JPH0716585B2 - Cross flow filtration method - Google Patents

Cross flow filtration method

Info

Publication number
JPH0716585B2
JPH0716585B2 JP3339824A JP33982491A JPH0716585B2 JP H0716585 B2 JPH0716585 B2 JP H0716585B2 JP 3339824 A JP3339824 A JP 3339824A JP 33982491 A JP33982491 A JP 33982491A JP H0716585 B2 JPH0716585 B2 JP H0716585B2
Authority
JP
Japan
Prior art keywords
filter
liquid
pressure
treated
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3339824A
Other languages
Japanese (ja)
Other versions
JPH05146645A (en
Inventor
幹 石川
一郎 河本
義弘 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Fujifilm Business Innovation Corp
Original Assignee
NGK Insulators Ltd
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical NGK Insulators Ltd
Priority to JP3339824A priority Critical patent/JPH0716585B2/en
Publication of JPH05146645A publication Critical patent/JPH05146645A/en
Publication of JPH0716585B2 publication Critical patent/JPH0716585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はクロスフロー濾過方法に
関し、特に被処理液として有価固形分を含有する被処理
液を採用したクロスフロー濾過方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-flow filtration method, and more particularly to a cross-flow filtration method employing a liquid to be treated containing a valuable solid as a liquid to be treated.

【0002】[0002]

【従来の技術】クロスフロー濾過方法の一形式として図
3に示すように、原液タンク30内に収容したー定量の
被処理液を循環ポンプ31により濾過器32内へ循環供
給して濾過器32内に収容したフィルタ33の濾過膜の
ー側に沿って流動させ、この間前記被処理液をフィルタ
33の濾過膜の両側の圧力差により濾過膜のー側から他
側へ透過させて濾過するクロスフロー濾過方法がある。
当該濾過方法においては、濾過器32と原液タンク30
の管路に圧力調整バルブ34が介装されており、循環ポ
ンプ31の揚程が被処理液を循環するのに必要な圧力損
失に相当する値と被処理液の濾過に必要な濾過圧力に相
当する値以上に設定されていて、圧力調整バルブ34に
よる調整により必要な被処理液の循環流速と濾過圧力と
を得ている。なお、図3に示す符号P1,P2は濾過器3
2の入口および出口の圧力を示す圧力計であり、また符
号Fは流量計である。
2. Description of the Related Art As one form of a cross-flow filtration method, as shown in FIG. 3, a fixed amount of a liquid to be treated contained in a stock solution tank 30 is circulated and supplied into a filter 32 by a circulation pump 31 to filter 32. A cloth which is made to flow along the minus side of the filter membrane of the filter 33 housed inside, and through which the liquid to be treated is permeated from the minus side of the filter membrane to the other side due to the pressure difference between the two sides of the filter membrane of the filter 33 and filtered There is a flow filtration method.
In the filtration method, the filter 32 and the stock solution tank 30 are used.
A pressure regulating valve 34 is installed in the pipe line of the circulating pump 31, and the lift of the circulation pump 31 corresponds to a value corresponding to a pressure loss required to circulate the liquid to be treated and a filtering pressure required to filter the liquid to be treated. Is set to a value equal to or higher than the above value, and the necessary circulation speed and filtration pressure of the liquid to be treated are obtained by the adjustment by the pressure adjusting valve 34. The symbols P1 and P2 shown in FIG.
2 is a pressure gauge showing the pressure at the inlet and the outlet of the outlet 2, and the reference symbol F is a flow meter.

【0003】[0003]

【発明が解決しようとする課題】ところで、この種形式
のクロスフロー濾過方法において被処理液として有価固
形分を含有する被処理液を採用する場合には、有価固形
分の破壊および表面の損傷等破損を避ける必要がある
が、上記したごとく循環ポンプ31の揚程を高い値に設
定するとともに圧力調整バルブ34により管路を循環す
る被処理液の流動を絞って圧力調整を行う場合には、こ
の絞り込みによってバルブ34内を流動する被処理液の
流速が大きくなり、被処理液が含有する有価固形分に大
きな剪断力が作用し、さらに循環ポンプ31の駆動速度
が非常に高いために有価固形分に対して剪断力が作用す
る。これらの剪断力は有価固形分を破壊し、および/ま
たは有価固形分の表面を損傷させるおそれがある。特
に、有価固形分がコアに液体を封入したマイクロカプセ
ルの様な破壊されやすい粒子の場合には、濾過工程にお
ける有価固形分の破損量が増加して好ましくない。従っ
て、本発明の目的は、この種形式のクロスフロー濾過方
法における被処理液として有価固形分を含有する被処理
液を採用した場合の、有価固形分の破壊、損傷等の発生
を抑制することにある。
By the way, when a liquid to be treated containing valuable solids is adopted as the liquid to be treated in this type of cross-flow filtration method, destruction of valuable solids and damage to the surface, etc. Although it is necessary to avoid damage, when the head of the circulation pump 31 is set to a high value as described above and the pressure adjustment valve 34 restricts the flow of the liquid to be circulated in the pipeline to adjust the pressure, The flow rate of the liquid to be processed flowing in the valve 34 increases due to the narrowing down, a large shearing force acts on the valuable solids contained in the liquid to be processed, and the driving speed of the circulation pump 31 is very high. A shearing force acts on. These shear forces can destroy valuable solids and / or damage the surface of valuable solids. In particular, when the valuable solid content is particles that are easily broken, such as microcapsules in which a liquid is enclosed in the core, the amount of breakage of the valuable solid content in the filtration step increases, which is not preferable. Therefore, an object of the present invention is to suppress the occurrence of destruction, damage and the like of valuable solids when a liquid to be treated containing valuable solids is adopted as the liquid to be treated in this type of cross-flow filtration method. It is in.

【0004】[0004]

【課題を解決するための手段】本発明は上記形式のクロ
スフロー濾過方法において、前記被処理液として有価固
形分を含有する被処理液を採用するとともに、前記循環
ポンプの揚程を前記被処理液を循環するのに必要な圧力
損失に相当する値に設定し、かつ前記濾過に必要な圧力
を被処理液側に対する系外からの加圧または透過液側に
対する減圧により補足することを特徴とするものであ
る。
According to the present invention, in a cross-flow filtration method of the above type, a liquid to be treated containing valuable solids is used as the liquid to be treated, and the lift of the circulation pump is set to the liquid to be treated. Is set to a value corresponding to the pressure loss required to circulate, and the pressure necessary for the filtration is supplemented by pressurization from outside the system to the liquid to be treated or pressure reduction on the permeate side. It is a thing.

【0005】[0005]

【発明の作用・効果】本発明に係るクロスフロー濾過方
法においては、循環に必要な圧力損失分のみを循環ポン
プの吐出能力で賄えばよいとともに、被処理液側に対す
る加圧または濾過液側に対する減圧によってフィルタの
濾過膜の両側面の差圧を得ることができるため、循環ポ
ンプの回転数を従来のこの種クロスフロー濾過の場合に
比較して大きく低下させて、被処理液に対する剪断力を
小さくすることができる。また、当該濾過方法において
は、従来のこの種の濾過方法で用いられていた圧力調整
バルブの使用を必要としないため、圧力調整バルブによ
る圧力調整に起因する被処理液に対する剪断力が発生す
ることがない。このため、循環する被処理液中の有価固
形分の破壊、表面損傷等破損を大きく抑制するこどがで
きる。なお、本発明においては補足的に圧力調整バルブ
を採用することは何等問題はないが、この場合には圧力
調整バルブによる剪断力がほとんどかからないように、
濾過圧力に対しての寄与として、従来に比較して低い0.
5kg/cm2 以下の圧力であることが好ましい。
In the cross-flow filtration method according to the present invention, only the pressure loss necessary for circulation needs to be covered by the discharge capacity of the circulation pump, and the pressure applied to the treated liquid side or the filtrate side Since the pressure difference between both sides of the filter membrane of the filter can be obtained by reducing the pressure, the rotation speed of the circulation pump is greatly reduced compared to the case of the conventional cross-flow filtration of this type, and the shearing force against the liquid to be treated is reduced. Can be made smaller. In addition, since the filtration method does not require the use of the pressure adjustment valve used in the conventional filtration method of this type, a shearing force is generated on the liquid to be treated due to the pressure adjustment by the pressure adjustment valve. There is no. For this reason, breakage of valuable solids in the circulating liquid to be treated and damage such as surface damage can be greatly suppressed. In the present invention, it is no problem to employ a supplementary pressure control valve, but in this case, the shear force by the pressure control valve is hardly applied.
As a contribution to the filtration pressure, it is lower than the conventional value of 0.
The pressure is preferably 5 kg / cm 2 or less.

【0006】[0006]

【実施例】【Example】

(実施例1) (1)濾過装置1 本発明の実施例1に使用した濾過装置を図1に示す。こ
の濾過装置は原液タンク10、循環ポンプ11および濾
過器12を主要構成部材とするもので、原液タンク1
0、循環ポンプ11および濾過器12を直列に接続して
なる循環経路を構成している。原液タンク10は気密
で、内蔵された原液の液面が加圧されるように空気圧管
路14から加圧用空気が原液タンク10内に付与される
ように構成されている。また、濾過器12内にはフィル
タ13が配設されている。循環ポンプ11としては、イ
ンバータ制御により回転数を適宜変更し得る回転型のポ
ンプが採用されている。
(Example 1) (1) Filtration apparatus 1 The filtration apparatus used in Example 1 of the present invention is shown in FIG. This filtering device has a stock solution tank 10, a circulation pump 11 and a filter 12 as main constituent members.
0, the circulation pump 11 and the filter 12 are connected in series to form a circulation path. The stock solution tank 10 is airtight, and is configured so that pressurized air is applied to the stock solution tank 10 from the pneumatic line 14 so that the surface of the stock solution contained therein is pressurized. A filter 13 is arranged in the filter 12. As the circulation pump 11, a rotary pump whose speed can be appropriately changed by inverter control is adopted.

【0007】フィルタ13はセラミック質のモノリス形
フィルタであり、同フィルタ13は多数の貫通孔を有す
るー層構造の公知のものである。かかるフィルタ13に
おいては、循環液は各貫通孔の内周壁(濾過膜のー側に
相当)に沿って流動する。この間、循環液のー部が内周
壁の両側の圧力差により同内周壁を透過してフィルタ1
3の壁部内を流動して透過液(処理済液)として濾過器
12外へ流出する。フィルタ13における濾過速度は濾
過圧力、即ちフィルタ13の内周壁の両側面の差圧によ
って決まり、従ってこの濾過圧力と比例する濾過器12
への入口側における圧力p1(入口側圧力計P1により測
定)と濾過器12の出口側における圧力p2(出口側圧
力計P2により測定)との差圧(p1−p2)が大きいほ
ど循環速度は高まる。
The filter 13 is a ceramic monolith type filter, and the filter 13 is a well-known one having a multi-layer structure having a large number of through holes. In the filter 13, the circulating liquid flows along the inner peripheral wall (corresponding to the minus side of the filtration membrane) of each through hole. During this time, the part of the circulating liquid permeates the inner peripheral wall due to the pressure difference between the inner peripheral wall and the filter 1
It flows in the wall of 3 and flows out of the filter 12 as a permeate (processed liquid). The filtration speed in the filter 13 is determined by the filtration pressure, that is, the pressure difference between the two side surfaces of the inner peripheral wall of the filter 13, and is therefore proportional to the filtration pressure.
Pressure (p 1 -p 2 ) between the pressure p 1 (measured by the pressure gauge P 1 on the inlet side) and the pressure p 2 (measured by the pressure gauge P 2 on the outlet side) at the outlet side of the filter 12 The larger the value, the higher the circulation speed.

【0008】(2)濾過方法1(濾過装置1を使用) 被処理液:コアにポリマー溶液を封入したマイクロカプ
セル(平均粒径15μm)を有価固形分とする、同マイクロ
カプセルのスラリー濃度5%の水懸濁液100lを下記の条
件の下で25lに濃縮する。 フィルタ13:セラミック質のモノリス形フィルタで直
径4mmの 貫通孔を19本有する単層構造のもので、細孔
径10μm、長さ1000mm、濾過面積0.24m2 のもの。 循環流速(フィルタ表面における流速):v=3m/s
ec。 濾過圧力:p=1kg/cm2。 空気加圧力:0.8kg/cm2。 以上の条件のもと、濾過器12の入口側と出口側の差圧
(p1−p2)が 0.4kg/cm2 となるように循環ポン
プ11の吐出能力をインバータにて低回転で設定した
(ポンプ回転数800rpm)。
(2) Filtration Method 1 (Using Filtration Device 1) Liquid to be treated: Slurry concentration of the microcapsules is 5%, in which microcapsules (average particle size 15 μm) in which a polymer solution is enclosed in a core are used as valuable solids. 100 l of an aqueous suspension of is concentrated to 25 l under the following conditions. Filter 13: Ceramic monolithic filter with a single layer structure having 19 through holes with a diameter of 4 mm, a pore size of 10 μm, a length of 1000 mm, and a filtration area of 0.24 m 2 . Circulating flow velocity (flow velocity on the filter surface): v = 3 m / s
ec. Filtration pressure: p = 1 kg / cm 2 . Air pressure: 0.8 kg / cm 2 . Under the above conditions, the discharge capacity of the circulation pump 11 is set by the inverter at a low rotation speed so that the pressure difference (p 1 -p 2 ) between the inlet side and the outlet side of the filter 12 is 0.4 kg / cm 2. Yes (pump speed 800 rpm).

【0009】(実施例2) (1)濾過装置2 本発明の実施例2に使用した濾過装置を図2に示す。こ
の濾過装置も前記濾過装置1と同様に原液タンク20、
循環ポンプ21および濾過器22を主要構成部材とし、
それぞれの部材が直列接続されて循環経路が構成され、
かつ濾過器22には透過液が流出する流出管路に密閉さ
れた透過液の貯溜タンク24が連結されている。この貯
溜タンク24には図示しない真空ポンプが接続されてい
て、当該真空ポンプの駆動により貯溜タンク24内が減
圧される構成になっていて、これによりフィルタ23の
両側面の差圧が大きくなるように構成されている。な
お、濾過器22の構成は濾過装置1に記載したものと同
様である。また、濾過器22の入口側及び出口側に圧力
計(P1、P2)を設ける点も、前記濾過装置1と同様で
ある。
Example 2 (1) Filtration Device 2 A filtration device used in Example 2 of the present invention is shown in FIG. This filtering device is also the same as the filtering device 1 in the stock solution tank 20,
The circulation pump 21 and the filter 22 are main constituent members,
Each member is connected in series to form a circulation path,
In addition, a permeated liquid storage tank 24 is connected to the filter 22 and is connected to an outflow pipe line through which the permeated liquid flows out. A vacuum pump (not shown) is connected to the storage tank 24, and the inside of the storage tank 24 is depressurized by driving the vacuum pump, so that the differential pressure between the both side surfaces of the filter 23 becomes large. Is configured. The configuration of the filter 22 is the same as that described in the filter device 1. Further, the point that pressure gauges (P 1 , P 2 ) are provided on the inlet side and the outlet side of the filter 22 is also the same as the filter device 1.

【0010】(2)濾過方法2(濾過装置2を使用) 被処理液:コアにポリマー溶液を封入したマイクロカプ
セル(平均粒径15μm)を有価固形分とする、同マイク
ロカプセルのスラリー濃度5%の水懸濁液100lを下記の
条件の下で100lを25lに濃縮する。 フィルタ13:セラミック質のモノリス形フィルタで直
径4mm の貫通孔を19本有する単層構造のもので、細孔
径10μm、長さ1000mm、濾過面積0.24m2 のもの。 循環流速(フィルタ表面における流速):v=3m/s
ec。 濾過圧力:p=1kg/cm2。 減圧圧力:0.8kg/cm2。 以上の条件のもと、濾過器22の入口側と出口側の差圧
(p1−p2)が 0.4kg/cm2 となるように循環ポン
プ21の吐出能力をインバータにて低回転速度で設定し
た(ポンプ回転数800rpm)。
(2) Filtration method 2 (using filtration device 2) Liquid to be treated: Slurry concentration of the microcapsules is 5%, in which microcapsules (average particle size 15 μm) in which a polymer solution is encapsulated in the core are used as valuable solids. 100 l of the water suspension of 100 l are concentrated to 25 l under the following conditions. Filter 13: Ceramic monolithic filter having a single-layer structure having 19 through holes with a diameter of 4 mm, a pore size of 10 μm, a length of 1000 mm, and a filtration area of 0.24 m 2 . Circulating flow velocity (flow velocity on the filter surface): v = 3 m / s
ec. Filtration pressure: p = 1 kg / cm 2 . Decompression pressure: 0.8 kg / cm 2 . Under the above conditions, the discharge capacity of the circulation pump 21 is controlled by the inverter at a low rotation speed so that the pressure difference (p 1 -p 2 ) between the inlet side and the outlet side of the filter 22 is 0.4 kg / cm 2. Set (Pump speed 800 rpm).

【0011】(比較例) (1)濾過装置3 比較例に使用した濾過装置は図3に示した従来のクロス
フロー濾過方法の実施に使用されている濾過装置であ
る。この濾過装置も原液タンク30、循環ポンプ31お
よび濾過器32を主要構成部材とするもので、原液タン
ク30、循環ポンプ31および濾過器32を直列的に接
続してなる循環経路を構成している。濾過器32内には
フィルタ33が配設されていて、濾過器32の入口側お
よび出口側には入口側圧力計P1および出口側圧力計P2
が、濾過器32の出口側圧力計P2よりも下流側の循環
経路には圧力調整バルブ34が設けられて、入口側圧力
計P1および出口側圧力計P2の測定値p1、p2に基づ
き、濾過に必要な圧力を充分に得られるように圧力調整
バルブ34が適宜調節できるようになっている。
Comparative Example (1) Filtration Device 3 The filtration device used in the comparative example is the filtration device used for carrying out the conventional cross-flow filtration method shown in FIG. This filtering device also has a stock solution tank 30, a circulation pump 31, and a filter 32 as main constituent members, and constitutes a circulation path formed by connecting the stock solution tank 30, the circulation pump 31 and the filter 32 in series. . A filter 33 is arranged in the filter 32, and an inlet-side pressure gauge P 1 and an outlet-side pressure gauge P 2 are provided on the inlet side and the outlet side of the filter 32.
However, a pressure adjusting valve 34 is provided in the circulation path downstream of the outlet side pressure gauge P 2 of the filter 32, and the measured values p 1 , p of the inlet side pressure gauge P 1 and the outlet side pressure gauge P 2 are measured. Based on 2 , the pressure adjusting valve 34 can be appropriately adjusted so that the pressure necessary for filtration can be sufficiently obtained.

【0012】(2)濾過方法3(濾過装置3を使用) 濾過器32の入口側と出口側の差圧(p1−p2)が0.4
kg/cm2となるように圧力調整バルブ34を調整す
る点を除き、被処理液、フィルタ、循環流速、濾過圧力
をインバータによる回転数の調整を行なわず、60HZ,4P
/1750rpmの状態にて実施例1および実施例2と同一の条
件でクロスフロー濾過を実施した。
(2) Filtration method 3 (using the filtration device 3) The differential pressure (p 1 -p 2 ) between the inlet side and the outlet side of the filter 32 is 0.4.
60Hz, 4P without adjusting the rotation speed of the liquid to be treated, the filter, the circulation flow rate, and the filtration pressure by the inverter, except that the pressure adjusting valve 34 is adjusted to be kg / cm 2.
Cross-flow filtration was performed under the same conditions as in Example 1 and Example 2 at / 1750 rpm.

【0013】(各実施例および比較例の結果)上記実施
例1、実施例2および比較例の濾過方法によりマイクロ
カプセルを含有する水懸濁液を濃縮した場合のマイクロ
カプセルの破壊度を以下に示す方法で測定し、それぞれ
の方法を評価した。すなわち、各クロスフロー濾過にお
ける透過液量が15l、30l、45l、60l、75lになった
時点で各原液タンク10,20,30から被処理液を採
取して、採取した各被処理液から有価固形分を100g 含
むカプセルのスラリーを試料として採取し、各試料を目
開き75μmのふるいに通してふるい上に残った凝集体の
重量を測定することにより、カプセルの破壊の程度を定
量した。
(Results of Examples and Comparative Examples) Destruction degree of the microcapsules when the aqueous suspension containing the microcapsules was concentrated by the filtration methods of the above-mentioned Examples 1, 2 and Comparative Examples was as follows. It measured by the method shown and each method was evaluated. That is, when the amount of permeated liquid in each cross-flow filtration reaches 15 liters, 30 liters, 45 liters, 60 liters, and 75 liters, the treated liquids are collected from the stock solution tanks 10, 20, and 30, and valuable liquids are collected from the collected treated liquids. The extent of capsule breakage was quantified by taking a slurry of capsules containing 100 g of solids as a sample, passing each sample through a sieve with 75 μm openings, and measuring the weight of aggregates remaining on the sieve.

【0014】各実施例1、実施例2および比較例で採用
した被処理液においては、コアにポリマーを封入した有
価固形分であるマイクロカプセルが破壊すると内部のポ
リマー溶液が流出して接着作用を呈することにより、他
のマイクロカプセルとともに接着凝集体を形成するため
この凝集体がふるい上に残り、この残った凝集体の重量
の測定値をマイクロカプセルの破壊の程度の目安とする
ことができる。図4には、この測定方法により各透過液
量における接着凝集体の重量を測定した結果をグラフと
して示している。
In the liquids to be treated employed in each of Examples 1, 2 and Comparative Example, when the microcapsules, which are valuable solids in which the polymer is encapsulated in the core, are broken, the polymer solution in the core flows out to cause an adhesive action. By presenting, since the adhesive aggregates are formed with other microcapsules, the aggregates remain on the sieve, and the measured value of the weight of the remaining aggregates can be used as a measure of the degree of breakage of the microcapsules. FIG. 4 is a graph showing the result of measuring the weight of the adhesive aggregate in each amount of permeated liquid by this measuring method.

【0015】各グラフからも明らかなように、比較例の
濾過方法においては濾過が進行するにつれて凝集体の重
量が著しく増加してマイクロカプセルの破壊が進んでい
ることが認められるが、実施例1および実施例2の濾過
方法においては濾過が進行して透過液量が増加しても凝
集体の重量はほとんど増加せず、濾過によるマイクロカ
プセルの破壊は極めて少ないことが認められる。なお、
実施例1および実施例2の濾過方法においては透過液量
にかかわらず100gに対して1.0g程度の固形分が認めら
れるが、かかる固形分は濾過の進行によりマイクロカプ
セルが破壊して凝集体となったものではなく、当初の被
処理液中に含まれる所定の大きさより小さなマイクロカ
プセルか、または濾過処理以前にすでに破壊されたマイ
クロカプセルであるものと理解される。
As is clear from the respective graphs, in the filtration method of the comparative example, the weight of the agglomerates was remarkably increased as the filtration proceeded, and the destruction of the microcapsules was observed. Further, in the filtration method of Example 2, it is recognized that the weight of the agglomerate hardly increases even when the filtration progresses and the amount of the permeated liquid increases, and the microcapsules are hardly broken by the filtration. In addition,
In the filtration methods of Example 1 and Example 2, a solid content of about 1.0 g per 100 g is recognized regardless of the amount of the permeated liquid, but such a solid content becomes an aggregate because the microcapsules are destroyed by the progress of filtration. It is understood that the microcapsules contained in the liquid to be treated are smaller than a predetermined size, or microcapsules that have already been broken before the filtration treatment.

【0016】以上の各実施例および比較例においては有
価固形分がコアにポリマーを封入したマイクロカプセル
であるため、このような凝集体の発生重量の測定でマイ
クロカプセルの破壊度が推定できたが、有価固形分がこ
のようなポリマーを含有しない単なる球状微粒子や鱗片
状微粒子、針状微粒子、顆粒状微粒子等の微粒子である
場合では、原液タンク中に残る被処理液を単位重量採取
して、走査型電子顕微鏡で微粒子の形状を観察しながら
形状が変化した微粒子の割合を確認することにより、そ
れらの微粒子の破壊度の測定を行うことができる。
In each of the above Examples and Comparative Examples, since the valuable solid content is the microcapsule in which the polymer is encapsulated in the core, the degree of destruction of the microcapsule can be estimated by measuring the weight of the generated aggregate. In the case where the valuable solids are fine particles such as mere spherical fine particles or scaly fine particles, needle-like fine particles, and granular fine particles that do not contain such a polymer, a unit weight of the liquid to be treated remaining in the stock solution tank is sampled, By observing the shape of the fine particles with a scanning electron microscope and confirming the proportion of the fine particles whose shape has changed, the degree of destruction of these fine particles can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るクロスフロー濾過方法の実施に使
用した濾過装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a filtration device used for carrying out a cross-flow filtration method according to the present invention.

【図2】本発明に係る他のクロスフロー濾過方法の実施
に使用した濾過装置を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a filtration device used for carrying out another cross-flow filtration method according to the present invention.

【図3】従来のクロスフロー濾過方法の実施に使用して
いる濾過装置を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a filtration device used for carrying out a conventional cross-flow filtration method.

【図4】各実施例および比較例のクロスフロー濾過方法
におれる各透過液量と接着凝集体の重量との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the amount of each permeate and the weight of the adhesive aggregate in the cross-flow filtration methods of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

10,20,30…原液タンク、11,21,31…循
環ポンプ、12,22,32…濾過器、13,23,3
3…フィルタ、14…空気圧管路、24…貯溜タンク、
34…圧力調整バルブ。
10, 20, 30 ... Stock solution tanks 11, 21, 31 ... Circulation pumps, 12, 22, 32 ... Filters, 13, 23, 3
3 ... Filter, 14 ... Pneumatic pipeline, 24 ... Storage tank,
34 ... Pressure regulating valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 義弘 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社 竹松事業所内 (56)参考文献 特開 平2−227121(JP,A) 特開 平3−68426(JP,A) 特開 平3−98619(JP,A) 実開 昭64−36100(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Inaba 1600 Takematsu, Minamiashigara City, Kanagawa Prefecture Fuji Xerox Co., Ltd. Takematsu Office (56) Reference JP-A-2-227121 (JP, A) JP-A-3- 68426 (JP, A) JP-A-3-98619 (JP, A) Actually developed 64-36100 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原液タンク内に収容したー定量の被処理液
を循環ポンプにより濾過器内へ循環供給して同濾過器内
に収容したフィルタの濾過膜のー側に沿って流動させ、
この間前記被処理液を同濾過膜の両側の圧力差により同
濾過膜のー側から他側へ透過させて濾過するクロスフロ
ー濾過方法において、前記被処理液として有価固形分を
含有する被処理液を採用するとともに、前記循環ポンプ
の揚程を前記被処理液を循環するのに必要な圧力損失に
相当する値に設定し、かつ前記濾過に必要な圧力を被処
理液側に対する系外からの加圧または透過液側に対する
減圧により補足することを特徴とするクロスフロー濾過
方法。
1. A fixed amount of a liquid to be treated contained in a stock solution tank is circulated and fed into a filter by a circulation pump to flow along the negative side of a filter membrane of a filter contained in the filter,
During this, in the cross-flow filtration method in which the liquid to be treated is permeated from one side of the filtration membrane to the other side by the pressure difference between the both sides of the filtration membrane to be filtered, the liquid to be treated containing valuable solids as the liquid to be treated. In addition, the head of the circulation pump is set to a value corresponding to the pressure loss required to circulate the liquid to be treated, and the pressure required for the filtration is applied to the liquid to be treated from outside the system. A cross-flow filtration method comprising supplementing by pressure or pressure reduction on the permeate side.
JP3339824A 1991-11-28 1991-11-28 Cross flow filtration method Expired - Fee Related JPH0716585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3339824A JPH0716585B2 (en) 1991-11-28 1991-11-28 Cross flow filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3339824A JPH0716585B2 (en) 1991-11-28 1991-11-28 Cross flow filtration method

Publications (2)

Publication Number Publication Date
JPH05146645A JPH05146645A (en) 1993-06-15
JPH0716585B2 true JPH0716585B2 (en) 1995-03-01

Family

ID=18331167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3339824A Expired - Fee Related JPH0716585B2 (en) 1991-11-28 1991-11-28 Cross flow filtration method

Country Status (1)

Country Link
JP (1) JPH0716585B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206081A (en) * 2014-04-21 2015-11-19 昭和電工株式会社 Method for concentrating metal nanowire dispersion, and method for preparing metal nanowire ink

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436100U (en) * 1987-08-26 1989-03-06
JPH0747110B2 (en) * 1989-02-27 1995-05-24 東陶機器株式会社 Membrane treatment method
JPH0368426A (en) * 1989-08-08 1991-03-25 Kubota Corp Controlling method for concentrator
JPH0398619A (en) * 1989-09-11 1991-04-24 Ngk Insulators Ltd Recovery of valued materials from water medium

Also Published As

Publication number Publication date
JPH05146645A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
US4863617A (en) Process and apparatus for separating solid-liquid compositions
JP3341601B2 (en) Method and apparatus for collecting and reusing abrasives
US4303533A (en) Method of removing fine suspended solids from effluent streams
Petala et al. Vibratory shear enhanced processing membrane filtration applied for the removal of natural organic matter from surface waters
JP2014050842A (en) Method of separating liquid-liquid mixture
EP0176122B1 (en) Oil/liquid separation filter system
Chang et al. Steady-state permeate flux of cross-flow microfiltration
CA1184854A (en) Process for filtration of oil and gas well treatment fluids
Bouzerar et al. Concentration of mineral suspensions and industrial effluents using a rotating disk dynamic filtration module
JPH0716585B2 (en) Cross flow filtration method
Iritani et al. Analysis of filtration mechanism of crossflow upward and downward ultrafiltration
JPH05201738A (en) Method for cleaning short mineral fiber
IL31867A (en) Improved hyperfiltration process
US4810389A (en) Filtration system
JP2004255283A (en) Concentration controlling method and concentration control unit for rotary membrane separation apparatus
JPH0580248B2 (en)
JP2515008B2 (en) Polymer particle purification method
JPH0857270A (en) Membrane filter apparatus
JPH11138163A (en) Treatment of water in oil emulsion and device for treating water in oil emulsion
JP2000317274A (en) Ultrafilter for latex
De Balmann et al. Membrane partition and mass transfer in ultrafiltration
JPH02227122A (en) Treatment by membrane
JPS61220707A (en) Liquid permeating method
JPH0389908A (en) Cross-flow filtering method
JP2009136744A (en) Hole diffusion-filtering module mounted with multistaged multilayered structure membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees