JPH0746910B2 - Ultrasonic motor driving method - Google Patents
Ultrasonic motor driving methodInfo
- Publication number
- JPH0746910B2 JPH0746910B2 JP62100395A JP10039587A JPH0746910B2 JP H0746910 B2 JPH0746910 B2 JP H0746910B2 JP 62100395 A JP62100395 A JP 62100395A JP 10039587 A JP10039587 A JP 10039587A JP H0746910 B2 JPH0746910 B2 JP H0746910B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- phase difference
- voltage
- ultrasonic motor
- vibrating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 6
- 238000005452 bending Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 239000002783 friction material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
の駆動方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving an ultrasonic motor that uses piezoelectric material to generate a driving force.
従来の技術 近年圧電セラミック等の圧電体を用いた振動体に弾性振
動を励振し、これを駆動力とした超音波モータが注目さ
れている。2. Description of the Related Art In recent years, attention has been paid to ultrasonic motors which use elastic vibration as a driving force by exciting elastic vibration in a vibrating body using a piezoelectric body such as a piezoelectric ceramic.
以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。Hereinafter, a conventional technique of an ultrasonic motor will be described with reference to the drawings.
第5図は円環形超音波モータの斜視図であり、円環形の
弾性体1の円環面の一方に圧電体として円環形圧電セラ
ミック2を貼合せて振動体3を構成している。4は耐磨
耗性材料の摩擦材、5は弾性体であり、互いに貼合せら
れて移動体6を構成している。移動体6は摩擦材4を介
して振動体3と接触している。圧電体2に電界を印加す
ると振動体3の周方向に曲げ振動の進行波が励起され、
移動体6を駆動する。尚、同図中の矢印は移動体6の回
転方向を示す。FIG. 5 is a perspective view of a ring-shaped ultrasonic motor, and a ring-shaped piezoelectric ceramic 2 is bonded to one of the ring-shaped surfaces of a ring-shaped elastic body 1 as a piezoelectric body to form a vibrating body 3. Reference numeral 4 is a friction material made of a wear resistant material, and 5 is an elastic body, which are bonded to each other to form a moving body 6. The moving body 6 is in contact with the vibrating body 3 via the friction material 4. When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 3,
The moving body 6 is driven. The arrow in the figure indicates the rotation direction of the moving body 6.
第6図は第5図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に9波の弾性波がのるようにしてある。同図において、
AおよびBはそれぞれ2分の1波長相当の小領域から成
る電極群で、Cは4分の3波長、Dは4分の1波長の長
さの電極である。電極CおよびDは電極群AとBに位置
的に4分の1波長(=90度)の位相差を作っている。電
極AとB内の隣り合う小電極部は互いに反対に厚み方向
に分極されている。圧電体2の弾性体1との接着面は、
第6図に示めされた面と反対の面であり、電極はベタ電
極である。使用時には、電極群AおよびBは第6図に斜
線で示されたように、それぞれ短絡して用いられる。FIG. 6 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine elastic waves are arranged in the circumferential direction. In the figure,
Each of A and B is an electrode group including a small region corresponding to a half wavelength, C is a quarter wavelength, and D is a quarter wavelength electrode. The electrodes C and D have a phase difference of a quarter wavelength (= 90 degrees) between the electrode groups A and B. Adjacent small electrode portions in the electrodes A and B are polarized in the thickness direction opposite to each other. The bonding surface of the piezoelectric body 2 with the elastic body 1 is
It is a surface opposite to the surface shown in FIG. 6, and the electrode is a solid electrode. In use, the electrode groups A and B are short-circuited and used as indicated by the hatched lines in FIG.
