JPH03239939A - Capacity type pressure sensor - Google Patents

Capacity type pressure sensor

Info

Publication number
JPH03239939A
JPH03239939A JP3681390A JP3681390A JPH03239939A JP H03239939 A JPH03239939 A JP H03239939A JP 3681390 A JP3681390 A JP 3681390A JP 3681390 A JP3681390 A JP 3681390A JP H03239939 A JPH03239939 A JP H03239939A
Authority
JP
Japan
Prior art keywords
pressure
electrode
sensitive diaphragm
electrodes
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3681390A
Other languages
Japanese (ja)
Inventor
Tomiki Sakurai
桜井 止水城
Yukihiko Fukaya
深谷 幸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Toyoda Koki KK
Original Assignee
Research Development Corp of Japan
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Toyoda Koki KK filed Critical Research Development Corp of Japan
Priority to JP3681390A priority Critical patent/JPH03239939A/en
Publication of JPH03239939A publication Critical patent/JPH03239939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the pressure sensor which has good linearity and high accuracy by forming electrodes which have a size ratio within a specific range on a pressure sensitive diaphragm. CONSTITUTION:The pressure sensitive diaphragm 12 and a recessed part 13 are formed on a semiconductor substrate 11, an electrode 14 is formed in the center of the diaphragm 12 to a 1/5-3/5 size ratio, and the electrode 14 is connected to a circuit part 16 through a connection terminal part 17. Further, an electrode 24 is formed on the glass substrate 21 in the same shape with the electrode 14 and the substrates 11 and 21 are joined together to make the electrodes 14 and 24 face each other; and the recessed part 13 is sealed to form a reference pressure chamber 15, the electrode 24 is connected to the circuit part 16 through the terminal part 17, and the circuit 16 finds pressure from the frequency when the capacity between the electrodes 14 and 24 is charged or discharged. When the one-side size of the diaphragm 12 is denoted as (a) and the one-side size of the electrode 14 isdenoted as (b), the electrode ratio b/a is set to <=(3/5) to improve the linearity without deteriorating frequency sensitivity so much or to >=(1/5) to prevent capacity variation DELTAC from being too small and included in floating capacity, thereby improving the detection accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電極が形成された基板同士を接合して形成し
た容量型圧力センサに関する。
The present invention relates to a capacitive pressure sensor formed by bonding substrates on which electrodes are formed.

【従来技術】[Prior art]

従来、容量型圧力センサ30として、第7図の縦断面図
に示されたものが知られている。その容量型圧力センサ
30では、単結晶シリコンから成る半導体基板3/に被
測定圧力Pを受ける感圧ダイヤフラム部32及び凹部3
3が形成され、その凹部33部分に電極34が形成され
ている。一方、パイレックスガラスから成るガラス基板
41には電極44が形成されている。そして、半導体基
板3/の電極34とガラス基板41の電極44とが対向
するように、半導体基板3/とガラス基板41とが周知
の陽極接合技術を用いて接合されている。この接合後に
は、半導体基板3/の凹部33は密封された基準圧室3
5となる。 又、半導体基板3/には電極34.44間の容量から圧
力値を求めるための回路部36が半導体製造技術を用い
て形成され集積化されている。 尚ミ48は外部に信号を取り出す償号線であり、その信
号線48は半導体基板3/に形成された回路部36と導
電性接着剤49等を介して接続されている。
Conventionally, as a capacitive pressure sensor 30, one shown in the vertical cross-sectional view of FIG. 7 is known. In the capacitive pressure sensor 30, a pressure-sensitive diaphragm portion 32 and a recess 3 which receive a measured pressure P are placed on a semiconductor substrate 3 made of single crystal silicon.
3 is formed, and an electrode 34 is formed in the recess 33 portion. On the other hand, an electrode 44 is formed on a glass substrate 41 made of Pyrex glass. The semiconductor substrate 3/ and the glass substrate 41 are bonded using a well-known anodic bonding technique so that the electrode 34 of the semiconductor substrate 3/ and the electrode 44 of the glass substrate 41 face each other. After this bonding, the recess 33 of the semiconductor substrate 3 is sealed into the reference pressure chamber 3.
It becomes 5. Further, a circuit section 36 for determining a pressure value from the capacitance between the electrodes 34, 44 is formed and integrated on the semiconductor substrate 3/ using semiconductor manufacturing technology. Reference numeral 48 is a signal line for taking out a signal to the outside, and the signal line 48 is connected to the circuit portion 36 formed on the semiconductor substrate 3 via a conductive adhesive 49 or the like.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上述したように、IC化された容量型圧力センサは、感
圧ダイヤフラム部32が受ける被測定圧力Pによる変位
によって変化する電極34と電極44との間の容量を直
接検出するものである。 電極間容量Cは、感圧ダイヤプラム部32が受ける被測
定圧力Pによる変位が一様であるとすれば、 C=ε                      
    (1)(ε:誘電率、A:電極面積、d:電極
間隔)で求められる。 又、電極間隔dは被測定圧力Pに対して、d=do−α
(P−Po)(2) の関係がある。但し、Poは基準圧室35内の基準圧、
d、は外圧が基準圧P。に等しい時の電極間隔、αは定
数である。 従って、被測定圧力Pと容量Cとの関係は、となり、第
3図(a)に示したように、被測定圧力Pと容量Cとは
逆比例の関係の非直線性を有している。 一方、この容量Cは、回路部36にて容量Cを充電及び
放電させるときの容量Cの端子電圧波形の周波数fを測
定することで求められている。この容量Cと周波数fと
は、 β f = −゛(41 (β:定数) で、第3図(b)に示したように変化する。 (3)式及び(4)式より、 の関係があり、周波数rは被測定圧力Pに比例すること
になり、周波数fと被測定圧力Pとの関係は直線性があ
る。 ところが、実際には、第8図に第7図の感圧ダイヤフラ
ムB32の拡大縦断面図を示したように、被測定圧力P
により、感圧ダイヤスラム部32がたわむため、上記電
極間隔dは感圧ダイヤプラム部32の全面に渡って一様
にはならない。又、そのたわみ形状も被測定圧力Pに依
存して変化する。 よって、(1)式は、正確には感圧ダイヤフラム部32
の全面に渡る面積分 によって求めなければならない。 そして、(6)式は、平均電極間隔 を用いると、 C−ε (7) となる。 しかし、平均電極間隔dは(2)式のように被測定圧力
Pの一次式とはならず、高次成分が含まれる。 よって、周波数fよ被測定圧力Pとの関係は(5)式の
ように一次式では表すことができず高次成分を含むこと
になり、直線性が悪くなり、測定精度が低下する。 本発明は、上記の課題を解決するために成されたもので
あり、その目的とするところは、感度を落とさないで、
直接的測定値の周波数fと被測定圧力Pとの特性におけ
る直線性を向上させ、より高精度な容量型圧力センサを
提供することである。
As described above, the IC-based capacitive pressure sensor directly detects the capacitance between the electrodes 34 and 44 that changes due to displacement due to the measured pressure P applied to the pressure-sensitive diaphragm section 32. The interelectrode capacitance C is calculated as follows, assuming that the displacement due to the measured pressure P applied to the pressure sensitive diaphragm section 32 is uniform, C=ε
(1) (ε: dielectric constant, A: electrode area, d: electrode spacing). Also, the electrode spacing d is given by d=do-α for the pressure to be measured P.
There is the following relationship (P-Po) (2). However, Po is the reference pressure in the reference pressure chamber 35,
In d, the external pressure is the reference pressure P. When the electrode spacing is equal to , α is a constant. Therefore, the relationship between the pressure to be measured P and the capacity C is as follows, and as shown in Fig. 3(a), the pressure to be measured P and the capacity C have a non-linearity in an inversely proportional relationship. . On the other hand, this capacitance C is determined by measuring the frequency f of the terminal voltage waveform of the capacitor C when the capacitor C is charged and discharged in the circuit section 36. The capacitance C and the frequency f are β f = -゛(41 (β: constant), and change as shown in Fig. 3 (b). From equations (3) and (4), the relationship is as follows. Therefore, the frequency r is proportional to the pressure to be measured P, and the relationship between the frequency f and the pressure to be measured P is linear.However, in reality, the pressure-sensitive diaphragm shown in FIG. As shown in the enlarged longitudinal cross-sectional view of B32, the measured pressure P
As a result, the pressure-sensitive diaphragm portion 32 is deflected, so that the electrode spacing d is not uniform over the entire surface of the pressure-sensitive diaphragm portion 32. Further, the shape of the deflection also changes depending on the pressure P to be measured. Therefore, formula (1) is more accurately expressed as the pressure sensitive diaphragm portion 32.
It must be calculated by integrating the area over the entire surface. Then, equation (6) becomes C-ε (7) using the average electrode spacing. However, the average electrode spacing d is not a linear expression of the pressure to be measured P as in equation (2), but includes higher-order components. Therefore, the relationship between the frequency f and the pressure to be measured P cannot be expressed by a linear equation as shown in equation (5) and includes higher-order components, resulting in poor linearity and reduced measurement accuracy. The present invention has been made to solve the above problems, and its purpose is to
It is an object of the present invention to improve the linearity in the characteristics between the frequency f of a directly measured value and the pressure to be measured P, and to provide a capacitive pressure sensor with higher accuracy.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための発明の構成は、少なくとも一
方の基板は半導体で構成され、相互に接合された2つの
基板と、前記両基板の接合部に形成され、微小ギヤノブ
の測定圧の基準値を与える基準圧室と、一方の基板に形
成され被測定圧力を受ける感圧ダイヤフラム部とを有す
る容量型圧力センサにおいて、前記感圧ダイヤフラム邪
の中央部分で前記基準圧室の対向する両面に該感圧ダイ
ヤプラム部の形状に対し、115〜3/5の範囲の寸法
比を有する形状に形成された電極と、前記半導体基板上
に形成され、前記電極間の容量を充放電するときの電圧
波形の周波数から圧力を求める回路部とを備えたことを
特徴とする。
The structure of the invention for solving the above problem includes two substrates, at least one of which is made of a semiconductor, and which are bonded to each other, and a reference value of the measurement pressure of the micro gear knob is formed at the bonded portion of the two substrates. In a capacitive pressure sensor that has a reference pressure chamber that provides a pressure to be measured, and a pressure-sensitive diaphragm portion that is formed on one substrate and receives a pressure to be measured, a central portion of the pressure-sensitive diaphragm is applied to opposite surfaces of the reference pressure chamber. An electrode formed in a shape having a size ratio in the range of 115 to 3/5 with respect to the shape of the pressure-sensitive diaphragm portion, and a voltage formed on the semiconductor substrate to charge and discharge the capacitance between the electrodes. It is characterized by comprising a circuit section that calculates pressure from the frequency of the waveform.

【作用】[Effect]

電極は感圧ダイヤプラム部の中央部分で基準圧室の対向
する両面にその感圧ダイヤフラム部の形状に対し、11
5〜3/5の範囲の寸法比を有する形状に形成されてお
り、被測定圧力を受ける感圧ダイヤフラム部におけるた
わみの変化率の小さな部分に形成されているので、被測
定圧力に対してほぼ平行に変位する。 そして、回路部は上記電極間の容量を充放電するときの
電圧波形のその周波数から圧力を求めるので、被測定圧
力と求める圧力との直線性が良いことからその検出精度
が向上する。
The electrodes are placed at the central part of the pressure sensitive diaphragm part on opposite sides of the reference pressure chamber with a diameter of 11 mm, corresponding to the shape of the pressure sensitive diaphragm part.
It is formed in a shape with a dimensional ratio in the range of 5 to 3/5, and is formed in a portion of the pressure-sensitive diaphragm that receives the pressure to be measured, where the rate of change in deflection is small, so it is approximately Displaced in parallel. Since the circuit section determines the pressure from the frequency of the voltage waveform when charging and discharging the capacitance between the electrodes, the detection accuracy is improved because the linearity between the pressure to be measured and the pressure to be determined is good.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 第1図は本発明に係る容量型圧力センサを示した縦断面
図である。そして、第2図は第1図においてガラス基板
を接合する前の状態を示した平面図である。 第1図及び第2図を参照して本発明の容量型圧力センサ
10を説明する。 11は被測定圧力Pを受ける感圧ダイヤフラム部12及
び凹部13を形成し、その凹部13部分に電極14を形
成した単結晶シリコンから成る半導体基板である。その
電極14は感圧ダイヤフラム部12の中央部分でその形
状に対して175〜3/5の範囲の寸法比である略1/
2の寸法比を有する形状に形成されている。 又、その半導体基板11上には電極14の形成と同様に
半導体製造技術を用いて一体的に接続端子部17及び回
路部16が形成されている。そして、電極14はその接
続端子部17を介して回路部16と接続されている。 又、21は電極24を形成したパイレックスガラスから
成るガラス基板である。 その電極24は上記電極14と同様に感圧ダイヤフラム
B12の中央部分でその形状に対して略1/2の寸法比
を有する形状に形成されている。 そして、半導体基板11の電極14とガラス基板21の
電極24とを対向させ陽極接合している。 接合後においては、半導体基板11の凹部13はガラス
基板21で密封されて基準圧室15となる。又、電極2
4は、電極14と同様に、接続端子部17を介して回路
部16と接続されている。 又、28は外部に儒号を取り出す信号線であり、その信
号線28は半導体基板11に形成された回路部16と導
電性接着剤29等を介して接続されている。 被測定圧力Pが感圧ダイヤフラム部12に印加されると
き、その感圧ダイヤフラム部12のたわみの分布は、第
5図に示したようになる。 第5図の特性図から分かる様に、感圧ダイヤフラム部の
中心(x =0)より片側半分(x =0.3)程度ま
ではたわみの変化率が小さい。 即ち、電極14.24の寸法を感圧ダイヤフラムR12
の寸法に比べて3/5以下とし、感圧ダイヤフラム部1
2の中央部分で基準圧室15の対向する両面にそれら電
極14.24を配設することにより、たわみの変化率を
小さくできる。 従って、上述の構成により、感圧ダイヤフラム部の中央
部分では、圧力に対する変位がほぼ一様となる。 ここで、半導体基板11の感圧ダイヤフラム部12は、
第4図に示したように、正方形で電極14が中心0に位
置しているとし、感圧ダイヤフラム部120片側寸法を
a、又、電極14の片側寸法をbとし、その寸法比であ
る電極比をb / aで表すことにする。 そして、感圧ダイヤフラム部12は角型の一辺の寸法が
1mm、その厚みが30犀、電極間隔が1虜で、基準圧
室15の圧力に対する被測定圧力Pとして1kgf/c
m”を印加したときの電極比b / aに対する非直線
性R(%)、容量変化ΔC(pF)、周波数感度K (
ppm/mm Hg>との関係は、第6図に示したよう
になる。 ここで、容量型圧力センサは電極比b / aが大きい
程、容量変化ΔCが大きい曲線を示す。又、被測定圧力
に対する求める圧力値の非直線性Rは電極比b/aに対
して感圧ダイヤプラム邪のたわみ方により下に凸の曲線
となる。そして、被測定圧力Pとして基準圧室の圧力値
に1kgf/cm’を印加したときの周波数の変化を表
す周波数感度には電極比b/aが大きくなる程低下する
曲線となる。 従って、電極の寸法を感圧ダイヤフラム部の寸法に比べ
て375以下の電極比b / aとすることにより、周
波数感度Kをあまり悪くさせずに非直線性Rを急激に向
上することができる。又、電極の寸法を感圧ダイヤフラ
ム部の寸法に比べて115以上の電極比b / aとす
ることにより、容量変化ΔCが小さくなり過ぎて浮遊容
量に埋もれてしまうことを防止できる。 つまり、115〜3/5の範囲の電極比の感圧ダイヤフ
ラム部を有する容量型圧力センサは出力値の直線性が良
く、周波数の変化が大きいので圧力検出精度を向上させ
ることができる。 尚、本実施例のように、略〕/2の電極比とすれば、特
に、上記効果を顕著に表した容量型圧力センサとなる。
The present invention will be described below based on specific examples. FIG. 1 is a longitudinal sectional view showing a capacitive pressure sensor according to the present invention. FIG. 2 is a plan view showing a state before the glass substrates are bonded in FIG. 1. A capacitive pressure sensor 10 of the present invention will be described with reference to FIGS. 1 and 2. Reference numeral 11 denotes a semiconductor substrate made of single crystal silicon, on which a pressure-sensitive diaphragm portion 12 and a recess 13 are formed to receive the pressure to be measured P, and an electrode 14 is formed in the recess 13 portion. The electrode 14 is located at the center of the pressure-sensitive diaphragm 12 and has a size ratio of approximately 1/5 in the range of 175 to 3/5 with respect to its shape.
It is formed into a shape having a dimension ratio of 2. Further, on the semiconductor substrate 11, a connection terminal portion 17 and a circuit portion 16 are integrally formed using the same semiconductor manufacturing technology as in the formation of the electrode 14. The electrode 14 is connected to the circuit section 16 via the connecting terminal section 17 thereof. Further, 21 is a glass substrate made of Pyrex glass on which electrodes 24 are formed. The electrode 24, like the electrode 14 described above, is formed at the center of the pressure-sensitive diaphragm B12 in a shape having a size ratio of approximately 1/2 to the shape of the pressure-sensitive diaphragm B12. Then, the electrode 14 of the semiconductor substrate 11 and the electrode 24 of the glass substrate 21 are made to face each other and are anodically bonded. After bonding, the recess 13 of the semiconductor substrate 11 is sealed with the glass substrate 21 and becomes the reference pressure chamber 15. Also, electrode 2
Similarly to the electrode 14, the electrode 4 is connected to the circuit section 16 via the connection terminal section 17. Further, 28 is a signal line for taking out the Confucian code to the outside, and the signal line 28 is connected to the circuit section 16 formed on the semiconductor substrate 11 via a conductive adhesive 29 or the like. When the measured pressure P is applied to the pressure sensitive diaphragm section 12, the deflection distribution of the pressure sensitive diaphragm section 12 is as shown in FIG. As can be seen from the characteristic diagram in FIG. 5, the rate of change in deflection is small from the center of the pressure sensitive diaphragm portion (x = 0) to about half on one side (x = 0.3). That is, the dimensions of the electrode 14.24 are adjusted to the pressure sensitive diaphragm R12.
3/5 or less compared to the dimensions of the pressure sensitive diaphragm part 1.
By arranging the electrodes 14 and 24 on opposite surfaces of the reference pressure chamber 15 at the central portion of the reference pressure chamber 15, the rate of change in deflection can be reduced. Therefore, with the above-described configuration, the displacement with respect to pressure becomes substantially uniform in the central portion of the pressure-sensitive diaphragm portion. Here, the pressure sensitive diaphragm portion 12 of the semiconductor substrate 11 is
As shown in FIG. 4, it is assumed that it is a square and the electrode 14 is located at the center 0, and the dimension of one side of the pressure-sensitive diaphragm part 120 is a, and the dimension of one side of the electrode 14 is b, and the electrode 14 is in the ratio of these dimensions. Let us express the ratio as b/a. The pressure-sensitive diaphragm part 12 has a rectangular shape with a side dimension of 1 mm, a thickness of 30 mm, an electrode interval of 1 mm, and a measured pressure P relative to the pressure of the reference pressure chamber 15 of 1 kgf/c.
Nonlinearity R (%), capacitance change ΔC (pF), frequency sensitivity K (
ppm/mm Hg> is as shown in FIG. Here, the capacitive pressure sensor shows a curve in which the larger the electrode ratio b/a, the larger the capacitance change ΔC. Further, the nonlinearity R of the pressure value to be determined with respect to the pressure to be measured becomes a downwardly convex curve with respect to the electrode ratio b/a due to the deflection of the pressure sensitive diaphragm. The frequency sensitivity representing the change in frequency when 1 kgf/cm' is applied to the pressure value of the reference pressure chamber as the measured pressure P has a curve that decreases as the electrode ratio b/a increases. Therefore, by setting the electrode dimensions to an electrode ratio b/a of 375 or less compared to the dimensions of the pressure-sensitive diaphragm portion, the nonlinearity R can be rapidly improved without significantly worsening the frequency sensitivity K. Furthermore, by setting the electrode dimensions to an electrode ratio b/a of 115 or more compared to the dimensions of the pressure-sensitive diaphragm portion, it is possible to prevent the capacitance change ΔC from becoming too small and being buried in stray capacitance. In other words, a capacitive pressure sensor having a pressure-sensitive diaphragm portion with an electrode ratio in the range of 115 to 3/5 has good linearity of output value and a large change in frequency, so it is possible to improve pressure detection accuracy. Incidentally, if the electrode ratio is approximately /2 as in this embodiment, a capacitive pressure sensor that particularly exhibits the above-mentioned effect will be obtained.

【発明の効果】【Effect of the invention】

本発明は、感圧ダイヤフラム部の中央部分で基準圧室の
対向する両面にその感圧ダイヤフラム邪の形状に対し、
115〜3/5の範囲の寸法比を有する形状に形成され
た電極と、半導体基板上に形成され、上記電極間の容量
を充放電するときの電圧波形の周波数から圧力を求める
回路部とを備えており、感圧ダイヤプラム部の115〜
3/5の範囲の寸法の電極においては、感圧ダイヤプラ
ム部のたわみの変化率の小さな部分であり、感圧ダイヤ
プラム部の電極は対向する電極に対して略平行に変位す
る。 更に、被測定圧力に対する電極間の容量を充放電すると
きの電圧波形の周波数から圧力を求める回路部により、
被測定圧力に対して求める圧力値はほぼ直線的に変化す
ることになり高精度な容量型圧力センサが提供できる。
The present invention provides that the pressure sensitive diaphragm has a curved shape on both opposing sides of the reference pressure chamber at the central portion of the pressure sensitive diaphragm portion.
An electrode formed in a shape having a dimensional ratio in the range of 115 to 3/5, and a circuit section formed on a semiconductor substrate to calculate pressure from the frequency of a voltage waveform when charging and discharging the capacitance between the electrodes. It is equipped with 115~ of the pressure sensitive diaphragm part.
In an electrode having a size in the range of 3/5, the rate of change in deflection of the pressure sensitive diaphragm portion is small, and the electrode of the pressure sensitive diaphragm portion is displaced approximately parallel to the opposing electrode. Furthermore, a circuit section that calculates pressure from the frequency of the voltage waveform when charging and discharging the capacitance between the electrodes with respect to the measured pressure,
Since the pressure value determined for the pressure to be measured changes almost linearly, a highly accurate capacitive pressure sensor can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

v1図は本発明の具体的な一実施例に係る容量型圧力セ
ンサを示した縦断面図。第2図は第1図においてガラス
基板を接合する前の状態を示した平面図。第3図(a)
は被測定圧力Pと容量Cとの関係を示した特性図。第3
図ら)は容量Cと周波数fとの関係を示した特性図。第
4図は感圧ダイヤフラム部と電極の寸法関係を示した説
明図。第5図は感圧ダイヤプラム邪のたわみを示した特
t!IE図。 第6図は電極比に対する非直線性、容量変化及び周波数
感度を示した特性図。第7図は従来の容量型圧力センサ
を示した縦断面図。第8図は第7図の感圧ダイヤフラム
邪の拡大縦断面図である。 10 容量型圧力センサ 11  半導体基板12 感
圧ダイヤフラム部 14.24  電極15 基準圧室
 1G 回路部 21 ガラス基板 P 被測定圧力 第1図 分l聚万カ[シブ ノき丘ダχヤ7テム搗P 第2図
FIG. v1 is a longitudinal sectional view showing a capacitive pressure sensor according to a specific embodiment of the present invention. FIG. 2 is a plan view showing the state before bonding the glass substrates in FIG. 1. Figure 3(a)
is a characteristic diagram showing the relationship between measured pressure P and capacity C; Third
Figure 3) is a characteristic diagram showing the relationship between capacitance C and frequency f. FIG. 4 is an explanatory diagram showing the dimensional relationship between the pressure sensitive diaphragm part and the electrode. Figure 5 shows the deflection of the pressure-sensitive diaphragm. IE diagram. FIG. 6 is a characteristic diagram showing nonlinearity, capacitance change, and frequency sensitivity with respect to electrode ratio. FIG. 7 is a longitudinal sectional view showing a conventional capacitive pressure sensor. FIG. 8 is an enlarged longitudinal sectional view of the pressure sensitive diaphragm shown in FIG. 7. 10 Capacitive pressure sensor 11 Semiconductor substrate 12 Pressure-sensitive diaphragm part 14.24 Electrode 15 Reference pressure chamber 1G Circuit part 21 Glass substrate P Pressure to be measured Figure 2

Claims (1)

【特許請求の範囲】 少なくとも一方の基板は半導体で構成され、相互に接合
された2つの基板と、前記両基板の接合部に形成され、
微小ギャップの測定圧の基準値を与える基準圧室と、一
方の基板に形成され被測定圧力を受ける感圧ダイヤフラ
ム部とを有する容量型圧力センサにおいて、前記感圧ダ
イヤフラム部の中央部分で前記基準圧室の対向する両面
に該感圧ダイヤフラム部の形状に対し、1/5〜3/5
の範囲の寸法比を有する形状に形成された電極と、 前記半導体基板上に形成され、前記電極間の容量を充放
電するときの電圧波形の周波数から圧力を求める回路部
と を備えたことを特徴とする容量型圧力センサ。
[Scope of Claims] At least one of the substrates is made of a semiconductor, and is formed at a joint between two substrates that are bonded to each other,
In a capacitive pressure sensor that has a reference pressure chamber that provides a reference value for the measurement pressure of a minute gap, and a pressure-sensitive diaphragm portion that is formed on one substrate and receives the measured pressure, the reference pressure chamber is provided at a central portion of the pressure-sensitive diaphragm portion. 1/5 to 3/5 of the shape of the pressure sensitive diaphragm on both opposing sides of the pressure chamber.
an electrode formed in a shape having a dimensional ratio in the range of , and a circuit section formed on the semiconductor substrate to determine the pressure from the frequency of the voltage waveform when charging and discharging the capacitance between the electrodes. Characteristic capacitive pressure sensor.
JP3681390A 1990-02-16 1990-02-16 Capacity type pressure sensor Pending JPH03239939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3681390A JPH03239939A (en) 1990-02-16 1990-02-16 Capacity type pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3681390A JPH03239939A (en) 1990-02-16 1990-02-16 Capacity type pressure sensor

Publications (1)

Publication Number Publication Date
JPH03239939A true JPH03239939A (en) 1991-10-25

Family

ID=12480212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3681390A Pending JPH03239939A (en) 1990-02-16 1990-02-16 Capacity type pressure sensor

Country Status (1)

Country Link
JP (1) JPH03239939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087131A (en) * 2013-10-28 2015-05-07 国立大学法人東北大学 Sensor device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308529A (en) * 1987-05-08 1988-12-15 バイサラ・オーワイ Capacitive pressure converter
JPS6416943A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Electrostatic capacity type pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308529A (en) * 1987-05-08 1988-12-15 バイサラ・オーワイ Capacitive pressure converter
JPS6416943A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Electrostatic capacity type pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087131A (en) * 2013-10-28 2015-05-07 国立大学法人東北大学 Sensor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
RU2144680C1 (en) Shielded variable-capacitance transducer
US5992240A (en) Pressure detecting apparatus for measuring pressure based on detected capacitance
EP1316786B1 (en) Capacity type pressure sensor and method of manufacturing the pressure sensor
US4769738A (en) Electrostatic capacitive pressure sensor
US4951174A (en) Capacitive pressure sensor with third encircling plate
KR100390307B1 (en) Sensor Signal Processing Apparatus
GB2222686A (en) Inclinometers
JPH03170826A (en) Capacity type pressure sensor
KR19980032489A (en) Semiconductor pressure sensor
KR20010032103A (en) Micromechanical differential pressure sensor device
CN114323408A (en) Multi-range multi-sensitivity pressure MEMS chip
JPH03239939A (en) Capacity type pressure sensor
JPH10300609A (en) Electrostatic capacitance type pressure sensor
JPH0666658A (en) Capacitive pressure sensor
JP2813721B2 (en) Capacitive pressure sensor
CN113848001B (en) RF resonance pressure sensor
JP2000121475A (en) Electrostatic capacity type pressure detector
JPH06323939A (en) Capacitance-type sensor
JPH05332867A (en) Capacitance type sensor
JPS59163514A (en) Electrostatic capacity type sensor
JP3273768B2 (en) Load measuring device and load measuring method
JPH0312529A (en) Weight detector
JPH09257620A (en) Device for measuring displacement
JPH03239940A (en) Capacity type pressure sensor
JPH03158731A (en) Semiconductor capacity type pressure transducer