JPH0747110B2 - Membrane treatment method - Google Patents

Membrane treatment method

Info

Publication number
JPH0747110B2
JPH0747110B2 JP1046145A JP4614589A JPH0747110B2 JP H0747110 B2 JPH0747110 B2 JP H0747110B2 JP 1046145 A JP1046145 A JP 1046145A JP 4614589 A JP4614589 A JP 4614589A JP H0747110 B2 JPH0747110 B2 JP H0747110B2
Authority
JP
Japan
Prior art keywords
gas
liquid
membrane
amount
phase flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1046145A
Other languages
Japanese (ja)
Other versions
JPH02227121A (en
Inventor
卓男 今坂
伸彦 兼国
浩之 宗
成 吉野
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP1046145A priority Critical patent/JPH0747110B2/en
Publication of JPH02227121A publication Critical patent/JPH02227121A/en
Publication of JPH0747110B2 publication Critical patent/JPH0747110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は原液を気液混合の二相流として膜処理する方法
に関する。
The present invention relates to a method for membrane treatment of a stock solution as a gas-liquid mixed two-phase flow.

(従来の技術) 排水や下水を処理する嫌気性菌体をリアクタ内に高濃度
に保持するためや、食品工業における溶液の分離、濃縮
等を行う方法として本出願人は先に特開昭63−104609号
として、原液を気液混合の二相流として膜モジュール内
に供給し、クロスフロー濾過方式によって処理する方法
を提案している。
(Prior Art) The applicant of the present invention has previously disclosed, as a method for maintaining a high concentration of anaerobic bacterial cells for treating wastewater and sewage in a reactor and for separating and concentrating a solution in the food industry. No. 104609 proposes a method in which a stock solution is supplied as a two-phase flow of gas-liquid mixture into a membrane module and treated by a cross-flow filtration method.

(発明が解決しようとする課題) 上述した気液二相流とすれば、乱流促進効果によって膜
表面に付着した微粒子や溶質成分からなるゲル層を掻き
落すため、液単相流に比べ透過流束が大きくなるはずで
ある。
(Problems to be Solved by the Invention) When the gas-liquid two-phase flow described above is used, the gel layer composed of fine particles and solute components adhering to the film surface is scraped off due to the turbulent flow promoting effect, so that permeation compared to liquid single-phase flow The flux should be high.

しかしながら、気液二相流は気相と液相の分布が不均一
となった複雑な流れを呈するため、常に気液二相流の方
が液単相流に比べて透過流束が大きいとは限らないこと
が実験の結果判明し、特に膜モジュールを多数本の細管
状膜にて構成した場合には上記の傾向が強くなった。
However, since the gas-liquid two-phase flow exhibits a complicated flow in which the distribution of the gas phase and the liquid phase is non-uniform, the gas-liquid two-phase flow always has a larger permeation flux than the liquid single-phase flow. As a result of experiments, it was found that the above is not the case. Especially, when the membrane module is composed of a large number of thin tubular membranes, the above tendency becomes stronger.

(課題を解決するための手段) 上記課題を解決すべく本発明は、原液を気液二相流とし
て膜モジュールに送り込み且つ自然循環させるために供
給するガス量を、最大循環流量を与えるガス量の1〜7
倍の範囲となるようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a gas amount that feeds a stock solution as a gas-liquid two-phase flow into a membrane module and naturally circulates the gas amount that gives a maximum circulation flow rate. 1 to 7
The range is doubled.

(作用) 透過流束Jが0.7〜2.0[m3・m-2・d-1]の範囲では液単
相流よりも気液二相流の方が消費動力が少なくて済み、
上記の範囲の透過流束を得るには、供給ガス量を最大循
環流量を与えるガス量の1〜7倍とすればよい。
(Operation) When the permeation flux J is in the range of 0.7 to 2.0 [m 3 · m -2 · d -1 ], the gas-liquid two-phase flow consumes less power than the liquid single-phase flow,
In order to obtain the permeation flux in the above range, the supply gas amount may be 1 to 7 times the gas amount giving the maximum circulation flow rate.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Below, the Example of this invention is described based on an accompanying drawing.

第1図は本発明方法を実施する膜処理装置の全体図であ
り、原液1を満たした原液タンク2は攪拌装置3及び温
度調節装置4を備え、原液タンク2内の原液1をポンプ
5によって供給管6を介してセパレータ7に供給するよ
うにしている。
FIG. 1 is an overall view of a membrane treatment apparatus for carrying out the method of the present invention. A stock solution tank 2 filled with a stock solution 1 is equipped with a stirrer 3 and a temperature control device 4, and a stock solution 1 in the stock solution tank 2 is pumped by a pump 5. The separator 7 is supplied through the supply pipe 6.

セパレータ7からは下方に降下管8を導出し、降下管8
の途中には電磁流量計9を設けるとともに、降下管8の
下端をU字状に湾曲して上昇管10に接続し、この上昇管
10の途中に金網製の散気筒を備えた気液混合器11を設
け、この気液混合器11にブロワ12からガス(空気)を供
給し、供給ガス量は配管の途中に設けたガス流量計で測
定するようにしている。
A downcomer pipe 8 is led out from the separator 7 and
An electromagnetic flow meter 9 is provided in the middle of the, and the lower end of the downcomer pipe 8 is curved in a U shape and connected to the upcomer pipe 10.
A gas-liquid mixer 11 equipped with a wire-cylinder scattering cylinder is provided in the middle of 10, and gas (air) is supplied from the blower 12 to this gas-liquid mixer 11, and the supply gas amount is the gas flow rate provided in the middle of the pipe. I try to measure with a meter.

また気液混合器11の上部にはスタティックミキサー13を
設け、このスタティックミキサー13の上方に5連の膜モ
ジュール14…を垂直方向に接続している。各膜モジュー
ル14内には管状透過膜を配置し、管状透過膜の内側通路
と前記上昇管10及びセパレータ7への戻し管10aとをつ
なぎ、管状透過膜の外側流路と透過水の取出し管15とを
つなぎ、取出し管15の先端は逆洗バッファ16内に臨み、
この逆洗バッファ16内にはコンプレッサ17によって加圧
空気を供給し、空気圧によってバッファ16内の透過水を
電子天秤18上に載置した集水タンク19又は切換用減圧タ
ンク20を送り込むようにしている。
A static mixer 13 is provided above the gas-liquid mixer 11, and five membrane modules 14 ... Are vertically connected above the static mixer 13. A tubular permeable membrane is arranged in each membrane module 14, the inner passage of the tubular permeable membrane is connected to the ascending pipe 10 and the return pipe 10a to the separator 7, and an outer flow passage of the tubular permeable membrane and a permeate extraction pipe. 15, and the tip of the take-out pipe 15 faces the backwash buffer 16,
Compressed air is supplied to the backwash buffer 16 by a compressor 17, and the permeated water in the buffer 16 is sent to the water collecting tank 19 or the switching decompression tank 20 placed on the electronic balance 18 by air pressure. There is.

集水タンク19及び切替用減圧タンク20には膜間差圧を与
える排気ポンプ21が接続され、集水タンク19には液面計
22を付設している。而して、集水タンク19の重量増加速
度を電子天秤18にて計測することで透過流束を求めるこ
とができ、また集水タンク19内に所定量の透過水が溜っ
たことを液面計22によって感知したならば、自動的に切
替用減圧タンク20への捕集に切替わり、この間に集水タ
ンク19内の減圧状態は解除されて大気圧となり、集水タ
ンク19内の透過水は原液タンク2へ戻される。同様にし
て切替用減圧タンク20内の透過水も原液タンク2に戻さ
れ、装置全体としては前循環濾過方式を採用している。
An exhaust pump 21 for applying a transmembrane pressure difference is connected to the water collection tank 19 and the switching decompression tank 20, and the water level gauge is provided in the water collection tank 19.
22 are attached. Thus, the permeation flux can be obtained by measuring the weight increase rate of the water collection tank 19 with the electronic balance 18, and the fact that a predetermined amount of permeated water has accumulated in the water collection tank 19 is displayed on the liquid surface. If it is detected by the total 22, it will automatically switch to the collection in the switching depressurization tank 20, during which the depressurized state in the water collection tank 19 is released to atmospheric pressure, and the permeated water in the water collection tank 19 Is returned to the stock solution tank 2. Similarly, the permeated water in the switching decompression tank 20 is also returned to the stock solution tank 2, and the pre-circulation filtration method is adopted as the entire apparatus.

更に、降下管8と上昇管10とをつなぐU字状部について
は着脱可能とし、液単相流として膜モジュール14内へ原
液を供給する場合にはこの部分に循環ポンプ23を接続す
るようにしている。
Furthermore, the U-shaped portion connecting the downcomer pipe 8 and the ascending pipe 10 is detachable, and when supplying the stock solution into the membrane module 14 as a liquid single-phase flow, the circulation pump 23 is connected to this part. ing.

以上において、原液タンク2からポンプ5の駆動で供給
管6を介してセパレータ7内に供給された原液1は、降
下管8内を通って降下し、上昇管10に入り、この上昇管
10の気液混合器11の部分で気液混合の二相流(中心部が
気体で外周部が液体)となって管状透過膜内に流入す
る。
In the above, the undiluted solution 1 supplied from the undiluted solution tank 2 into the separator 7 through the supply pipe 6 by driving the pump 5 descends through the downcomer pipe 8 and enters the upcomer pipe 10, and
In the gas-liquid mixer 11 of 10, the gas-liquid mixture becomes a two-phase flow (gas in the central part and liquid in the outer peripheral part) and flows into the tubular permeable membrane.

そして、透過膜内に入った原液は透過水と濃縮液に分離
され、透過水は取出し管15を介して取出され、濃縮液は
戻し管10aを介してセパレータ7を介して原液タンク2
内に戻される。
Then, the stock solution that has entered the permeable membrane is separated into permeated water and concentrated solution, the permeated water is taken out through the take-out pipe 15, and the concentrated solution is taken through the return pipe 10a and the separator 7 through the stock solution tank 2
Returned inside.

ここで上昇部(上昇管及び膜モジュールを含む)の流路
内にはガスが存在してみかけの比重が低下し、降下管8
内の原液との密度差(水頭差)が駆動力となって原液は
自然に循環する。
Here, gas is present in the flow path of the rising portion (including the rising pipe and the membrane module), and the apparent specific gravity is lowered, and
The density difference (water head difference) with the stock solution inside becomes the driving force, and the stock solution circulates naturally.

第2図は上述した構成の膜処理装置を用いて液単相流と
した場合を気液混合二相流とした場合の透過流束とブロ
ワの消費電力との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the permeation flux and the power consumption of the blower when the liquid single-phase flow is changed to the gas-liquid mixed two-phase flow using the membrane processing apparatus having the above-described configuration.

尚、第2図の結果を得るにあたっての具体的な条件は以
下の通りである。
The specific conditions for obtaining the results shown in FIG. 2 are as follows.

原液:0.9%生理食塩水に乾燥パン酵母を分散させた懸濁
液 パン酵母濃度:10Kg・m−3 温度:25℃ 透過膜の寸法:外径5.2mm、内径3.8mm、長さ500mmのセ
ラミック膜を200本/モジュール 透過膜の構造:網孔径0.5μmの均室膜又は0.2μmの非
対称膜 膜間圧差:60kpa 第2図からは透過流束Jが0.7[m3・m-2・d-1]未満で
あると、液単相流とした方が消費動力が小さくなり、透
過流束が2.0[m3・m-2・d-1]を超えると単相流・二相
流にかかわらず、消費動力が大幅に増加することが分か
る。
Undiluted solution: Suspension of dried baker's yeast dispersed in 0.9% saline. Baker's yeast concentration: 10Kg ・ m-3 Temperature: 25 ℃ Permeable membrane dimensions: outer diameter 5.2mm, inner diameter 3.8mm, length 500mm ceramic 200 membranes / module Membrane structure: Membrane with a pore size of 0.5 μm or asymmetric membrane with 0.2 μm Transmembrane pressure difference: 60 kpa From Fig. 2, the permeation flux J is 0.7 [m 3 · m -2 · d If it is less than -1 ], the power consumption will be smaller if it is a liquid single-phase flow, and if the permeation flux exceeds 2.0 [m 3 · m -2 · d -1 ], it will be a single-phase or two-phase flow. Nevertheless, it can be seen that the power consumption increases significantly.

したがって、透過流束は気液二相流とする場合は0.7〜
2.0[m3・m-2・d-1]の範囲とすべきである。
Therefore, the permeation flux is 0.7 ~ when using gas-liquid two-phase flow.
It should be in the range of 2.0 [m 3 · m -2 · d -1 ].

ところで、本発明にあっては前記したように気液二相流
として自然循環させるのは、専ら気液混合器11から供給
されるガスに依存している。そこで、供給ガス量Qgと透
過流束Jとの関係を示したのが第3図(A)である。
By the way, in the present invention, the natural circulation as a gas-liquid two-phase flow as described above depends exclusively on the gas supplied from the gas-liquid mixer 11. Therefore, FIG. 3 (A) shows the relationship between the supply gas amount Qg and the permeation flux J.

第3図(A)からは0.7〜2.0[m3・m-2・d-1]の透過流
束Jとなるのは、供給ガス量Qが0.06〜0.42[Nm3・min
-1]の範囲であることが分る。しかしながら供給ガス量
Qgと透過流束Jとの関係は膜モジュール14…の配列や膜
の孔径によって一義的に定まるものではない。
From FIG. 3 (A), the permeation flux J of 0.7 to 2.0 [m 3 · m -2 · d -1 ] is that the supply gas amount Q is 0.06 to 0.42 [Nm 3 · min.
-1 ]. However, supply gas amount
The relationship between Qg and the permeation flux J is not uniquely determined by the arrangement of the membrane modules 14 ... Or the pore size of the membrane.

しかしながら、供給ガス量Qgと循環流量Qlとは一定の関
係がある。これを第3図(B)で示している。即ち、第
3図(B)に示すように、最大循環量を与える供給ガス
量は0.06[Nm3・min-1]であり、前記した有効なガス
供給量(0.06〜0.42)を最大循環量を与える供給ガス量
(0.06)で割ると1〜7となり、このように、供給ガス
量Qgを最大循環流量を与える供給ガス量の1〜7倍の範
囲とすることで液単相流よりも消費能力の面で有利な気
液混合の二相流とすることができる。
However, the supply gas amount Qg and the circulation flow rate Ql have a certain relationship. This is shown in FIG. 3 (B). That is, as shown in FIG. 3 (B), the supply gas amount that gives the maximum circulation amount is 0.06 [Nm 3 · min −1 ], and the effective gas supply amount (0.06 to 0.42) is the maximum circulation amount. It is 1 to 7 when divided by the amount of supply gas (0.06) that gives, and thus, by setting the amount of supply gas Qg to be 1 to 7 times the amount of supply gas that gives the maximum circulation flow It is possible to use a two-phase flow of gas-liquid mixing, which is advantageous in terms of consumption capacity.

(発明の効果) 以上に説明した如く本発明によれば、原液を気液二相流
として膜モジュールに送り込んで処理する際に、供給ガ
ス量を所定範囲にすることで、膜モジュールのランニン
グコストの約半分を占めると言われる消費動力を液単相
流に比べて大幅に低減することができる。
(Effects of the Invention) As described above, according to the present invention, the running cost of the membrane module is controlled by setting the supply gas amount within a predetermined range when the raw solution is sent to the membrane module as a gas-liquid two-phase flow for processing. Power consumption, which is said to occupy about half of the above, can be significantly reduced compared to the liquid single-phase flow.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施する膜処理装置の全体図、第
2図は透過流束と消費電力との関係を示すグラフ、第3
図(A)及び(B)はそれぞれ供給ガス量と透過流束及
び循環液流量との関係を示すグラフである。 尚、図面中、1は原液、2は原液タンク2、7はセパレ
ータ、8は降下管、10は上昇管、11は気液混合器、14は
膜モジュールである。
FIG. 1 is an overall view of a membrane treatment apparatus for carrying out the method of the present invention, FIG. 2 is a graph showing the relationship between permeation flux and power consumption, and FIG.
Figures (A) and (B) are graphs showing the relationship between the supply gas amount, the permeation flux and the circulating liquid flow rate, respectively. In the drawings, 1 is a stock solution, 2 is a stock solution tank 2, 7 is a separator, 8 is a downcomer, 10 is a riser, 11 is a gas-liquid mixer, and 14 is a membrane module.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉野 成 神奈川県茅ケ崎市本村2丁目8番1号 東 陶機器株式会社茅ケ崎工場内 (56)参考文献 特開 昭63−104609(JP,A) 実開 昭62−130799(JP,U) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Shigeru Yoshino 2-8-1 Motomura, Chigasaki-shi, Kanagawa Tochi Kikai Co., Ltd. Chigasaki Plant (56) Reference JP-A-63-104609 (JP, A) Actual Kaisho 62-130799 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】循環経路の一部を構成する上昇管に透過膜
を備えた膜モジュールを設け、この膜モジュールよりも
下方位置において上昇管中の原液に気体を供給して気液
混合の二相流とし、この気液混合二相流を膜モジュール
に供給し、クロスフロー濾過方式によって精製、濃縮或
は分離を行うようにした膜処理方法において、前記原液
を気液混合の二相流として自然循環させるために供給す
るガス量は、最大循環流量(自然循環によって膜モジュ
ールに供給される原液の量のうち最大の量)を与えるガ
ス量の1〜7倍の範囲としたことを特徴とする膜処理方
法。
1. A membrane module having a permeable membrane is provided in an ascending pipe which constitutes a part of a circulation path, and gas is supplied to a stock solution in the ascending pipe at a position lower than the membrane module to mix gas and liquid. In a membrane treatment method in which the gas-liquid mixed two-phase flow is supplied to a membrane module and purified, concentrated or separated by a cross-flow filtration method, the stock solution is used as a gas-liquid mixed two-phase flow. The amount of gas supplied for the natural circulation is in the range of 1 to 7 times the amount of gas that gives the maximum circulation flow rate (the maximum amount of the amount of the undiluted solution supplied to the membrane module by the natural circulation). Membrane treatment method.
JP1046145A 1989-02-27 1989-02-27 Membrane treatment method Expired - Fee Related JPH0747110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046145A JPH0747110B2 (en) 1989-02-27 1989-02-27 Membrane treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046145A JPH0747110B2 (en) 1989-02-27 1989-02-27 Membrane treatment method

Publications (2)

Publication Number Publication Date
JPH02227121A JPH02227121A (en) 1990-09-10
JPH0747110B2 true JPH0747110B2 (en) 1995-05-24

Family

ID=12738802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046145A Expired - Fee Related JPH0747110B2 (en) 1989-02-27 1989-02-27 Membrane treatment method

Country Status (1)

Country Link
JP (1) JPH0747110B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716585B2 (en) * 1991-11-28 1995-03-01 日本碍子株式会社 Cross flow filtration method
US6217770B1 (en) * 1998-08-14 2001-04-17 Atp International Apparatus and method for treatment of water
CN110713255A (en) * 2019-11-20 2020-01-21 中科院建筑设计研究院有限公司 Device and method for reducing pollution of plate-type ceramic membrane of anaerobic membrane bioreactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534799Y2 (en) * 1986-02-05 1993-09-02
JPS63104609A (en) * 1986-10-20 1988-05-10 Akua Runesansu Gijutsu Kenkyu Kumiai Method and device for treating membrane

Also Published As

Publication number Publication date
JPH02227121A (en) 1990-09-10

Similar Documents

Publication Publication Date Title
Ueda et al. Effects of aeration on suction pressure in a submerged membrane bioreactor
JP4530245B2 (en) Membrane separator
DE60023607D1 (en) Cross-flow filtration membrane and process for its preparation
JP2007021472A (en) Method for producing oxygen water and apparatus therefor
CN107673498A (en) A kind of dyeing waste water pretreatment unit and method
JPS5819325B2 (en) Biseibutsu koubunshi mataha bisainakotai o ganyuusuru ekitai o lokasurutameno hohou oyobi souchi
JPH0747110B2 (en) Membrane treatment method
JPS6362504A (en) Method for concentrating organic component in aqueous solution containing same
JPH0751216B2 (en) Membrane treatment method
JPS63104610A (en) Method and device for treating membrane
JPH01168304A (en) Solid/liquid separation and condensation apparatus
JPS62237906A (en) Method for separating and concentrating organic material having low boiling point from aqueous solution
CN209293106U (en) A kind of no negative pressure pipe network supply equipment reverse osmosis unit
JPS63104609A (en) Method and device for treating membrane
JPH02268890A (en) Device for treating sewage by hollow-fiber membrane
JP2003290766A (en) Method and apparatus for treating waste water by membrane separation
Pasveer Research on activated sludge: VII. Efficiency of the diffused air system
CN214141752U (en) Biological aerated filter device capable of being assembled and disassembled portably
Kwon et al. Fouling control of a submerged membrane module (YEF) by filtration modes
JPS62227492A (en) Method and apparatus for making pure water
JP2008238104A (en) Apparatus and method for removing dissolved gas
JPS62204812A (en) Separation and concentration device for activated sludge
JPH0790151B2 (en) Throwing type solid-liquid separator
JPS643447Y2 (en)
JPH03109912A (en) Treatment of gas containing organic vapor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees