JPH0746069B2 - Electrostatic Dissolution Type Pressure Sensor - Google Patents

Electrostatic Dissolution Type Pressure Sensor

Info

Publication number
JPH0746069B2
JPH0746069B2 JP17323787A JP17323787A JPH0746069B2 JP H0746069 B2 JPH0746069 B2 JP H0746069B2 JP 17323787 A JP17323787 A JP 17323787A JP 17323787 A JP17323787 A JP 17323787A JP H0746069 B2 JPH0746069 B2 JP H0746069B2
Authority
JP
Japan
Prior art keywords
capacitance
electrode
pressure sensor
type pressure
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17323787A
Other languages
Japanese (ja)
Other versions
JPS6416943A (en
Inventor
茂樹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17323787A priority Critical patent/JPH0746069B2/en
Publication of JPS6416943A publication Critical patent/JPS6416943A/en
Publication of JPH0746069B2 publication Critical patent/JPH0746069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2枚の平行平板により形成される静電容量
が、加えられた圧力に応じて変化する静電容量型圧力セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type pressure sensor in which a capacitance formed by two parallel flat plates changes according to an applied pressure.

従来の技術 2枚の平行平板により形成された静電容量が、加えられ
た圧力により変化することを利用した静電容量型圧力セ
ンサにおいて、電極の径を特定の値に選択する先行技術
としては、特開昭58−198739号公報に記載の静電容量型
圧力センサがある。これはダイアフラムの中心部に感圧
容量電極を、周辺部に基準容量電極を形成し、両者の容
量の比を計測して温度依存性を取り除く方式において、
基準容量電極と絶縁層(ガラス層)との距離を一定範囲
(4〜15%)に設定することで、基準電極の絶縁層との
浮遊容量を抑えようとするものである。
2. Description of the Related Art In a capacitance type pressure sensor that utilizes the fact that the capacitance formed by two parallel flat plates changes depending on the applied pressure, as a prior art for selecting the electrode diameter to a specific value, , JP-A-58-198739, there is a capacitance type pressure sensor. In this method, a pressure-sensitive capacitance electrode is formed in the center of the diaphragm, and a reference capacitance electrode is formed in the periphery, and the ratio of both capacitances is measured to eliminate temperature dependence.
By setting the distance between the reference capacitance electrode and the insulating layer (glass layer) within a certain range (4 to 15%), the stray capacitance between the reference electrode and the insulating layer is suppressed.

発明が解決しようとする問題点 ところがこのような従来の構成では、温度依存性を取り
除くことはできても、感圧容量の感度(荷重−静電容量
特性)を改善することはできない。つまり上記公報に示
す従来例は、自動車用に搭載するものであり、厳しい温
度特性の要求のみを改善することに苦心しており、セン
サの感度そのものについては何ら考慮が加えられていな
い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional configuration, the temperature dependence can be removed, but the sensitivity of the pressure-sensitive capacitance (load-capacitance characteristic) cannot be improved. That is, the conventional example shown in the above publication is to be mounted on an automobile, and is struggling to improve only the requirement of severe temperature characteristics, and no consideration is given to the sensitivity itself of the sensor.

本発明は、従来例に示された電極の設計に制約を加える
という着想を参考にし、センサの感度を高めることをめ
ざすものである。
The present invention aims to increase the sensitivity of the sensor with reference to the idea of limiting the electrode design shown in the conventional example.

問題点を解決するための手段 本発明は、上記問題点を解決するために、感圧容量電極
の径rと、絶縁層の径Rとの比r/Rを33%〜75%の間に
選択するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a ratio r / R of a diameter r of a pressure-sensitive capacitance electrode and a diameter R of an insulating layer between 33% and 75%. It is something to choose.

作用 本発明の静電容量型圧力センサは、感圧容量電極の径r
と、絶縁層の径Rとの比r/Rを33%〜75%の間に選択す
ることにより、感圧容量として寄与していない電極周辺
部を削ぎ落とし、無荷重時の初期容量を低減させること
で、感圧容量の感度(荷重−静電容量特性)を改善する
ことができる。
The capacitance-type pressure sensor of the present invention has a diameter r of the pressure-sensitive capacitance electrode.
By selecting the ratio r / R to the insulating layer diameter R between 33% and 75%, the peripheral area of the electrode that does not contribute to the pressure-sensitive capacitance is scraped off, reducing the initial capacitance when no load is applied. By doing so, the sensitivity of pressure-sensitive capacitance (load-capacitance characteristic) can be improved.

実施例 以下、本発明の一実施例の静電容量型圧力センサを図面
を参照して説明する。
Embodiment Hereinafter, a capacitance type pressure sensor according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す静電容量型圧力センサ
の分解斜視図、第2図は同断面模式図である。
FIG. 1 is an exploded perspective view of a capacitance type pressure sensor showing one embodiment of the present invention, and FIG. 2 is a schematic sectional view of the same.

両図において、ダイアフラム1はその内面に電極2を備
えており、絶縁層3を介してある距離をもってダイアフ
ラム4と対向している。一方、ダイアフラム4にも電極
5が設けられており、このわずかな距離をもって対向す
る電極2と電極5との間に静電容量が形成される。
In both figures, the diaphragm 1 is provided with an electrode 2 on its inner surface, and faces the diaphragm 4 with a certain distance through the insulating layer 3. On the other hand, the diaphragm 4 is also provided with an electrode 5, and a capacitance is formed between the electrode 2 and the electrode 5 facing each other with this slight distance.

さてダイアフラム1および4は、アルミナ焼結体によつ
て構成され、内面の電極2および電極5は金ペーストを
アルミナ焼結体に印刷後、焼成により形成される。電極
2および5からは引き出し部6、7を経て半田づけ電極
8、9に接続される。
The diaphragms 1 and 4 are made of an alumina sintered body, and the electrodes 2 and 5 on the inner surface are formed by printing a gold paste on the alumina sintered body and then firing it. The electrodes 2 and 5 are connected to the soldering electrodes 8 and 9 via the lead portions 6 and 7.

絶縁層3はビーズ入りガラスによって構成され、ビーズ
の粒径によってギャップが決定される。ビーズ径は、例
えば45ミクロン程度が選択され、電極が焼成された後、
電極の上に重ねて印刷される。次いで2枚のダイアフラ
ムは重ねられ、荷重を加えながら焼成されて完成する。
The insulating layer 3 is made of glass containing beads, and the gap is determined by the particle size of the beads. The bead diameter is selected to be, for example, about 45 microns, and after the electrode is baked,
Printed over the electrodes. The two diaphragms are then stacked and fired with a load to complete.

半田電極8、9は、電極2、5の引き出し部6、7上に
構成され、銀パラジウムを塗布して形成される。静電容
量の変化は、この半田電極8、9を経て、リード線等で
検知回路に入力される。
The solder electrodes 8 and 9 are formed on the lead portions 6 and 7 of the electrodes 2 and 5, and are formed by applying silver palladium. The change in electrostatic capacitance is input to the detection circuit through a lead wire or the like through the solder electrodes 8 and 9.

さて第3図はダイアフラム1の中央に荷重Pを加えた時
のダイアフラム1のたわみ方をコンピュータでシミュレ
ーションした結果を示す線図である。
Now, FIG. 3 is a diagram showing the result of computer simulation of how the diaphragm 1 deflects when a load P is applied to the center of the diaphragm 1.

図中のA、B、C、Dは第2図に示す通り、絶縁層3と
ダイアフラム1および4が接する固定点であり、本デー
タを算出したサンプルの条件は、ギャップ(粒径)が45
μm、アルミナ焼結体より成るダイアフラム1の厚みが
0.5mmである。
As shown in FIG. 2, A, B, C, and D in the figure are fixed points where the insulating layer 3 and the diaphragms 1 and 4 are in contact with each other, and the condition of the sample for which this data was calculated is that the gap (particle size) is 45
μm, the thickness of the diaphragm 1 made of alumina sintered body is
It is 0.5 mm.

第3図を見れば、実際に大きくたわんでいるのはダイア
フラムの中央部に限られ、周辺は動きが少ない。つまり
電極の周辺部は、感度にはほとんど寄与していない。と
ころが無荷重時の静電容量Coは Co=εS/d ただし ε:誘電率 S:電極面積 d:ギャップ で表され、当然周辺部の電極も無荷重時の初期容量Coに
は大きな影響を与える。
As shown in FIG. 3, it is only the central portion of the diaphragm that is actually largely deflected, and the peripheral portion is hardly moved. That is, the peripheral portion of the electrode hardly contributes to the sensitivity. However, the electrostatic capacitance Co under no load is Co = εS / d where ε: Dielectric constant S: Electrode area d: Gap. Naturally, the peripheral electrodes also have a great influence on the initial capacitance Co under no load. .

つまり周辺部の電極は、初期容量を増大させるが、感圧
容量としては寄与度が低い。そこで周辺の電極を削り取
れば、感度を向上させることができる。
That is, the electrodes in the peripheral portion increase the initial capacitance, but the contribution to the pressure-sensitive capacitance is low. Therefore, if the peripheral electrodes are scraped off, the sensitivity can be improved.

第4図は検知回路の一実施例として、静電容量型圧力セ
ンサを、発振回路に取り付けた状態を示す。発振回路は
オペアンプ10を2回路用いた三角波・方形波発振器であ
り、圧力センサCsが三角波回路に接続され、出力端Vout
にCsに応じた周波数の方形波を出力する。
FIG. 4 shows a state in which a capacitance type pressure sensor is attached to an oscillation circuit as an example of the detection circuit. The oscillating circuit is a triangular wave / square wave oscillator using two circuits of the operational amplifier 10, the pressure sensor Cs is connected to the triangular wave circuit, and the output terminal Vout
Outputs a square wave with a frequency corresponding to Cs.

第5図はかかる回路における圧力センサの初期容量と回
路感度の関係を示したものである。図より、初期容量を
減らせば回路感度は向上することがわかる。すなわち電
極の周辺部は感圧容量としてはほとんど寄与しないばか
りか、初期容量を増大させ、容量変化量を相対的に低下
せしめているという形で感度を低下させる悪い働きがあ
ることが、図より明らかである。
FIG. 5 shows the relationship between the initial capacitance of the pressure sensor and the circuit sensitivity in such a circuit. From the figure, it can be seen that the circuit sensitivity is improved by reducing the initial capacitance. That is, not only does the peripheral part of the electrode not contribute as a pressure-sensitive capacitance, but it also has a bad function of reducing the sensitivity by increasing the initial capacitance and relatively reducing the amount of capacitance change. it is obvious.

さて従来の静電容量型センサとして、ギャップ45μm、
電極径Φ18mm、絶縁層径Φ24mmなるものが実用化され、
電子レンジを中心に搭載されている。
Now, as a conventional capacitance type sensor, a gap of 45 μm,
An electrode with a diameter of 18 mm and an insulating layer of 24 mm has been put into practical use.
It is installed mainly in the microwave oven.

これは初期容量が40〜50pF、回路感度が1.5Hz/gであ
り、第5図より感度面では決して良好なものとは言えな
い。
This has an initial capacitance of 40 to 50 pF and a circuit sensitivity of 1.5 Hz / g, which is far from satisfactory in terms of sensitivity as shown in FIG.

本発明では、この従来例r/R=75%よりも電極径rを相
対的に小さくすることで、感度の向上を図る。
In the present invention, the sensitivity is improved by making the electrode diameter r relatively smaller than the conventional example r / R = 75%.

一方、r/R値をどんどん小さくしていくと、第5図の斜
線部分に示すように、出力がフラフラと定まらずに、見
かけ上、回路感度が不安定になる。これは電極径が小さ
くなりすぎて、回路の浮遊容量が無視できなくなり、出
力が影響を受けてフラつくためである。このような浮遊
容量としては、通常数pF〜十数pF程度が考えられるの
で、初期容量はこの値よりも大きくとる必要がある。本
発明において、r/R比の下限を33%としたのは、この浮
遊容量に起因する感度の不安定さを避けるためである。
On the other hand, when the r / R value is made smaller and smaller, the output is not determined to be fluttering and the circuit sensitivity becomes apparently unstable, as shown by the shaded area in FIG. This is because the electrode diameter becomes too small, the stray capacitance of the circuit cannot be ignored, and the output is affected and fluctuates. Since such a stray capacitance is usually considered to be about several pF to several tens of pF, it is necessary to set the initial capacitance larger than this value. In the present invention, the lower limit of the r / R ratio is set to 33% in order to avoid the instability of sensitivity due to the stray capacitance.

さて以上の構成により、感圧容量の感度を高くしかも安
定にすることが可能となる。
Now, with the above configuration, the sensitivity of the pressure sensitive capacitance can be made high and stable.

発明の効果 以上のように本発明の静電容量型圧力センサは、感圧容
量電極の径rが絶縁層の径Rに対して、ある特定の値に
選択されるので、無荷重時の初期容量を安定に低減させ
ることができ、荷重時の感圧容量の変化量を相対的に大
きくすることができる。
EFFECTS OF THE INVENTION As described above, in the capacitance type pressure sensor of the present invention, the diameter r of the pressure sensitive capacitance electrode is selected to be a specific value with respect to the diameter R of the insulating layer. The capacity can be stably reduced, and the amount of change in the pressure-sensitive capacity under load can be relatively increased.

さらにこのような電極は金ペーストを印刷・焼成するこ
とで形成されるので、電極径を小さく構成することでコ
ストを大幅に低減できる。また金ペースト印刷時の塗り
ムラなど、工程上の問題発生件数も減らすことができ
る。
Further, since such an electrode is formed by printing and firing a gold paste, the cost can be significantly reduced by making the electrode diameter small. Further, it is possible to reduce the number of process problems such as uneven coating when printing gold paste.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す静電容量型圧力センサ
の分解斜視図、第2図は同断面模式図、第3図は同ダイ
アフラムの変位をシミュレートした結果を示す線図、第
4図は同検知回路の一実施例を示す発振回路、第5図は
同回路による静電容量型圧力センサの初期容量と回路感
度の関係を示す特性図である。 1……ダイアフラム、2……電極、3……絶縁層、4…
…ダイアフラム、5……電極、r……電極径、R……絶
縁層径。
FIG. 1 is an exploded perspective view of a capacitance type pressure sensor showing an embodiment of the present invention, FIG. 2 is a schematic sectional view of the same, and FIG. 3 is a diagram showing a result of simulating displacement of the diaphragm. FIG. 4 is an oscillator circuit showing an embodiment of the detection circuit, and FIG. 5 is a characteristic diagram showing the relationship between the initial capacitance and the circuit sensitivity of the capacitance type pressure sensor by the circuit. 1 ... diaphragm, 2 ... electrode, 3 ... insulating layer, 4 ...
... diaphragm, 5 ... electrode, r ... electrode diameter, R ... insulating layer diameter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対のダイアフラムと、これらダイアフラ
ムの内面に設けられた電極と、前記ダイアフラムの外周
部において両者を結合する絶縁層とより成り、前記電極
の径rと前記絶縁層の径Rとの比r/Rを33%〜75%の間
に選択したことを特徴とする静電容量型圧力センサ。
1. A pair of diaphragms, electrodes provided on the inner surfaces of the diaphragms, and an insulating layer connecting the two at the outer peripheral portion of the diaphragms, the diameter r of the electrodes and the diameter R of the insulating layer. The capacitance type pressure sensor is characterized in that the ratio r / R is selected between 33% and 75%.
JP17323787A 1987-07-10 1987-07-10 Electrostatic Dissolution Type Pressure Sensor Expired - Lifetime JPH0746069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17323787A JPH0746069B2 (en) 1987-07-10 1987-07-10 Electrostatic Dissolution Type Pressure Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17323787A JPH0746069B2 (en) 1987-07-10 1987-07-10 Electrostatic Dissolution Type Pressure Sensor

Publications (2)

Publication Number Publication Date
JPS6416943A JPS6416943A (en) 1989-01-20
JPH0746069B2 true JPH0746069B2 (en) 1995-05-17

Family

ID=15956695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17323787A Expired - Lifetime JPH0746069B2 (en) 1987-07-10 1987-07-10 Electrostatic Dissolution Type Pressure Sensor

Country Status (1)

Country Link
JP (1) JPH0746069B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843129A (en) * 1985-12-27 1989-06-27 Exxon Research & Engineering Company Elastomer-plastic blends
JPH03239939A (en) * 1990-02-16 1991-10-25 Toyoda Mach Works Ltd Capacity type pressure sensor
JP4863569B2 (en) * 2001-04-26 2012-01-25 京セラ株式会社 Package for pressure detection device
JP2002323393A (en) * 2001-04-26 2002-11-08 Kyocera Corp Package for pressure detector
JP4797829B2 (en) * 2006-06-26 2011-10-19 ヤマハ株式会社 Condenser microphone and method of manufacturing condenser microphone

Also Published As

Publication number Publication date
JPS6416943A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
US4151578A (en) Capacitive pressure transducer
JP2655534B2 (en) Manufacturing method of capacitive pressure sensor
US4893214A (en) Capacitance type sensitive element and a manufacturing method thereof
JP3757984B2 (en) Stabilized pressure sensor
JPS6034687B2 (en) Pressure electronic conversion element
US4531415A (en) Differential pressure transducer
JPH03183963A (en) Accelerometer
JPS58211617A (en) Pressure transducer
JPS6140529A (en) Pressure and capacitance transducer and manufacture thereof
JPS6488128A (en) Temperature sensor
JP3399688B2 (en) Pressure sensor
JPH0746069B2 (en) Electrostatic Dissolution Type Pressure Sensor
US6148674A (en) Shielded capacitive pressure sensor
JPH0743625Y2 (en) Capacitive load sensor
JPH08240609A (en) Capacitance-type acceleration sensor
US4429346A (en) Ceramic capacitor
JPH10300609A (en) Electrostatic capacitance type pressure sensor
JP2606376B2 (en) Weight detector
JP4286407B2 (en) Piezoelectric three-axis acceleration sensor
JP3419408B2 (en) Strain detector
JP3451362B2 (en) Capacitive sensor
JPH07243929A (en) Electrostatic capacity type pressure sensor
JPH0746070B2 (en) Electrostatic Dissolution Type Pressure Sensor
JPH08240500A (en) Capacitance type pressure sensor and its manufacture
JPH1194667A (en) Pressure sensor