以上のように構成された超音波モータの圧電体2の電極
AおよびBに V1=V0×sin(ωt) …(1) V2=V0×cos(ωt) …(2) ただし、V0:電圧の瞬時値 ω:角周波数 t:時間 で表される電圧V1およびV2をそれぞれ印加すれば、振動
体3には ξ=ξ0×(cos(ωt)×cos(kx) +sin(ωt)×sin(kx)) =ξ0×cos(ωt−kx) …(2) ただし ξ:曲げ振動の振幅値 ξ0:曲げ振動の瞬時値 k:波数(2π/λ) λ:波長 x:位置 で表せる、円周方向に進行する曲げ振動が励起される。V 1 = V 0 × sin (ωt) (1) V 2 = V 0 × cos (ωt) (2) on the electrodes A and B of the piezoelectric body 2 of the ultrasonic motor configured as described above, V 0 : Instantaneous value of voltage ω: Angular frequency t: By applying voltages V 1 and V 2 represented by time, respectively, the vibrating body 3 has ξ = ξ 0 × (cos (ωt) × cos (kx) + Sin (ωt) × sin (kx)) = ξ 0 × cos (ωt−kx) (2) where ξ: amplitude value of bending vibration ξ 0 : instantaneous value of bending vibration k: wave number (2π / λ) λ: Wavelength x: Excitation of the bending vibration, which can be expressed by the position, is performed in the circumferential direction.
第7図は振動体3の表面のA点が進行波の励起によっ
て、長軸2w、短軸2uの楕円運動をし、振動体3上に加圧
して設置された移動体6が、楕円の頂点近傍で接触する
ことにより、摩擦力により波の進行方向とは逆方向にv
=ω×uの速度で運動する様子を示している。FIG. 7 shows that the point A on the surface of the vibrating body 3 makes an elliptic motion of the long axis 2w and the short axis 2u by the excitation of the traveling wave, and the moving body 6 installed by pressing on the vibrating body 3 has an elliptical shape. By contacting in the vicinity of the apex, frictional force causes v in the direction opposite to the traveling direction of the wave.
It shows that the object moves at a speed of ω × u.
発明が解決しようとする問題点 上記の楕円軌跡の短軸は、振動体3の形状が決まれば、
曲げ振動の振幅に比例しているので、速度を大きくする
ためには波の振幅を大きくしなければならない。また、
低電圧駆動で大きな振幅を得るためには、振動体の共振
周波数近傍で駆動しなければならない。ところが振動体
の共振特性は温度や負荷の変動によって変化するので、
従来のように一定周波数で駆動したのでは、駆動周波数
と共振周波数の相対的関係が変化して超音波モータの特
性が変化してしまう。また、超音波モータの振動体の共
振特性は、負荷が同じでも起動時と通常動作時では異な
る。そして、特に起動時に負荷の大きいときは振動体の
電気入力端子からみたインピーダンスの周波数特性が大
きく変化し、起動ができなくなるという問題点がある。Problems to be Solved by the Invention If the shape of the vibrating body 3 is determined, the minor axis of the above elliptical locus is
Since it is proportional to the bending vibration amplitude, the wave amplitude must be increased in order to increase the velocity. Also,
In order to obtain a large amplitude with low voltage driving, it is necessary to drive near the resonance frequency of the vibrating body. However, the resonance characteristics of the vibrating body change due to changes in temperature and load, so
If the driving is performed at a constant frequency as in the conventional case, the relative relationship between the driving frequency and the resonance frequency changes and the characteristics of the ultrasonic motor change. Further, the resonance characteristics of the vibrating body of the ultrasonic motor are different at the time of startup and at the time of normal operation even if the load is the same. Then, particularly when the load is large at the time of starting, there is a problem that the frequency characteristic of the impedance seen from the electric input terminal of the vibrating body changes greatly and the starting cannot be performed.
本発明はかかる点に鑑みてなされたもので、温度や負荷
が変化しても、常に安定な起動と通常動作をする超音波
モータを提供することを目的としている。The present invention has been made in view of the above points, and an object of the present invention is to provide an ultrasonic motor that always performs stable start-up and normal operation even when temperature or load changes.
問題点を解決するための手段 振動体の駆動電圧と流入電流の第1と第2の位相差を設
定し、通常動作時には動作位相差が第1の設定位相差近
傍になるように駆動電圧の周波数を制御し、駆動電圧と
流入電流の位相差が第2の設定値以上になったとき、す
なわち起動の時もしくは温度や負荷が大きく変化したと
きに振動体の駆動周波数を掃引し、第1の設定値近傍の
駆動周波数で掃引を停止し、動作位相差が第1の設定位
相差近傍になるように前記駆動電圧の周波数制御を再開
する。Means for Solving Problems The first and second phase differences between the drive voltage of the vibrator and the inflow current are set, and the drive voltage of the drive voltage is adjusted so that the operation phase difference is close to the first set phase difference during normal operation. When the phase difference between the drive voltage and the inflow current exceeds the second set value by controlling the frequency, that is, the drive frequency of the vibrating body is swept when the phase difference between the drive voltage and the inflow current exceeds the second set value, that is, when the temperature or the load largely changes. The sweep is stopped at a drive frequency near the set value of, and the frequency control of the drive voltage is restarted so that the operating phase difference is near the first set phase difference.
作 用 温度や負荷の変動によって振動体の共振特性が変化し
て、その結果、振動体の共振周波数と駆動周波数の相対
関係が変化しても、動作位相差が第1の設定位相差近傍
になるように前記駆動電圧の周波数を制御することによ
り、駆動周波数の制御により前記相対的関係が一定に保
たれる。また、起動時および温度や負荷が大きく変化し
て駆動電圧と流入電流の位相差が第2の設定値以上にな
った時には、振動体の駆動電圧の周波数を高い方から低
い方へ掃引し、第1の設定値近傍の駆動周波数で掃引を
停止して、前記の制御が確実に実行できる範囲を見いだ
した後、動作位相差が第1の設定位相差近傍になるよう
に駆動電圧の周波数制御を再開することにより常に安定
な動作ができる。Even if the resonance characteristics of the vibrating body change due to changes in operating temperature and load, and as a result, the relative relationship between the resonance frequency of the vibrating body and the drive frequency changes, the operating phase difference is close to the first set phase difference By controlling the frequency of the drive voltage so that the above, the relative relationship is kept constant by controlling the drive frequency. When the phase difference between the drive voltage and the inflow current becomes equal to or larger than the second set value at the time of start-up or when the temperature or the load largely changes, the frequency of the drive voltage of the vibrating body is swept from the higher side to the lower side, After stopping the sweep at a drive frequency near the first set value and finding a range in which the above-mentioned control can be reliably executed, frequency control of the drive voltage is performed so that the operating phase difference is near the first set phase difference. A stable operation can always be performed by restarting.
実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図は本発明の超音波モータの駆動方法を実現する具
体回路のブロック図である。この回路が動作を開始する
と、つまり超音波モータの起動時には、電圧制御発振器
7は制御端子Cに入力された制御電圧に従って発振す
る。この時の制御電圧は加算器8により、初期設定値O
がそのまま出力される。電圧制御発振器7の出力は2分
割され、一方は90度位相器9を通して電力増幅器10に、
他方はそのまま電力増幅器11にそれぞれ入力されて、振
動体3を駆動するのに必要な値にまで増幅される。電力
増幅器10、11の出力は圧電体2にそれぞれ印加されて、
振動体を駆動する。FIG. 1 is a block diagram of a specific circuit for realizing the ultrasonic motor driving method of the present invention. When this circuit starts operating, that is, when the ultrasonic motor is activated, the voltage controlled oscillator 7 oscillates according to the control voltage input to the control terminal C. The control voltage at this time is set by the adder 8 to the initial set value O
Is output as is. The output of the voltage controlled oscillator 7 is divided into two, one of which is passed through the 90-degree phase shifter 9 to the power amplifier 10,
The other is directly input to the power amplifier 11 and amplified to a value required to drive the vibrating body 3. The outputs of the power amplifiers 10 and 11 are applied to the piezoelectric body 2 respectively,
Drive the vibrating body.
圧電体の一方の入力端子には抵抗Rが接続されており、
圧電体に流れる電流を抵抗Rの両端電圧により、電流検
出器13で検出する。また、電圧検出器12は圧電体2に印
加される駆動電圧を検出する。位相差検出器14は電流検
出器13と電圧検出器12の出力から、電流と電圧の位相差
に比例した電圧を発生する。位相比較器15は、位相差検
出器14の出力と動作設定値P1を比較し、その差に比例す
る電圧を出力する。ただし、差が0の時は出力電圧は0
になるようにしている。従って、加算器8には設定電圧
Oと上記位相差に比例した電圧が入力され、2つの電圧
の和が出力される。加算器8の出力電圧は電圧制御発振
器7の制御端子Cに入力され、電圧制御発振器7は、設
定値P1と駆動時の位相差の差を小さくするように、駆動
周波数を変える。A resistor R is connected to one input terminal of the piezoelectric body,
The current flowing in the piezoelectric body is detected by the current detector 13 by the voltage across the resistor R. Further, the voltage detector 12 detects the drive voltage applied to the piezoelectric body 2. The phase difference detector 14 generates a voltage proportional to the phase difference between the current and the voltage from the outputs of the current detector 13 and the voltage detector 12. The phase comparator 15 compares the output of the phase difference detector 14 with the operation set value P 1 and outputs a voltage proportional to the difference. However, when the difference is 0, the output voltage is 0
I am trying to become. Therefore, the set voltage O and a voltage proportional to the phase difference are input to the adder 8, and the sum of the two voltages is output. The output voltage of the adder 8 is input to the control terminal C of the voltage controlled oscillator 7, and the voltage controlled oscillator 7 changes the driving frequency so as to reduce the difference between the set value P 1 and the phase difference during driving.
第2図は、第1図の具体回路の説明のための圧電体に流
入する電流と、駆動電圧と電流の位相差の周波数特性で
ある。同図において、実線は超音波モータのある動作時
の特性を表し、点線は別の動作時の特性を表わしてい
る。f0は設定電圧Oに対応する超音波モータの起動時の
駆動周波数であり、P1は動作設定値で、位相比較器15に
よりP0−P1に比例した電圧O1が出力される。電圧O1は制
御器17によりそのまま出力されて、設定電圧Oと加算器
8により加算され電圧制御発振器7の制御端子Cに入力
される。この時、P0−P1が正なら駆動周波数を下げ、P0
−P1が負なら駆動周波数を上げれば、位相差がP1になる
ように制御できる。従って、P1に対する周波数f1での電
流値i1で振動体を駆動する。駆動周波数が一定ならば、
温度や負荷の変化により振動体の特性が同図の点線のよ
うに変化すれば、流入電流値はi2となり、超音波モータ
の速度が大きく変化する。しかし、第1図に示した駆動
回路によれば、駆動時での位相差をP1近傍にするように
制御が働くので、駆動周波数はf2に変化し、その時の電
流値はi3となり電流値の変化を小さくできる。従って、
超音波モータの特性は温度や負荷に対して安定である。FIG. 2 is a frequency characteristic of the current flowing into the piezoelectric body and the phase difference between the drive voltage and the current for the purpose of explaining the specific circuit of FIG. In the figure, the solid line represents the characteristics of the ultrasonic motor during one operation, and the dotted line represents the characteristics during another operation. f 0 is a drive frequency at the time of starting the ultrasonic motor corresponding to the set voltage O, P 1 is an operation set value, and the phase comparator 15 outputs a voltage O 1 proportional to P 0 −P 1 . The voltage O 1 is output as it is by the controller 17, is added to the set voltage O by the adder 8, and is input to the control terminal C of the voltage controlled oscillator 7. In this case, lowering the driving frequency if P 0 -P 1 is positive, P 0
If −P 1 is negative, the phase difference can be controlled to P 1 by increasing the drive frequency. Therefore, the vibrating body is driven with the current value i 1 at the frequency f 1 with respect to P 1 . If the drive frequency is constant,
If the characteristics of the vibrating body change as indicated by the dotted line in the figure due to changes in temperature and load, the inflow current value becomes i 2 , and the speed of the ultrasonic motor changes greatly. However, according to the drive circuit shown in FIG. 1, the control works so that the phase difference at the time of driving becomes close to P 1 , so the drive frequency changes to f 2 and the current value at that time becomes i 3 . The change in current value can be reduced. Therefore,
The characteristics of the ultrasonic motor are stable against temperature and load.
超音波モータの共振周波数が、第3図の点線で示したよ
うに大きく低下すると、起動時の周波数f0での位相はP0
からP3に変化する。ところが位相差P3近傍では、駆動周
波数による位相差の変化が極めて小さく、つまりP3−P1
が極めて小さく、前記のように駆動時での位相差をP1近
傍にするように制御することができない。When the resonance frequency of the ultrasonic motor is greatly reduced as shown by the dotted line in FIG. 3, the phase at the frequency f 0 at the start is P 0.
Changes to P 3 . However, in the vicinity of the phase difference P 3 , the change in the phase difference due to the drive frequency is extremely small, that is, P 3 −P 1
Is extremely small, and it is impossible to control the phase difference at the time of driving to be near P 1 as described above.
超音波モータの共振周波数が、第4図の点線で示したよ
うに大きく上昇すると、起動時に設定した駆動電圧の周
波数f0での位相はP0からP4に変化する。ところが、超音
波モータの振動体を構成する圧電体への駆動電圧と流入
する電流の位相差は、共振周波数近傍を境として同図に
示すように傾きの符号が変わり、動作設定値である位相
差P1は2つの周波数でとることになり、起動時に設定し
た駆動周波数が、動作設定点P1に対応する2つの周波数
のうち低い周波数よりも低くなると、差P4−P1が正とな
り常に駆動周波数をより低くするように制御し、位相差
は設定値P1に落ち着くことはできない。When the resonance frequency of the ultrasonic motor greatly increases as shown by the dotted line in FIG. 4, the phase of the drive voltage set at start-up at the frequency f 0 changes from P 0 to P 4 . However, the phase difference between the driving voltage and the current flowing into the piezoelectric body that constitutes the oscillator of the ultrasonic motor changes the sign of the slope as shown in the same figure at the vicinity of the resonance frequency as shown in FIG. The phase difference P 1 is taken at two frequencies, and when the drive frequency set at startup becomes lower than the lowest frequency of the two frequencies corresponding to the operation set point P 1 , the difference P 4 −P 1 becomes positive. The drive frequency is always controlled to be lower, and the phase difference cannot settle to the set value P 1 .
故に、駆動電圧と電流の位相差が、第2の設定値P2以上
になったことを位相比較器16で検出したら、位相比較器
16の出力を受けて制御器17は位相比較器15の出力を切断
し、駆動周波数を掃引するための信号を出力する。第2
図の掃引開始周波数f3は前述の起動周波数f0に予想され
る最も大きい周波数変化を加算した周波数に設定する。
制御器17の出力を受けて、第2図、第3図、第4図に示
すように、動作設定点P1に対応する2つの周波数のう
ち、共振周波数よりも高い周波数側の動作設定点P1に設
定されるように、電圧制御発振器7は駆動周波数を高い
ほうから掃引する。位相比較器15の出力により位相差が
P1に等しくなれば、制御器17は駆動周波数の掃引信号の
出力を停止し、前記の位相差をP1にする制御にもどる。Therefore, if the phase comparator 16 detects that the phase difference between the drive voltage and the current is equal to or greater than the second set value P 2 , the phase comparator 16
Upon receiving the output of 16, the controller 17 disconnects the output of the phase comparator 15 and outputs a signal for sweeping the drive frequency. Second
The sweep start frequency f 3 in the figure is set to the frequency obtained by adding the largest expected frequency change to the above-mentioned start frequency f 0 .
In response to the output of the controller 17, as shown in FIGS. 2, 3, and 4, of the two frequencies corresponding to the operation set point P 1 , the operation set point on the frequency side higher than the resonance frequency. As set to P 1 , the voltage controlled oscillator 7 sweeps the driving frequency from the higher side. The phase difference is output by the output of the phase comparator 15.
When it becomes equal to P 1 , the controller 17 stops the output of the sweep signal of the driving frequency and returns to the control for setting the phase difference to P 1 .
本発明によれば、温度や負荷が変化しても、常に安定な
起動と通常動作をする超音波モータを提供できる。According to the present invention, it is possible to provide an ultrasonic motor that always performs stable start-up and normal operation even if temperature or load changes.
発明の効果 本発明によれば、温度や負荷が変動しても、常に安定な
起動と通常動作をする超音波モータを提供できる。ま
た、本願発明では、第2図〜第4図に示すように、周波
数変化に対する位相差変化が緩やかな共振周波数よりも
高い周波数領域を選定して、その周波数領域において所
定位相差となるように周波数制御を行っているので、安
定した制御が行え、超音波モータを安定に動作できる。EFFECTS OF THE INVENTION According to the present invention, it is possible to provide an ultrasonic motor that always performs stable start-up and normal operation even if temperature or load changes. Further, in the present invention, as shown in FIG. 2 to FIG. 4, a frequency region in which the phase difference change with respect to the frequency change is higher than the resonance frequency is selected so that the predetermined phase difference is obtained in the frequency region. Since frequency control is performed, stable control can be performed and the ultrasonic motor can be operated stably.
第1図は本発明の超音波モータの駆動方法を実現する具
体回路のブロック図、第2図は通常動作時の駆動電流、
電圧と電流の位相差周波数特性図、第3図は振動体の駆
動電流、電圧と電流の位相差周波数特性が大きく低下し
た時の周波数特性図、第4図は振動体の駆動電流、電圧
と電流の位相差周波数特性が大きく上昇した時の周波数
特性図、第5図は円環形超音波モータの切り欠き斜視
図、第6図は第5図の超音波モータに用いた圧電体の形
状と電極構造を示す平面図、第7図は超音波モータの動
作原理の説明図である。 7……電圧制御発振器、8……加算器、9……90度移相
器、10、11……電力増幅器、12……電圧検出器、13……
電流検出器、14……位相差検出器、15、16……位相比較
器、17……制御器。FIG. 1 is a block diagram of a specific circuit for realizing the ultrasonic motor driving method of the present invention, and FIG. 2 is a driving current during normal operation.
Phase difference frequency characteristic diagram of voltage and current, FIG. 3 is a drive current of the vibrating body, frequency characteristic diagram when the phase difference frequency characteristic of the voltage and current is greatly reduced, and FIG. FIG. 5 is a cutaway perspective view of the annular ultrasonic motor, and FIG. 6 is the shape of the piezoelectric body used in the ultrasonic motor of FIG. FIG. 7 is a plan view showing the electrode structure, and FIG. 7 is an explanatory diagram of the operating principle of the ultrasonic motor. 7 ... Voltage controlled oscillator, 8 ... Adder, 9 ... 90 degree phase shifter, 10, 11 ... Power amplifier, 12 ... Voltage detector, 13 ...
Current detector, 14 ... phase difference detector, 15, 16 ... phase comparator, 17 ... controller.
Claims (1)
と弾性体から構成される振動体に弾性進行波を励振する
ことにより、前記振動体上に接触して設置された移動体
を移動させる超音波モータ駆動方法であって、 前記圧電体の前記駆動電圧と流入電流の第1と第2の位
相差を設定し、 通常動作時には、前記駆動電圧と前記流入電流の位相差
が前記第1の設定位相差近傍になるように、前記振動体
の共振周波数よりも高い周波数領域において前記駆動電
圧の周波数を制御し、 前記駆動電圧と前記流入電流の位相差が前記第2の設定
値以上になったとき、前記駆動電圧の周波数を高い周波
数側から低い周波数側に向けて掃引し、前記位相差が前
記第1の設定値近傍になる、前記振動体の共振周波数よ
りも高い周波数で前記掃引を停止し、その後、位相差が
前記第1の設定位相差近傍になるように前記振動体の共
振周波数よりも高い周波数領域において前記駆動電圧の
周波数を制御する前記通常動作時の制御を再開すること
を特徴とする超音波モータ駆動方法。1. A moving body placed in contact with the vibrating body by driving the piezoelectric body with an alternating voltage to excite an elastic traveling wave into the vibrating body composed of the piezoelectric body and the elastic body. Is a method of driving an ultrasonic motor to move a first and a second phase difference between the drive voltage and the inflow current of the piezoelectric body, and the phase difference between the drive voltage and the inflow current is set during normal operation. The frequency of the drive voltage is controlled in a frequency range higher than the resonance frequency of the vibrating body so as to be close to the first set phase difference, and the phase difference between the drive voltage and the inflow current is set to the second set. When the frequency becomes equal to or higher than the value, the frequency of the driving voltage is swept from the high frequency side to the low frequency side, and the phase difference becomes close to the first set value. The frequency higher than the resonance frequency of the vibrating body. Stop the sweep at The control during the normal operation for controlling the frequency of the driving voltage in a frequency region higher than the resonance frequency of the vibrating body so that the phase difference is close to the first set phase difference is restarted. Ultrasonic motor driving method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62100395A JPH0746910B2 (en) | 1987-04-23 | 1987-04-23 | Ultrasonic motor driving method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62100395A JPH0746910B2 (en) | 1987-04-23 | 1987-04-23 | Ultrasonic motor driving method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63265577A JPS63265577A (en) | 1988-11-02 |
JPH0746910B2 true JPH0746910B2 (en) | 1995-05-17 |
Family
ID=14272796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62100395A Expired - Lifetime JPH0746910B2 (en) | 1987-04-23 | 1987-04-23 | Ultrasonic motor driving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0746910B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6110194A (en) * | 1984-06-22 | 1986-01-17 | Iseki & Co Ltd | Oil feeder in agricultural implement and machinery |
JP2663380B2 (en) * | 1984-11-19 | 1997-10-15 | マルコン電子 株式会社 | Piezoelectric ultrasonic linear motor |
-
1987
- 1987-04-23 JP JP62100395A patent/JPH0746910B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63265577A (en) | 1988-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007413B1 (en) | Drive method for ultrasonic motor | |
JPH0528072B2 (en) | ||
JP2548248B2 (en) | Ultrasonic motor controller | |
JP2574293B2 (en) | Ultrasonic motor driving method | |
JP2563351B2 (en) | Ultrasonic motor driving method | |
JP2583904B2 (en) | Ultrasonic motor driving method | |
JPH0746910B2 (en) | Ultrasonic motor driving method | |
JP2558709B2 (en) | Ultrasonic motor drive | |
JPS61221584A (en) | Drive circuit of vibration wave motor | |
JP2636280B2 (en) | Driving method of ultrasonic motor | |
JP2506895B2 (en) | Ultrasonic motor controller | |
JP2543106B2 (en) | Ultrasonic motor drive | |
JP3260041B2 (en) | Ultrasonic motor driving method and driving circuit | |
JPH01298967A (en) | Driver for ultrasonic actuator | |
JP2506896B2 (en) | Ultrasonic motor drive | |
JPH0710187B2 (en) | Ultrasonic motor driving method | |
JPS6292782A (en) | Ultrasonic motor device | |
JPH04322179A (en) | Method of driving ultrasonic motor | |
JPS63299788A (en) | Ultrasonic motor driving device | |
JPH07108103B2 (en) | Ultrasonic motor device | |
JP3141525B2 (en) | Ultrasonic motor drive control method | |
JPH07131987A (en) | Drive control circuit for ultrasonic motor | |
JPS6292781A (en) | Ultrasonic motor device | |
JP2636366B2 (en) | Ultrasonic actuator control device | |
JP2604731B2 (en) | Ultrasonic motor drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |