JPH0747803B2 - Method for manufacturing aluminum alloy hard plate with low ear rate - Google Patents

Method for manufacturing aluminum alloy hard plate with low ear rate

Info

Publication number
JPH0747803B2
JPH0747803B2 JP5689392A JP5689392A JPH0747803B2 JP H0747803 B2 JPH0747803 B2 JP H0747803B2 JP 5689392 A JP5689392 A JP 5689392A JP 5689392 A JP5689392 A JP 5689392A JP H0747803 B2 JPH0747803 B2 JP H0747803B2
Authority
JP
Japan
Prior art keywords
rate
rolling
cold rolling
processing
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5689392A
Other languages
Japanese (ja)
Other versions
JPH05222497A (en
Inventor
伸二 照田
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP5689392A priority Critical patent/JPH0747803B2/en
Publication of JPH05222497A publication Critical patent/JPH05222497A/en
Publication of JPH0747803B2 publication Critical patent/JPH0747803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主として2ピースア
ルミニウム缶の缶胴材、すなわちDI缶胴材として使用
される成形加工用アルミニウム合金の硬質板の製造方法
に関するものであり、特に深絞り耳率が低く、焼付塗装
後の強度が高く、かつ成形性に優れたアルミニウム合金
硬質板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hard body of a can body of a two-piece aluminum can, that is, a hard plate of an aluminum alloy for forming, which is used as a body of a DI can. The present invention relates to a method for producing an aluminum alloy hard plate having a low rate, a high strength after baking coating, and an excellent formability.

【0002】[0002]

【従来の技術】一般にDI缶胴材には、DI加工時の深
絞り性およびしごき性が要求されることはもちろん、D
I加工および焼付塗装を行なった後の成形性、すなわち
ネッキング加工性やフランジング加工性なとにも優れて
いることが要求される。このようなDI缶胴材として
は、一般にはAl−Mn−Mg系合金であるJIS 3
004合金のH19材やH39材が使用されている。一
方最近ではDI缶の薄肉化の要求に伴ない、DI缶胴材
としても、より高強度化が望まれるようになっている
が、従来の3004合金缶胴材でも焼付塗装後の耐力で
270N/mm2 以上の強度が得られるようになってい
る。
2. Description of the Related Art In general, a body of a DI can is required to have deep drawability and ironing property during DI processing.
It is required to be excellent in formability after I processing and baking coating, that is, necking workability and flanging workability. As such a DI can body, JIS 3 which is generally an Al-Mn-Mg alloy is used.
The 004 alloy H19 material and H39 material are used. On the other hand, recently, with the demand for thinner DI cans, higher strength is also required for DI can body materials, but even conventional 3004 alloy can body materials have a proof stress of 270N after baking. / Mm 2 or more strength is obtained.

【0003】[0003]

【発明が解決しようとする課題】DI缶の缶胴の薄肉化
にあたっては、缶胴材が単に高強度を有するばかりでな
く、DI加工時の成形性すなわち深絞り性およびしごき
性がより優れていることが要求され、さらにはDI加工
・焼付塗装後の成形性すなわちネッキング加工性やフラ
ンジング加工性についても、より優れていることが望ま
れる。前述のように従来の3004合金缶胴材でも、薄
肉化のために必要な強度はある程度確保されているが、
成形性の点では未だ不充分であった。
In thinning the can body of a DI can, not only the body of the can has a high strength, but also the moldability during DI processing, that is, the deep drawability and the ironing property are more excellent. In addition, it is desired that the moldability after DI processing / baking coating, that is, the necking workability and flanging workability be further excellent. As described above, even the conventional 3004 alloy can body has a certain level of strength required for thinning,
In terms of moldability, it was still insufficient.

【0004】すなわち、缶胴材の薄肉化に伴なって、深
絞り時のボディにシワが発生しやすくなるとともに、し
ごき加工によってゴーリングが発生しやすくなり、さら
にDI加工後の側壁が薄くなることに起因して、DI加
工・焼付塗装後のネッキング加工時にネック部にシワが
発生しやすくなるとともに、フランジング加工時に割れ
が発生しやすくなる問題がある。
That is, as the body of the can becomes thinner, wrinkles are more likely to occur on the body during deep drawing, and galling is more likely to occur due to ironing, and the side wall after DI processing becomes thinner. Due to the above, there is a problem that wrinkles are likely to occur on the neck portion during necking processing after DI processing / baking coating, and cracks are likely to occur during flanging processing.

【0005】そのほか、一般にDI加工後のトリミング
量を減少してコストダウンを図るためには、深絞り時の
耳の発生も少ないことが望まれるが、この点でも従来の
3004合金缶胴材は不充分であった。
In addition, generally, in order to reduce the trimming amount after DI processing to reduce the cost, it is desired that the occurrence of ears during deep drawing is small, and in this respect as well, the conventional 3004 alloy can body material It was not enough.

【0006】この発明は以上の事情を背景としてなされ
たもので、薄肉化を図った場合でも、DI加工時の成形
性と、DI加工・焼付塗装後の成形性が優れ、しかも深
絞りにおける耳率が低く、かつ高強度を有している、D
I缶胴材に最適な成形用アルミニウム合金硬質板を得る
方法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and is excellent in moldability during DI processing and after DI processing / baking coating even when the wall thickness is reduced, and the ear in deep drawing is excellent. Low rate and high strength, D
It is an object of the present invention to provide a method for obtaining an aluminum alloy hard plate for forming that is most suitable for I can body materials.

【0007】[0007]

【課題を解決するための手段】前述のような課題を解決
するべく本発明者等が種々実験・検討を重ねた結果、次
のような新規な知見を得た。
[Means for Solving the Problems] As a result of various experiments and studies conducted by the present inventors to solve the above problems, the following new findings were obtained.

【0008】すなわち、先ず薄肉材のDI加工・焼付塗
装後の成形性、特にフランジング加工時の割れに関して
は、鋳造法として冷却速度の速い方法を適用することが
有利であることを見出した。具体的には、DI加工後の
側壁が100μm程度に薄肉化された場合、従来から缶
胴材として使用されている3004合金を一般的なDC
鋳造法で鋳造すれば、粗大晶出物としてその径が10μ
mを越えるようなものが生じて、側壁部の厚みに対し粗
大晶出物が10%以上を占めるようになり、このような
場合にはその粗大晶出物が従来の厚肉材の場合よりもフ
ランジ成形時の割れの起点となりやすくなってしまう。
これに対し連続鋳造圧延法(薄板連続鋳造法)の如く、
冷却速度の速い鋳造法を適用することによって、晶出物
サイズを微細化して、すべての晶出物サイズを10μm
以下とし、かつさらにその平均粒径を4μm以下とする
ことによって、晶出物がフランジング加工時の割れ発生
の起点となることを防止し得ることを見出した。
That is, first, it was found that it is advantageous to apply a method having a high cooling rate as a casting method with respect to the formability of a thin material after DI processing / baking coating, especially cracking during flanging processing. Specifically, when the side wall after DI processing is thinned to about 100 μm, the 3004 alloy conventionally used as a can body material is generally used as a DC
If cast by the casting method, the diameter is 10μ as coarse crystallized substance.
When the thickness exceeds m, the coarse crystallized substance occupies 10% or more of the thickness of the side wall portion. In such a case, the coarse crystallized substance is larger than that of the conventional thick-walled material. Also tends to become the starting point of cracks during flange forming.
On the other hand, as in the continuous casting and rolling method (thin plate continuous casting method),
By applying a casting method with a high cooling rate, the crystallized material size is refined, and all crystallized material sizes are 10 μm.
It has been found that the crystallized substance can be prevented from becoming a starting point of crack generation during flanging by setting the average grain size to be not more than 4 μm.

【0009】また鋳造後の圧延板に対して、高温長時間
(580〜620℃、6時間以上)の熱処理を施すこと
によって、DI加工時のしごき性を向上させるととも
に、深絞り時のシワの発生やDI加工・焼付塗装後のネ
ッキング加工時のシワの発生を少なくし得ることを見出
した。具体的には、前述のように冷却速度の速い鋳造法
を適用した鋳造を行なった後の圧延板に対して、580
〜620℃での6時間以上の均熱処理を施すことによっ
て、晶出物の形状を球状化させるとともに、粗大化(1
μm以上増径)させて、DI加工時におけるしごき性を
向上させ得ることを見出した。一方、0.5μm以下の
微細析出物の量が多ければ、成形時における転位の動き
がその微細析出物によりピンニングされて、強度は若干
向上するものの、成形性を阻害し、成形時のシワの発生
を招くおそれがある。これに対し前述のような均熱処理
を行なうことによって、0.5μm以下の微細析出物の
量も少なくなって、最終の成形用板の状態で200個/
μm2 以下となり、成形時における材料の流れがスムー
ズとなり、成形時のシワの発生も少なくなることを見出
した。
Further, by subjecting the rolled plate after casting to a heat treatment at a high temperature for a long time (580 to 620 ° C., 6 hours or more), the ironing property during DI processing is improved and wrinkles during deep drawing are formed. It has been found that the occurrence of wrinkles and the occurrence of wrinkles during necking processing after DI processing and baking coating can be reduced. Specifically, for the rolled plate after casting using the casting method with a high cooling rate as described above, 580
By subjecting the soaking treatment at 620 ° C. for 6 hours or more, the crystallized product is made spherical and coarsened (1
It was found that the ironing property during DI processing can be improved by increasing the diameter (μm or more). On the other hand, if the amount of fine precipitates of 0.5 μm or less is large, the movement of dislocations at the time of molding is pinned by the fine precipitates, and the strength is slightly improved, but the formability is impaired and wrinkles during molding are reduced. It may lead to the occurrence. On the other hand, by performing the soaking treatment as described above, the amount of fine precipitates of 0.5 μm or less is also reduced, and 200 /
It has been found that the particle size becomes less than μm 2, the flow of material during molding becomes smooth, and the occurrence of wrinkles during molding is reduced.

【0010】さらに、鋳造後に30%以上の冷間圧延を
施してから上述のような均熱処理を行なうことが、前述
のような適切な晶出物の分散状態を容易に得ることが可
能となると同時に、深絞り耳を小さくすることに有効で
あることを見出した。すなわち、鋳造後、30%以上の
冷間圧延を行なってから前述の均熱処理を行なうことに
よって、晶出物の分散が最も適切な状態、すなわち1〜
3μmのものが2000個/0.2mm2 の状態となり、
しかもこのように30%以上の冷間圧延後に均熱処理を
行なうことによって、均熱処理での再結晶が均一に行な
われて、低耳となる結晶方位成分(すなわちキューブ方
位)がその後の工程で発生しやすくなり、深絞りでの耳
率を小さくすることが可能となることを見出した。
Furthermore, by performing cold rolling of 30% or more after casting and then performing soaking treatment as described above, it becomes possible to easily obtain an appropriate dispersed state of crystallized substances as described above. At the same time, it was found to be effective in reducing the deep-drawing ear. That is, after the casting, cold rolling of 30% or more is performed, and then the soaking treatment is performed, so that the crystallized product is most appropriately dispersed, that is, 1 to
The size of 3 μm is 2000 pieces / 0.2 mm 2 ,
Moreover, by performing the soaking after the cold rolling of 30% or more in this way, the recrystallization in the soaking is uniformly performed, and a low crystal orientation component (that is, a cube orientation) is generated in the subsequent process. It has been found that it becomes easier to do so and the ear ratio at deep drawing can be reduced.

【0011】そしてまた、以上のような製法プロセスに
よる効果を最も有効に発揮させ得るような適切な成分組
成を見出し、この発明をなすに至ったのである。
Further, the inventors have found an appropriate component composition that can most effectively bring out the effects of the above manufacturing process, and have completed the present invention.

【0012】具体的には、この発明の成形用アルミニウ
ム合金硬質板の製造方法は、Mg0.5〜2.0wt%、
Mn0.5〜1.8wt%、Fe0.1〜1.8wt%、S
i0.05〜0.5wt%を必須合金成分として含み、さ
らに必要に応じてCu0.5wt%以下、Zn0.5wt%
以下、Cr0.3wt%以下のうちの1種または2種以上
を含有し、残部がAlおよび不可避的不純物よりなる合
金を、冷却速度が50℃/sec 以上となるように鋳造
し、その後30%以上の圧延率で冷間圧延した後、58
0〜620℃の範囲内の温度で6時間以上の均熱処理を
施し、さらに30%以上の圧延率で冷間圧延した後、1
℃/sec 以上の昇温速度で380〜600℃の範囲内の
温度に加熱して保持なしもしくは10分以内保持しさら
に1℃/sec 以上の冷却速度で冷却する中間焼鈍を施
し、次いで40%以上の圧延率で冷間圧延を施すことを
特徴とするものである。
Specifically, the manufacturing method of the aluminum alloy hard plate for molding according to the present invention is such that Mg 0.5 to 2.0 wt%,
Mn 0.5-1.8 wt%, Fe 0.1-1.8 wt%, S
i 0.05 to 0.5 wt% as an essential alloying component, and if necessary, Cu 0.5 wt% or less, Zn 0.5 wt%
Hereinafter, an alloy containing one or more of 0.3 wt% or less of Cr and the balance of Al and unavoidable impurities is cast at a cooling rate of 50 ° C./sec or more, and then 30%. After cold rolling at the above rolling rate, 58
After soaking for 6 hours or more at a temperature in the range of 0 to 620 ° C., and further cold rolling at a rolling rate of 30% or more, 1
Intermediate annealing is performed by heating to a temperature in the range of 380 to 600 ° C at a temperature rising rate of ℃ / sec or more without holding or holding for 10 minutes or more, and further cooling at a cooling rate of 1 ° C / sec or more, and then 40%. It is characterized in that cold rolling is performed at the above rolling ratio.

【0013】[0013]

【作用】先ずこの発明の製法において用いられるアルミ
ニウム合金の成分組成の限定理由を説明する。
First, the reasons for limiting the component composition of the aluminum alloy used in the manufacturing method of the present invention will be explained.

【0014】Mg:Mgの添加は、Siとの共存による
MgSiの時効析出あるいはCuとの共存によるAl
−Cu−Mgの時効析出による強度向上が期待できると
ともに、Mgそれ自体の固溶による強度向上も期待で
き、缶胴材として必要な強度を得るに不可欠の元素であ
る。またMgは、冷間圧延時の転位の増殖作用があるか
ら、再結晶核を増加させて再結晶粒を微細化させるにも
有効である。但しMg量が0.5wt%未満では上述の効
果が少なく、一方2.0wt%を越えれば、高強度は容易
に得られるものの、しごき加工時の変形抵抗が大きくな
って成形後の缶の外観を著しく悪化させるから、Mgは
0.5〜2.0wt%の範囲内とした。
Mg: Mg is added by aging precipitation of Mg 2 Si by coexistence with Si or Al by coexistence with Cu.
In addition to being expected to improve strength by aging precipitation of —Cu—Mg, it can be expected to improve strength by solid solution of Mg itself, and is an essential element for obtaining strength required for a can body material. Further, since Mg has a dislocation multiplication effect during cold rolling, it is also effective in increasing the number of recrystallization nuclei and refining recrystallized grains. However, if the amount of Mg is less than 0.5 wt%, the above effect is small, and if it exceeds 2.0 wt%, high strength can be easily obtained, but the deformation resistance during ironing becomes large, and the appearance of the can after forming becomes large. Therefore, the Mg content is set within the range of 0.5 to 2.0 wt%.

【0015】Mn:Mnは固溶によって強度向上に寄与
するが、この発明の場合はむしろFe,Siとの共存下
で生じる晶出化合物が重要である。すなわち、この発明
では冷却速度が速い鋳造法を適用しているが、この場合
1μm程度の微細な晶出物が多くなり、この微細晶出物
は均熱処理により球状化するとともに粗大化(1μm以
上増径)することによって、DI加工のしごき成形時に
おけるゴーリング性を良好とするに寄与する。すなわち
しごき成形においては、潤滑能が不足する場合にゴーリ
ングと称される擦り疵や焼付き等の外観不良を招くこと
があるが、前述のような晶出物によって固体潤滑的な効
果がもたらされ、ゴーリングの発生が少なくなる効果
(ゴーリング性向上)の効果がもたらされる。一般には
2μm以上の晶出物がゴーリング性向上に有効であると
言われているが、この発明の場合、1〜3μmの球状の
晶出物粒子が2000個/0.2mm2 以上あればゴーリ
ング性向上に有効となる。またこのような微細晶出物
は、再結晶組成の微細化や粒子分散硬化による強度向上
にも寄与する。このような晶出化合物の量を確保するた
めに必要なMnの添加量は、Fe量との兼ね合いで決定
するが、Mnが0.5wt%未満では充分な量の晶出化合
物を確保することが困難となり、一方Mn量が1.8wt
%を越えれば巨大晶出物が発生して成形性を害するおそ
れがあるから、Mnの添加量は0.5〜1.8wt%の範
囲内とした。なおMn量は、Fe量との合計量で1〜2
wt%の範囲内とすることが好ましい。
Mn: Mn contributes to the strength improvement by solid solution, but in the case of the present invention, a crystallized compound formed in the presence of Fe and Si is more important. That is, in the present invention, a casting method with a high cooling rate is applied, but in this case, fine crystallized substances of about 1 μm are increased, and the fine crystallized substances are spheroidized and coarsened by soaking (1 μm or more). By increasing the diameter, it contributes to improving the goring property at the time of ironing for DI processing. That is, in ironing, when the lubrication ability is insufficient, it may lead to poor appearance such as scratches and seizures called galling, but the above-mentioned crystallized substances provide a solid lubricating effect. As a result, the effect of reducing the occurrence of goring (improving the goring property) is brought about. Although generally is 2μm or more crystallized substances are said to be effective in galling resistance improvement, in this invention, if crystallized substances spherical particles of 1~3μm is 2,000 /0.2Mm 2 more Goring It is effective in improving the sex. Further, such fine crystallized substances also contribute to the refinement of the recrystallized composition and the improvement of strength by particle dispersion hardening. The amount of Mn to be added to secure such an amount of crystallized compound is determined in consideration of the amount of Fe. However, if Mn is less than 0.5 wt%, a sufficient amount of crystallized compound should be secured. Becomes difficult, while the Mn content is 1.8 wt.
If it exceeds 0.1%, a huge crystallized substance may be generated and formability may be impaired, so the addition amount of Mn is set within the range of 0.5 to 1.8 wt%. The total amount of Mn and Fe is 1 to 2
It is preferably within the range of wt%.

【0016】Fe:FeはMnと同様に、Mn,Siと
の共存下で生じる晶出化合物が重要であって、その効果
もMnの場合と同様であり、またFeはMn系化合物の
晶出を促進する効果もあり、この発明で必要不可欠な元
素である。Fe添加量もMn量との兼ね合いで定まる
が、Fe量が0.1wt%未満ではFe添加による効果が
充分に得られず、一方1.8wt%を越えれば粗大晶出物
が発生して成形性を害するおそれがあるから、Fe量は
0.1〜1.8wt%の範囲内とした。
Fe: As with Mn, Fe is a crystallized compound that is produced in the presence of Mn and Si, and its effect is the same as in the case of Mn. Fe is a crystallized Mn-based compound. Is also an essential element in the present invention. The amount of Fe added is also determined in consideration of the amount of Mn, but if the amount of Fe is less than 0.1 wt%, the effect due to the addition of Fe cannot be sufficiently obtained, while if it exceeds 1.8 wt%, coarse crystallized substances are generated and molding is performed. Therefore, the Fe content is set to the range of 0.1 to 1.8 wt% because it may impair the property.

【0017】Si:SiはMgとの共存によるMg
iの析出による時効硬化や、Siそれ自体の固溶による
強度向上にも寄与するが、それよりもむしろFe系やM
n系の晶出物を生成させるに寄与し、適切な晶出物分布
を得るに必要な元素である。Si量が0.05wt%未満
ではその効果がなく、0.5wt%を越えればその効果も
飽和し、材料を硬くして成形性を害するから、Si量は
0.05〜0.5wt%の範囲内とした。
Si: Si is Mg 2 S by coexistence with Mg
It contributes to age hardening by precipitation of i and strength improvement by solid solution of Si itself, but rather, it is Fe system or M
It is an element that contributes to the formation of n-type crystallized substances and is necessary for obtaining an appropriate crystallized substance distribution. If the Si content is less than 0.05 wt%, the effect will not be obtained, and if it exceeds 0.5 wt%, the effect will be saturated and the material will be hardened and the formability will be impaired. Within the range.

【0018】以上の各成分のほか、基本的にはAlおよ
び不可避的不純物とすれば良いが、そのほか強度をより
一層向上させるために、0.5wt%以下のCu、0.5
wt%以下のZn、0.3wt%以下のCrのうちの1種ま
たは2種以上を含有していても良い。Cuの添加はAl
−Cu−Mg系の時効析出物による強度向上を、またZ
n,Crの添加はそれぞれ固溶による強度向上を期待す
ることができ、Cuが0.5wt%以下、Znが0.5wt
%以下、Crが0.3wt%以下であればこの発明の効果
を損なうことはない。
In addition to the above components, basically Al and unavoidable impurities may be used, but in order to further improve the strength, Cu of 0.5 wt% or less and 0.5 or less are added.
One or two or more of wt% or less Zn and 0.3 wt% or less Cr may be contained. Cu addition is Al
-Cu-Mg-based aging precipitates to improve strength,
The addition of n and Cr can be expected to improve the strength due to solid solution. Cu is 0.5 wt% or less and Zn is 0.5 wt%.
% Or less and Cr of 0.3 wt% or less does not impair the effects of the present invention.

【0019】なお通常のアルミニウム合金においては鋳
塊結晶粒微細化のために、Ti、あるいはTiおよびB
を微量添加することがあり、この発明の場合においても
微量のTi、あるいはTiおよびBを含有していても良
い。但し、Tiを添加する場合、0.01wt%未満では
Ti添加の効果が得られず、一方0.2wt%を越えれば
初晶TiAlが晶出して成形性を害するから、Tiは
0.01〜0.2wt%の範囲内とすることが好ましい。
またTiとともにBを添加する場合、Bが1ppm 未満で
はB添加の効果が得られず、一方Bが500ppm を越え
ればTiBの粗大粒子が混入して成形性を害するか
ら、Bは1〜500ppm の範囲内とすることが好まし
い。そのほか、鋳造時の溶湯酸化防止のためにBeを
0.02wt%以下の範囲で添加しても良い。
In general aluminum alloys, Ti or Ti and B are used for refining ingot crystal grains.
May be added in a trace amount, and also in the case of the present invention, a trace amount of Ti, or Ti and B may be contained. However, in the case of adding Ti, if less than 0.01 wt% the effect of Ti addition cannot be obtained, while if over 0.2 wt% primary TiAl 3 is crystallized and the formability is impaired. It is preferably in the range of 0.2 wt%.
When B is added together with Ti, if B is less than 1 ppm, the effect of B is not obtained. On the other hand, if B exceeds 500 ppm, coarse particles of TiB 2 are mixed and impair the formability. It is preferably within the range. In addition, Be may be added in the range of 0.02 wt% or less to prevent the oxidation of the molten metal during casting.

【0020】次にこの発明の製法における各プロセスの
限定理由を、その作用とともに説明する。
Next, the reasons for limiting each process in the manufacturing method of the present invention will be described together with their operation.

【0021】先ず前述のような成分組成の合金を常法に
従って溶製して、鋳造するが、この鋳造時においては、
連続鋳造圧延法(薄板連続鋳造法)の如く、急速冷却凝
固の鋳造法を用いて、50℃/sec 以上の冷却速度で鋳
造する。このように50℃/sec 以上の冷却速度で鋳造
することによって、1μm程度の微細な晶出化合物が得
られる。このように晶出物を微細にすることによって、
成形性が向上し、特にDI加工後のフランジ成形の際の
割れ発生を防止するに有効となる。なおこの鋳造時にお
いては、鋳造板厚を2〜20mmとすることが好ましい。
2mm未満では最終成品板厚までに鋳造組織を完全に破壊
することが困難となって、最終製品に悪影響を及ぼし、
一方20mmを越える厚い板を50℃/sec 以上の冷却速
度で鋳造することは実際上困難である。
First, an alloy having the above-described composition is melted and cast according to a conventional method. At the time of casting,
Casting is performed at a cooling rate of 50 ° C./sec or more by using a rapid cooling solidification casting method such as a continuous casting and rolling method (thin plate continuous casting method). By thus casting at a cooling rate of 50 ° C./sec or more, a fine crystallized compound of about 1 μm can be obtained. By refining the crystallized substances in this way,
The moldability is improved, and it is particularly effective in preventing the occurrence of cracks during flange forming after DI processing. At the time of casting, it is preferable that the thickness of the cast plate is 2 to 20 mm.
If it is less than 2 mm, it is difficult to completely destroy the cast structure by the thickness of the final product plate, which adversely affects the final product.
On the other hand, it is practically difficult to cast a thick plate exceeding 20 mm at a cooling rate of 50 ° C./sec or more.

【0022】鋳造後には、30%以上の圧延率で鋳造板
に対し冷間圧延を施し、続いて580〜620℃で6時
間以上の均熱処理を施す。ここで、鋳造後の圧延率が3
0%以上でなければ、均熱処理における再結晶が均一に
行なわれずに再結晶粒が粗大化し、最終製品に悪影響を
及ぼす。またこの発明では、580℃以上の均熱処理に
よって耳率を低くする成分のキューブ方位の再結晶粒が
優先成長し、それが均熱処理後の冷間圧延・中間焼鈍時
のキューブ方位の再結晶核となり、最終的に成形加工時
の耳率の低い製品を得ることが可能となるのであるが、
均熱処理の段階で鋳造組織が残存すればキューブ方位の
再結晶粒が生成されないため、その後の中間焼鈍時でも
キューブ方位の優先成長が認められなくなる。したがっ
てこのような意味からも均熱処理前に30%以上の冷間
圧延を行なっておく必要がある。
After casting, the cast plate is cold-rolled at a rolling rate of 30% or more, and then subjected to soaking at 580 to 620 ° C. for 6 hours or more. Here, the rolling ratio after casting is 3
If it is not more than 0%, the recrystallization in the soaking process is not performed uniformly and the recrystallized grains become coarse, which adversely affects the final product. Further, in the present invention, the cube-oriented recrystallized grains of the component that lowers the ear ratio by soaking at 580 ° C. or higher preferentially grows, and this is the recrystallization nuclei of the cube orientation during cold rolling / intermediate annealing after soaking. Finally, it is possible to obtain a product with a low ear rate during molding,
If the cast structure remains during the soaking process, recrystallized grains in the cube orientation will not be generated, and preferential growth in the cube orientation will not be recognized even in the subsequent intermediate annealing. Therefore, also from this point of view, it is necessary to perform cold rolling of 30% or more before soaking.

【0023】また上記の均熱処理に関し、最終板におい
て0.5μm以下の微細なAl−Mn系析出物が多数存
在すれば、それが転位のピンニングを招いて成形時の材
料の流れを阻害し、成形シワなどの成形不良を招くが、
580℃以上の高温で6時間以上の保持を行なうことに
よって、このようなAl−Mn系の微細な析出物を少な
くして、より適切には200個/μm2 以下とし、成形
時のシワ等の成形不良の発生を防止することができる。
またこの均熱処理は、晶出物を球状化および粗大化(1
μm程度、したがって平均径で2μm程度以上となるよ
うに粗大化)させて、DI加工におけるしごき性を向上
させ、ゴーリングの発生を防止するに寄与する。この効
果を充分に得るためには、1〜3μmの晶出物が200
0個/0.2mm2 以上であることが好ましい。なお均熱
処理の保持温度は高いことが好ましいが、620℃を越
えれば共晶融解が発生してしまう。また均熱処理の保持
時間は6時間以上でなければその効果が得られない。な
お均熱処理の保持時間の上限は特に定めないが、製造効
率などを考慮して決定すれば良い。
Regarding the above-mentioned soaking treatment, if many fine Al—Mn-based precipitates of 0.5 μm or less are present in the final plate, they cause dislocation pinning and hinder the material flow at the time of forming, It causes molding defects such as molding wrinkles,
By holding at a high temperature of 580 ° C. or higher for 6 hours or longer, such Al-Mn-based fine precipitates are reduced, and more appropriately, the number is 200 / μm 2 or less, and wrinkles during molding, etc. It is possible to prevent the occurrence of defective molding.
In addition, this soaking treatment makes the crystallized substances spherical and coarse (1
.mu.m, so that the average diameter is about 2 .mu.m or more), the ironing property in DI processing is improved and the occurrence of galling is prevented. In order to sufficiently obtain this effect, a crystallized substance of 1 to 3 μm is 200
It is preferably 0 / 0.2 mm 2 or more. The holding temperature of soaking is preferably high, but if it exceeds 620 ° C., eutectic melting will occur. Further, the effect is not obtained unless the holding time of soaking is 6 hours or more. The upper limit of the holding time of soaking is not particularly limited, but may be determined in consideration of manufacturing efficiency and the like.

【0024】均熱処理後、30%以上の圧延率で冷間圧
延を行なう。この冷間圧延は、次の中間焼鈍で均一に再
結晶させて再結晶粒を微細化させるために、30%以上
の圧延率が必要である。
After the soaking, cold rolling is performed at a rolling rate of 30% or more. This cold rolling requires a rolling rate of 30% or more in order to uniformly recrystallize and finely recrystallize grains in the next intermediate annealing.

【0025】冷間圧延後の中間焼鈍において、昇温速度
1℃/sec 以上の急速加熱によって380℃以上まで加
熱することにより、Mg,Si,Cu等の金属元素の固
溶が促進され、最終の焼付塗装処理もしくは最終焼鈍に
よって時効硬化が期待でき、強度向上に有利となる。ま
たこのように高い昇温速度で再結晶温度以上まで加熱す
ることにより、キューブ方位の再結晶粒の優先的生成、
成長が可能となり、耳率の低減に有効となる。ここで、
昇温速度が遅ければ、加熱中に析出する化合物により再
結晶の進行がピンニングされて、キューブ方位の再結晶
粒の優先成長が阻害され、結果的にランダムな方位の再
結晶組織となって、その後の冷間圧延を通じて45°耳
が高くなってしまう。なおこの中間焼鈍における保持時
間は長い方が固溶が進行して強度向上に有利となるが、
10分を越える保持を行なっても保持時間を長くした割
にはその効果の増大が少なく、また急速加熱・急速冷却
に適した現行の連続焼鈍炉では10分を越える保持は困
難となるから、保持時間の上限は10分とした。またこ
の中間焼鈍における加熱温度(到達温度)が600℃以
上となれば、局部的な共晶融解を招くおそれがあるか
ら、600℃以下とした。
In the intermediate annealing after cold rolling, heating to 380 ° C. or higher by rapid heating at a heating rate of 1 ° C./sec or higher accelerates solid solution of metallic elements such as Mg, Si, Cu, and the like. Age hardening can be expected by the baking coating treatment or final annealing, which is advantageous for strength improvement. In addition, by heating to a temperature above the recrystallization temperature at such a high temperature rising rate, preferential generation of recrystallized grains in the cube orientation,
It enables growth and is effective in reducing the ear rate. here,
If the temperature rising rate is slow, the progress of recrystallization is pinned by the compound that precipitates during heating, and the preferential growth of recrystallized grains in the cube orientation is hindered, resulting in a recrystallized structure in a random orientation. Through the subsequent cold rolling, the ears are raised by 45 °. The longer the holding time in this intermediate annealing is, the more solid solution proceeds, which is advantageous for strength improvement.
Even if the holding time is longer than 10 minutes, the effect does not increase in spite of the longer holding time, and it is difficult to hold for more than 10 minutes in the current continuous annealing furnace suitable for rapid heating / cooling. The upper limit of the holding time was 10 minutes. Further, if the heating temperature (achieved temperature) in this intermediate annealing is 600 ° C. or higher, local eutectic melting may occur, so the temperature was set to 600 ° C. or lower.

【0026】中間焼鈍後には最終の冷間圧延を行なって
缶胴材として必要な強度を得る。この最終の冷間圧延の
圧延率が40%未満では所要の強度が得られない。
After the intermediate annealing, final cold rolling is performed to obtain the strength required for the can body. If the rolling ratio of the final cold rolling is less than 40%, the required strength cannot be obtained.

【0027】最終冷間圧延の後には、必要に応じて時効
性を高めたり、あるいは焼なましたりする目的で最終焼
鈍を施しても良い。この場合の最終焼鈍としては、10
0〜250℃の温度で30分以上が望ましい。
After the final cold rolling, final annealing may be carried out for the purpose of enhancing the aging property or annealing if necessary. The final annealing in this case is 10
30 minutes or more is desirable at a temperature of 0 to 250 ° C.

【0028】なお均熱処理後、最終冷間圧延の前までの
間のいずれかの段階で、表面酸化物を除去するために表
面層除去処理を行なうことが、製品の外観や製造性の点
から好ましい。この表面層除去処理は、機械的に除去す
る方法や、苛性液などによりエッチングする化学的な方
法を適用することができる。
From the viewpoint of the appearance and the manufacturability of the product, it is necessary to perform the surface layer removal treatment to remove the surface oxide at any stage after the soaking treatment and before the final cold rolling. preferable. As the surface layer removal treatment, a mechanical removal method or a chemical method of etching with a caustic liquid or the like can be applied.

【0029】[0029]

【実施例】表1の合金符号Aの合金(従来の3004合
金)について、表2のプロセス番号No.1に示すよう
に、従来法としてDC鋳造し、さらに加熱、熱間圧延、
冷間圧延、中間焼鈍、最終冷間圧延の工程を経て、0.
28mm厚の缶胴材とした。また表1の合金符号Bの合金
について、表2のプロセス番号No.2〜No.6に示すよ
うに、連続鋳造圧延により板厚7mmの鋳造板とし、1次
冷間圧延、均熱処理、2次冷間圧延、中間焼鈍、最終冷
間圧延、最終焼鈍を経て0.28mm厚の缶胴材とした。
ここで、No.2〜No.6のうちの一部のプロセスでは、
1次冷間圧延もしくは均熱処理を省いた。なお表2にお
いて、No.1におけるDC鋳造は、冷却速度が約10℃
/sec であり、またNo.2〜No.6の連続鋳造圧延法で
は、冷却速度が約150℃/sec である。また表2中に
は示していないが、No.2〜No.6の連続鋳造圧延材を
用いたプロセスでは、2次冷間圧延の前に、60℃の1
0%苛性ソーダ液に45分浸漬してエッチングし、水洗
後デスマット処理、さらに水洗、乾燥を行なった。また
表2において、No.4の中間焼鈍のバッチ焼鈍(350
℃×2hr)は、昇温速度、冷却速度ともに約35℃/hr
である。さらに表2におけるNo.1〜No.3,No.5,
No.6の中間焼鈍の連続焼鈍(500℃×0sec )は、
昇温速度、冷却速度ともに約20℃/sec である。
EXAMPLE For the alloy of alloy code A in Table 1 (conventional 3004 alloy), the process number No. As shown in 1, the conventional method is DC casting, followed by heating, hot rolling,
After the steps of cold rolling, intermediate annealing, and final cold rolling, 0.
28mm thick can body material. For the alloy of alloy code B in Table 1, the process number No. 2 to No. As shown in Fig. 6, a cast plate having a plate thickness of 7 mm is formed by continuous casting and rolling, and then subjected to primary cold rolling, soaking, secondary cold rolling, intermediate annealing, final cold rolling, and final annealing to obtain a 0.28 mm thick plate. The can body.
Here, No. 2 to No. In some of the processes of 6,
The primary cold rolling or soaking was omitted. In Table 2, No. The DC casting in 1 has a cooling rate of about 10 ° C.
/ Sec, and No. 2 to No. In the continuous casting and rolling method of No. 6, the cooling rate is about 150 ° C./sec. Although not shown in Table 2, No. 2 to No. In the process using the continuous cast rolled material of No. 6, before the secondary cold rolling,
It was immersed in a 0% caustic soda solution for 45 minutes for etching, washed with water, desmutted, further washed with water and dried. In Table 2, No. Batch annealing of intermediate annealing of 4 (350
℃ × 2hr) is about 35 ℃ / hr for both heating rate and cooling rate
Is. Furthermore, No. in Table 2 1-No. 3, No. 5,
No. The continuous annealing (500 ° C x 0 sec) of 6th intermediate annealing is
Both the heating rate and the cooling rate are about 20 ° C./sec.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】以上のようにして得られた各缶胴材につい
て、ベーキング(焼付塗装に相当する加熱処理)を行な
わないままの状態、および200℃×20分のオイルバ
ス浸漬によるベーキングを行なった後の状態で、それぞ
れ引張試験を行なったので、その結果を表3に示す。ま
た各缶胴材について、深絞り耳率を調べるとともに、D
I加工時のしごき加工によるゴーリングの発生状況を調
べ、さらにDI加工後のネッキング成形時におけるネッ
ク部のシワ発生状況を調べ、さらにDI加工後のフラン
ジ加工時における口拡げ性を調べた。それらの結果を表
3に併せて示す。
Each of the can body materials obtained as described above was not baked (heat treatment equivalent to baking coating), and after baking in an oil bath at 200 ° C. for 20 minutes. The tensile test was conducted in each of the above states, and the results are shown in Table 3. For each can body, check the deep-draw ear ratio, and
The occurrence of goring due to ironing during I machining was examined, the occurrence of wrinkles at the neck portion during necking molding after DI machining was further investigated, and the mouth spreadability during flange machining after DI machining was examined. The results are also shown in Table 3.

【0033】なおここで深絞り耳率は、ブランク径58
mmとし、径が32mm、肩部曲率が4mmRのポンチを用
い、クリアランス30%の条件で深絞りを行なって、耳
率を調べた。またしごき加工におけるゴーリング発生評
価は、フランジ厚さ160μm、側壁105μmとなる
しごき率でしごき加工を行ない、現行缶胴材として用い
られている3004合金のDC鋳造材(表2のプロセス
番号No.1)のレベルを良好(○印)とし、やや不良を
△印、不良を×印とした。ここで、「やや不良(△
印)」の場合は、ゴーリングは生じたがDI成形自体は
数十缶程度可能である場合を、また「不良(×印)」の
場合は、ゴーリングにより数缶で缶切れが生じてしまっ
た場合をそれぞれ示す。さらにネッキング加工時シワ発
生評価は、口絞り率4%でネッキング加工を行ない、ネ
ック部にシワの発生の全くない状況を○印、若干のシワ
の発生があった状況を△印、全周にわたり数本のシワが
発生した状況を×印で評価した。さらにフランジ加工で
の口拡げ性評価については、図1に示すようにDI加工
後の缶胴1に対して角部の曲率半径Rが17mmのダイス
2を用いて口拡げを行ない、最大口拡げ量(半径増大
量)Pを調べ、そのPの値を表示した。なおネッキング
加工時のシワ発生評価およびフランジ加工での口拡げ性
評価は、いずれもDI加工後の缶胴について200℃×
20分のベーキングを行なってから測定、評価した。
Here, the deep-drawing ear ratio is the blank diameter 58.
Using a punch having a diameter of 32 mm and a shoulder curvature of 4 mmR, deep drawing was performed under the condition of a clearance of 30%, and the ear ratio was examined. Further, in the evaluation of the occurrence of goring in the ironing process, the ironing was performed at the ironing ratio of the flange thickness of 160 μm and the side wall of 105 μm, and the DC casting material of the 3004 alloy (process number No. 1 in Table 2) used as the current can body material. The level of () is good (○), a little bad is Δ, and a bad is X. Here, "somewhat bad (△
In the case of (marked), there was galling but DI molding was possible for several tens of cans, and in the case of "Bad (x mark)", galling caused the cans to run out in several cans. Each case is shown. Furthermore, the wrinkle generation during necking was evaluated by necking at a draw ratio of 4%, and the case where there was no wrinkle at the neck was marked with a circle, and the case where there was some wrinkle was marked with a mark, and the whole circumference was marked. The condition in which several wrinkles were generated was evaluated by the mark X. Further, as for the evaluation of the mouth widening in the flange processing, as shown in FIG. 1, the mouth widening is performed using the die 2 having the corner radius of curvature R of 17 mm with respect to the can body 1 after the DI processing, and the maximum mouth opening is performed. The amount (radius increase amount) P was examined and the value of P was displayed. The evaluation of wrinkles during necking and the spreadability evaluation during flange processing were both performed at 200 ° C on the can body after DI processing.
After baking for 20 minutes, it was measured and evaluated.

【0034】[0034]

【表3】 [Table 3]

【0035】以上のところにおいて、No.1の従来例
は、DC鋳造材を用いたものであるが、この場合は、D
I缶の側壁が薄いためにネッキング加工時のシワ感受性
が高まっており、また深絞り耳率は低いものの、強度
(YS)が若干低く、肌荒れが顕著であった。またNo.
2の比較例は、連続鋳造圧延材を用いてはいるが、均熱
処理を行なわなかったものであり、この場合はしごき加
工時のゴーリング性が悪く、またDI加工後の成形性に
も劣っていた。さらにNo.3の比較例は均熱処理を50
0℃の低温で行なったものであり、この場合には深絞り
耳率は向上するが、しごき性、DI加工後の各成形性の
いずれにも劣っていた。またNo.4の比較例は中間焼鈍
に徐熱、徐冷のバッチ焼鈍を適用したものであり、この
場合には深絞り耳率、強度ともに劣り、またDI加工後
の成形性も若干劣っていた。さらにNo.5の比較例は連
続鋳造圧延の後、冷間圧延を行なわずに直ちに均熱処理
を行なったものであり、この場合は深絞り耳率が劣って
いるが、その他の点は現行材と同等かそれ以上に優れて
いた。No.6の発明例は、全ての条件がこの発明の条件
範囲を満たしていたものであり、この場合は深絞り耳率
が優れるほか、全ての面において現行材と同等かそれ以
上に優れていた。
In the above, No. The conventional example of No. 1 uses a DC casting material, but in this case, D
Since the side wall of the I can was thin, wrinkle susceptibility during necking was increased, and although the deep drawing ear ratio was low, the strength (YS) was slightly low, and rough skin was remarkable. In addition, No.
In Comparative Example 2, the continuous cast rolled material was used, but soaking was not performed. In this case, the galling property during ironing was poor, and the formability after DI process was also poor. It was Furthermore, No. In the comparative example of 3, the soaking treatment is 50
It was carried out at a low temperature of 0 ° C. In this case, the deep drawing ear ratio was improved, but it was inferior to both the ironing property and each formability after DI processing. In addition, No. In Comparative Example No. 4, batch annealing of slow heating and slow cooling was applied to the intermediate annealing. In this case, the deep drawing earring ratio and strength were poor, and the formability after DI processing was also slightly poor. Furthermore, No. In the comparative example of No. 5, the soaking treatment was performed immediately after continuous casting and rolling without cold rolling. In this case, the deep drawing earring rate is inferior, but other points are the same as the current material. It was better than that. No. In the invention example of 6, all conditions satisfied the condition range of the present invention. In this case, the deep drawing earring ratio was excellent, and in all aspects, it was equal to or better than the current material.

【0036】[0036]

【発明の効果】この発明の成形用アルミニウム合金硬質
板の製造方法によれば、適切な成分組成を有するアルミ
ニウム合金について、冷却速度が50℃/sec 以上の急
速冷却の鋳造法を適用して鋳造するとともに、得られた
鋳造板に対して適切な冷間圧延を施してから580℃以
上、6時間以上の高温長時間の均熱処理を施し、さらに
冷間圧延後急速加熱、急速冷却の高温短時間の中間焼鈍
を施し、その後最終冷間圧延を行なうことによって、成
形性、特にDI加工時のしごき性に優れるとともにDI
加工後のフランジ加工、ネッキング加工時の成形性に優
れ、しかも深絞り耳率も低くかつ高強度を有するアルミ
ニウム合金硬質板を得ることができ、したがって特に薄
肉化が要求されるDI缶胴材の硬質アルミニウム合金板
の製造に最適である。
EFFECTS OF THE INVENTION According to the method for producing a hard plate of an aluminum alloy for molding of the present invention, an aluminum alloy having an appropriate composition is cast by applying a rapid cooling casting method at a cooling rate of 50 ° C./sec or more. In addition, after subjecting the obtained cast plate to appropriate cold rolling, it is subjected to a soaking treatment at 580 ° C. or higher for 6 hours or more at high temperature, and after cold rolling, rapid heating and rapid cooling are performed at high temperature. By performing intermediate annealing for a certain period of time and then performing final cold rolling, excellent formability, especially ironing during DI processing, and DI
It is possible to obtain an aluminum alloy hard plate which is excellent in formability at the time of flange processing and necking processing after processing, has a low deep drawing earring rate, and high strength. Most suitable for manufacturing hard aluminum alloy sheets.

【0037】なおこの発明の製法は、DI缶胴材の製造
に最も有利であるが、その他の成形加工の用途に用いら
れるアルミニウム合金硬質板の製造にも適用できること
は勿論である。
The production method of the present invention is most advantageous for the production of DI can body materials, but it goes without saying that it can be applied to the production of aluminum alloy hard plates used for other molding applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例におけるフランジ加工時の口拡げ性評
価のための試験の実施状況を概略的に示す略解図であ
る。
FIG. 1 is a schematic diagram schematically showing a state of implementation of a test for evaluating a mouth widening property during flange processing in an example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.5〜2.0wt%、Mn0.5〜
1.8wt%、Fe0.1〜1.8wt%、Si0.05〜
0.5wt%を含み、さらに必要に応じてCu0.5wt%
以下、Zn0.5wt%以下、Cr0.3wt%以下のうち
の1種または2種以上を含有し、残部がAlおよび不可
避的不純物よりなる合金を、冷却速度が50℃/sec 以
上となるように鋳造し、その後30%以上の圧延率で冷
間圧延した後、580〜620℃の範囲内の温度で6時
間以上の均熱処理を施し、さらに30%以上の圧延率で
冷間圧延した後、1℃/sec 以上の昇温速度で380〜
600℃の範囲内の温度に加熱して保持なしもしくは1
0分以内保持しさらに1℃/sec 以上の冷却速度で冷却
する中間焼鈍を施し、次いで40%以上の圧延率で冷間
圧延を施すことを特徴とする、耳率の低いアルミニウム
合金硬質板の製造方法。
1. Mg 0.5-2.0 wt%, Mn 0.5-
1.8 wt%, Fe 0.1-1.8 wt%, Si 0.05-
0.5 wt%, and if necessary, Cu 0.5 wt%
Hereinafter, an alloy containing one or two or more of Zn 0.5 wt% or less and Cr 0.3 wt% or less and the balance of Al and unavoidable impurities should have a cooling rate of 50 ° C./sec or more. After casting, and then cold rolling at a rolling rate of 30% or more, after soaking at a temperature in the range of 580 to 620 ° C. for 6 hours or more, and further cold rolling at a rolling rate of 30% or more, 380-380 at a heating rate of 1 ° C / sec or more
No heating or heating to a temperature in the range of 600 ° C or 1
An aluminum alloy hard plate having a low earring rate, which is characterized in that it is held for 0 minutes and further subjected to intermediate annealing in which it is cooled at a cooling rate of 1 ° C./sec or more, and then cold rolled at a rolling rate of 40% or more. Production method.
JP5689392A 1992-02-07 1992-02-07 Method for manufacturing aluminum alloy hard plate with low ear rate Expired - Lifetime JPH0747803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5689392A JPH0747803B2 (en) 1992-02-07 1992-02-07 Method for manufacturing aluminum alloy hard plate with low ear rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5689392A JPH0747803B2 (en) 1992-02-07 1992-02-07 Method for manufacturing aluminum alloy hard plate with low ear rate

Publications (2)

Publication Number Publication Date
JPH05222497A JPH05222497A (en) 1993-08-31
JPH0747803B2 true JPH0747803B2 (en) 1995-05-24

Family

ID=13040123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5689392A Expired - Lifetime JPH0747803B2 (en) 1992-02-07 1992-02-07 Method for manufacturing aluminum alloy hard plate with low ear rate

Country Status (1)

Country Link
JP (1) JPH0747803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894879A (en) * 1995-09-18 1999-04-20 Kaiser Aluminum & Chemical Corporation Method of manufacturing aluminum alloy sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162056A (en) * 2005-12-13 2007-06-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2008232772A (en) * 2007-03-20 2008-10-02 Chuo Motor Wheel Co Ltd X-ray residual stress measuring method of casting
JP5676870B2 (en) * 2009-10-15 2015-02-25 三菱アルミニウム株式会社 Aluminum alloy plate for can body having excellent redrawability and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894879A (en) * 1995-09-18 1999-04-20 Kaiser Aluminum & Chemical Corporation Method of manufacturing aluminum alloy sheet

Also Published As

Publication number Publication date
JPH05222497A (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JPH07228956A (en) Production of aluminum alloy sheet for forming work
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
JPS626740B2 (en)
JPH0635644B2 (en) Manufacturing method of aluminum alloy hard plate for forming
JPH0747803B2 (en) Method for manufacturing aluminum alloy hard plate with low ear rate
JP3605662B2 (en) Aluminum foil for containers
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP2862198B2 (en) Aluminum alloy plate for DI can body
JP2745340B2 (en) Method for manufacturing aluminum two-piece can
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JPH01127642A (en) Heat treatment type high strength aluminum alloy plate for drawing and its manufacture
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JP3248254B2 (en) Method for producing Al-Mg based alloy rolled sheet for cryogenic forming
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951107