring a physical quantity with the piezoelectric type physical quantity sensor of the present invention will be described with reference to FIGS. 1, 7, and 8.

【0011】図1の圧電型物理量センサにX軸方向に加
速度が作用した場合を考えてみる。図7はX軸方向に加
速度が作用したときのセンサ部1aの歪み発生状態を示
す正面断面図。重錘体15に加速度が作用すると、図7
に示すように重錘体15の重心GにX軸方向の力Fが発
生する。この力Fにより、原点Oには図7における反時
計まわりのモーメント力が生じ、センサ部1aは図のよ
うに歪む。この歪みにより圧電セラミックスは、ある部
分は伸び、ある部分は縮む変形が生じ、それに伴い、内
部応力が発生する。このような変化により、電極2、
3、4、5、6、7、8、9と電極14で構成されてい
るコンデンサの電荷量が変化する。コンデンサの電荷量
が変化した瞬間コンデンサには電流が流れ、重錘体15
の振動が減衰するまであたかも交流のように電流が流れ
る。電流の大きさはコンデンサの電荷量変化に比例し、
他の条件が変わらなければ、それは加速度の大きさに比
例する。センサ部1aの歪、応力の発生は円板、周辺固
定、中心に集中荷重でほぼシミュレーションでき、電極
の配置は応力の+−が反転する部分を考慮して決める。
Consider a case where acceleration is applied to the piezoelectric physical quantity sensor of FIG. 1 in the X-axis direction. FIG. 7 is a front cross-sectional view showing a strain generation state of the sensor unit 1a when acceleration acts in the X-axis direction. When acceleration acts on the weight body 15, as shown in FIG.
As shown in, a force F in the X-axis direction is generated at the center of gravity G of the weight body 15. Due to this force F, a counterclockwise moment force in FIG. 7 is generated at the origin O, and the sensor unit 1a is distorted as shown in the figure. Due to this strain, the piezoelectric ceramic is deformed such that a certain portion is expanded and a certain portion is contracted, and accordingly, an internal stress is generated. Due to such changes, the electrodes 2,
The amount of electric charge of the capacitor composed of 3, 4, 5, 6, 7, 8, 9 and the electrode 14 changes. At the moment when the charge amount of the capacitor changes, a current flows through the capacitor and the weight 15
The current flows as if it were an alternating current until the vibration of is attenuated. The magnitude of the current is proportional to the change in the charge of the capacitor,
Unless other conditions change, it is proportional to the magnitude of the acceleration. The generation of strain and stress in the sensor unit 1a can be almost simulated by a circular plate, peripheral fixing, and concentrated load at the center, and the arrangement of electrodes is determined in consideration of the part where the stress + and- are reversed.

【0012】電極2と3には大きさが同じで方向が逆の
減少が発生するはずであるが、分極の方向を逆にしてあ
れば同じ方向に電流が流れるので、お互いの電極を接続
しておくと2倍電極面積でも同じ電流が流れることにな
る。検出感度の変化は無いが、周波数特性が改善され
る。接続電極10はそのためのものである。電極4、5
によるコンデンサ部にも歪が発生するが、X軸に直交す
るY軸に線対称に電極が形成されているので相殺されて
電流は流れない。Y軸方向に加速度が作用した場合も同
様に検出できる。XY平面に作用した加速度はそれぞれ
の出力の合成で加速度の大きさと方向が検出測定できる
ことになる。
The electrodes 2 and 3 should have the same size and opposite directions, but if the polarization directions are reversed, currents will flow in the same direction, so connect the electrodes to each other. If so, the same current will flow even with the double electrode area. Although the detection sensitivity does not change, the frequency characteristic is improved. The connection electrode 10 is therefor. Electrodes 4, 5
Distortion is also generated in the capacitor portion due to, but since the electrodes are formed in line symmetry with respect to the Y axis which is orthogonal to the X axis, they are offset and no current flows. The same can be detected when acceleration acts in the Y-axis direction. The acceleration acting on the XY plane can detect and measure the magnitude and direction of the acceleration by combining the respective outputs.

【0013】XY平面に直交するZ軸を定義して、Z軸
方向に加速度が作用した場合を考える。図8はZ軸方向
に加速度が作用したときのセンサ部1aの歪み発生状態
を示す正面断面図である。検出理論は前述と同じであ
り、電極6、7、8、9は接続電極13で接続されてい
る(電極6、7、8、9部のセラミックスは同じ方位に
分極されている)。加速度の方向が逆になると検出信号
が逆になるのは容易に理解できる。XY平面に平行な加
速度の場合は、点対称である4つの電極部のコンデンサ
の歪は相殺されて出力は無くなる。
Let us consider a case where the Z axis orthogonal to the XY plane is defined and acceleration acts in the Z axis direction. FIG. 8 is a front cross-sectional view showing a state in which the sensor unit 1a is distorted when acceleration acts in the Z-axis direction. The detection theory is the same as that described above, and the electrodes 6, 7, 8, 9 are connected by the connection electrode 13 (the ceramics of the electrodes 6, 7, 8, 9 are polarized in the same direction). It can be easily understood that the detection signal is reversed when the acceleration direction is reversed. In the case of acceleration parallel to the XY plane, the distortion of the capacitors of the four electrode portions, which are point-symmetrical, are canceled and the output disappears.

【0014】X軸、Y軸、Z軸方向の加速度を検出して
合成することにより、加速度の方向と大きさが測定でき
ることになる。
By detecting and synthesizing the accelerations in the X-axis, Y-axis and Z-axis directions, the direction and magnitude of the acceleration can be measured.

【0015】[0015]

【発明の効果】本発明は前記のような構成にすることで
次のような効果が生じる。
According to the present invention, the following effects can be obtained by employing the above-described structure.

【0016】センサ部を圧電セラミックスで形成し直接
電極を形成したので構造が簡単になり、安価に製造でき
る。
Since the sensor portion is made of piezoelectric ceramic and the electrodes are directly formed, the structure is simple and the manufacturing cost is low.

【0017】分極後の電極接続をセンサ部上でスクリー
ン印刷、蒸着、スパッタリング等で行ったので、センサ
部と外部端子または駆動回路との接続が少なくてすむ。
Since electrode connection after polarization is performed on the sensor section by screen printing, vapor deposition, sputtering, etc., the number of connections between the sensor section and external terminals or drive circuits can be reduced.

【0018】パターンの切断を電極形成時のマスクで行
ったので、マスクの補強ができ、また電極形成回数を1
回にすることができた。
Since the pattern is cut with the mask used for forming the electrodes, the mask can be reinforced and the number of times the electrodes are formed is 1
Could be times.

【0019】パターン切断部の接続を導電ペーストで行
うことにより特別な装置を必要とせずに電極接続ができ
た。
By connecting the pattern cut portion with the conductive paste, the electrode connection can be made without requiring a special device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による圧電型物理量センサの要部の斜視
図。
FIG. 1 is a perspective view of a main part of a piezoelectric physical quantity sensor according to the present invention.

【図2】本発明による圧電型物理量センサの正面断面
図。
FIG. 2 is a front sectional view of a piezoelectric type physical quantity sensor according to the present invention.

【図3】本発明による圧電型物理量センサの上面図。FIG. 3 is a top view of a piezoelectric physical quantity sensor according to the present invention.

【図4】第1回電極形成のマスク形状を示す平面図。FIG. 4 is a plan view showing a mask shape for first electrode formation.

【図5】第2回電極形成のマスク形状を示す平面図。FIG. 5 is a plan view showing a mask shape for second electrode formation.

【図6】マスク形状を示す平面図。FIG. 6 is a plan view showing a mask shape.

【図7】X軸方向に加速度が作用したときのセンサ部の
歪み発生状態を示す正面断面図。
FIG. 7 is a front cross-sectional view showing a strain generation state of the sensor unit when acceleration is applied in the X-axis direction.

【図8】Z軸方向に加速度が作用したときのセンサ部の
歪み発生状態を示す正面断面図。
FIG. 8 is a front cross-sectional view showing a strain generation state of the sensor unit when acceleration is applied in the Z-axis direction.

【符号の説明】[Explanation of symbols]

1 センサ 1a センサ部 1b センサ筐体 2 検出用電極 3 検出用電極 4 検出用電極 5 検出用電極 6 検出用電極 7 検出用電極 8 検出用電極 9 検出用電極 10 接続用電極 11 接続用電極 12 引出用電極 13 接続用電極 14 電極 15 重錘体 16 端子電極 17 端子電極 18 端子電極 DESCRIPTION OF SYMBOLS 1 sensor 1a sensor part 1b sensor housing 2 detection electrode 3 detection electrode 4 detection electrode 5 detection electrode 6 detection electrode 7 detection electrode 8 detection electrode 9 detection electrode 10 connection electrode 11 connection electrode 12 Lead-out electrode 13 Connection electrode 14 Electrode 15 Weight body 16 Terminal electrode 17 Terminal electrode 18 Terminal electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】板状の圧電セラミックス素子と、この圧電
セラミックス素子の上面に形成した上部電極と、この圧
電セラミックス素子の下面に形成された下部電極とによ
って構成されるセンサ部の、各電極により圧電セラミッ
クス素子を所望方位に分極処理した後必要に応じて各電
極を接続したことを特徴とする圧電型物理量センサ。
1. A sensor unit comprising a plate-shaped piezoelectric ceramic element, an upper electrode formed on the upper surface of the piezoelectric ceramic element, and a lower electrode formed on the lower surface of the piezoelectric ceramic element. A piezoelectric type physical quantity sensor characterized in that each electrode is connected as needed after polarization processing of a piezoelectric ceramic element in a desired direction.
【請求項2】圧電セラミックス素子の片面内の一点に原
点を定義し、この原点を通りかつ圧電セラミックス素子
面に平行な方向にX軸を、原点においてX軸に直交しか
つ圧電セラミックス素子面に平行な方向にY軸を定義
し、X軸の正の側に1つの電極を、負の側に1つの電極
を配置し、Y軸の正の側に1つの電極を、負の側に1つ
の電極を配置し、前記圧電セラミックス素子の反対面に
前記電極群と対向する電極を配置してコンデンサを形成
しセンサ部とし、センサ部の外周をセンサ筐体に固定
し、前記原点に対向する電極を対称形状とし、お互いに
異極に分極処理後、同軸上の電極を圧電セラミックス上
で接続し、外部から作用する物理量に基づいて発生した
力を、前記原点に伝達する機能を有する作用体を形成
し、前記作用体に発生した力による圧電セラミックスの
電荷量変化を前記電極群により検出することを特徴とす
る圧電型物理量センサ。
2. An origin is defined at one point on one surface of the piezoelectric ceramic element, and the X axis is in a direction passing through the origin and parallel to the surface of the piezoelectric ceramic element. The Y axis is defined in a parallel direction, one electrode is arranged on the positive side of the X axis, one electrode is arranged on the negative side, and one electrode is arranged on the positive side of the Y axis and one is arranged on the negative side. Two electrodes are arranged, electrodes facing the electrode group are arranged on the opposite surface of the piezoelectric ceramics element to form a capacitor, and the sensor part is formed, and the outer periphery of the sensor part is fixed to the sensor housing and faces the origin. An actuator having a function of transmitting the force generated based on the physical quantity acting from the outside to the origin by connecting the electrodes on the piezoelectric ceramics after the electrodes are symmetrically polarized and polarized to different polarities. Forming in the acting body Piezoelectric physical quantity sensor and detecting a change in the charge amount of the piezoelectric ceramic by the force by the electrode group.
【請求項3】圧電セラミックス素子の片面内の一点に原
点を定義し、この原点を通りかつ圧電セラミックス素子
面に平行な方向にX軸を、原点においてX軸に直交しか
つ圧電セラミックス素子面に平行な方向にY軸を定義
し、X軸の正の側に2つの電極を、負の側に2つの電極
を同心円状に配置し、Y軸の正の側に2つの電極を、負
の側に2つの電極を同心円状に配置し、前記圧電セラミ
ックス素子の反対面に前記電極群と対向する電極を配置
してコンデンサを形成しセンサ部とし、センサ部の外周
をセンサ筐体に固定し、前記原点に対向する電極を対称
形状とし、お互いに異極に分極処理後、内側の電極を圧
電セラミックス上で接続し、外側の電極で同軸上の電極
を圧電セラミックス上で接続し、外部から作用する物理
量に基づいて発生した力を、前記原点に伝達する機能を
有する作用体を形成し、前記作用体に発生した力による
圧電セラミックスの電荷量変化を前記電極群により検出
することを特徴とする圧電型物理量センサ。
3. An origin is defined at a point on one surface of the piezoelectric ceramic element, and the X axis is in a direction passing through this origin and parallel to the surface of the piezoelectric ceramic element. The Y axis is defined in a parallel direction, two electrodes are arranged concentrically on the positive side of the X axis, two electrodes are arranged concentrically on the negative side, and two electrodes are arranged on the positive side of the Y axis and 2 electrodes are concentrically arranged on the side, the electrodes facing the electrode group are arranged on the opposite surface of the piezoelectric ceramic element to form a capacitor to form a sensor portion, and the outer periphery of the sensor portion is fixed to the sensor housing. , The electrodes facing the origin are made symmetrical, and after polarization treatment with different polarities from each other, the inner electrodes are connected on the piezoelectric ceramics, the outer electrodes connect the coaxial electrodes on the piezoelectric ceramics, and It is generated based on the physical quantity that acts Force, said forming a working body having a function to transmit to the origin, piezoelectric physical quantity sensor, characterized in that a change in the charge amount of the piezoelectric ceramic by the force generated in the working body is detected by the electrode group.
【請求項4】分極後の電極接続が印刷によることを特徴
とする請求項1、2または3記載の圧電型物理量セン
サ。
4. The piezoelectric type physical quantity sensor according to claim 1, wherein the electrode connection after polarization is made by printing.
【請求項5】分極後の電極接続が蒸着またはスパッタリ
ングによることを特徴とする請求項1、2または3記載
の圧電物理量センサ。
5. The piezoelectric physical quantity sensor according to claim 1, wherein the electrode connection after polarization is vapor deposition or sputtering.
【請求項6】分極後接続される電極は細い接続パターン
で接続されるが、該接続パターンの一部が切断されてお
り、該切断部は蒸着またはスパッタリングによる電極形
成時のマスクによる切断であることを特徴とする請求項
1、2または3記載の圧電型物理量センサ。
6. The electrodes to be connected after polarization are connected by a thin connection pattern, but a part of the connection pattern is cut, and the cut portion is cut by a mask during electrode formation by vapor deposition or sputtering. The piezoelectric type physical quantity sensor according to claim 1, 2, or 3.
【請求項7】切断部の接続を導電ペースト塗布で行うこ
とを特徴とする請求項6記載の圧電型物理量センサ。
7. The piezoelectric type physical quantity sensor according to claim 6, wherein the connection of the cut portion is performed by applying a conductive paste.
【請求項8】物理量が加速度であることを特徴とする請
求項2または3記載の圧電型物理量センサ。
8. The piezoelectric type physical quantity sensor according to claim 2, wherein the physical quantity is acceleration.
JP7352955A 1995-12-28 1995-12-28 Piezoelectric type physical quantity sensor Pending JPH09184774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352955A JPH09184774A (en) 1995-12-28 1995-12-28 Piezoelectric type physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352955A JPH09184774A (en) 1995-12-28 1995-12-28 Piezoelectric type physical quantity sensor

Publications (1)

Publication Number Publication Date
JPH09184774A true JPH09184774A (en) 1997-07-15

Family

ID=18427603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352955A Pending JPH09184774A (en) 1995-12-28 1995-12-28 Piezoelectric type physical quantity sensor

Country Status (1)

Country Link
JP (1) JPH09184774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508127B1 (en) 1999-04-02 2003-01-21 Ngk Insulators, Ltd. Acceleration sensor element, acceleration sensor, and method of manufacturing the same
US6546800B1 (en) 1999-04-02 2003-04-15 Ngk Insulators, Ltd. Acceleration sensor element, acceleration sensor, and method of manufacturing the same
KR100388375B1 (en) * 2001-02-12 2003-06-25 장동영 Metalized cylindrical capacitive sensor for measuring an orbit of the machine tool spindle and method of manufacturing the same
JPWO2019078144A1 (en) * 2017-10-20 2020-02-27 株式会社村田製作所 Press detection sensor and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508127B1 (en) 1999-04-02 2003-01-21 Ngk Insulators, Ltd. Acceleration sensor element, acceleration sensor, and method of manufacturing the same
US6546800B1 (en) 1999-04-02 2003-04-15 Ngk Insulators, Ltd. Acceleration sensor element, acceleration sensor, and method of manufacturing the same
KR100388375B1 (en) * 2001-02-12 2003-06-25 장동영 Metalized cylindrical capacitive sensor for measuring an orbit of the machine tool spindle and method of manufacturing the same
JPWO2019078144A1 (en) * 2017-10-20 2020-02-27 株式会社村田製作所 Press detection sensor and electronic equipment

Similar Documents

Publication Publication Date Title
US7353707B2 (en) Acceleration sensor
CN111721971B (en) High-sensitivity MEMS resonant acceleration sensor
US20070000323A1 (en) Method of manufacturing a capacitive acceleration sensor, and a capacitive acceleration sensor
WO2017000501A1 (en) Mems pressure sensing element
JPH04252961A (en) Angular acceleration sensor
JPH04143628A (en) Capacitance type pressure sensor
JPH1151967A (en) Multi-axis acceleration sensor and its manufacture
US7194906B2 (en) Acceleration sensor having resonators with reduced height
US6786095B2 (en) Acceleration sensor
JPH09184774A (en) Piezoelectric type physical quantity sensor
CN108761128B (en) Piezoelectric vibration excitation self-diagnosis MEMS accelerometer core and accelerometer
CN207585759U (en) Piezoelectric acceleration sensor
US10816568B2 (en) Closed loop accelerometer
JP4394212B2 (en) Acceleration sensor
CN208766198U (en) Piezoelectric vibration motivates self diagnosis mems accelerometer watch core and accelerometer
US7398694B2 (en) Pressure sensor and method for manufacturing pressure sensor
JPH11271351A (en) Piezoelectric detecting element
JP2000275126A (en) Force sensor circuit
JP5333354B2 (en) Mechanical quantity sensor
JP3246975B2 (en) Piezoelectric vibration sensor
JPH0815004A (en) Shearing type piezo-electric vibration sensor and manufacture thereof
JP2014157063A (en) Composite sensor element
JPH0769347B2 (en) Piezoelectric acceleration sensor
CN117054687A (en) Single-fulcrum monolithic integrated triaxial capacitive accelerometer chip
JPH0749354A (en) Piezoelectric vibration sensor