JPH03158731A - Semiconductor capacity type pressure transducer - Google Patents

Semiconductor capacity type pressure transducer

Info

Publication number
JPH03158731A
JPH03158731A JP29733189A JP29733189A JPH03158731A JP H03158731 A JPH03158731 A JP H03158731A JP 29733189 A JP29733189 A JP 29733189A JP 29733189 A JP29733189 A JP 29733189A JP H03158731 A JPH03158731 A JP H03158731A
Authority
JP
Japan
Prior art keywords
electrode
substrate
diaphragm
semiconductor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29733189A
Other languages
Japanese (ja)
Inventor
Masahide Hayashi
雅秀 林
Yoshihiro Yokota
横田 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP29733189A priority Critical patent/JPH03158731A/en
Publication of JPH03158731A publication Critical patent/JPH03158731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy by etching a silicon substrate into a diaphragm shape, and providing a semiconductor substrate which is provided with an electrode for capacitance detection at its center part and a glass substrate for a pedestal on the reverse surface of the center silicon substrate. CONSTITUTION:At the center part of the semiconductor silicon substrate 4 made of silicon single crystal, the diaphragm part 6 is formed, and the top surface of the center part surrounded with the diaphragm part 6 are connected by an electric conductor to an external circuit where a movable electrode 2 is formed. Further, the substrate 4 and glass substrate 3 are welded together by anode joining and a fixed electrode 1 which is equal in area to the electrode 2 is formed on the surface facing the electrode 2. Further, the pedestal glass plate 5 where a pressure port 8 is formed is welded to the substrate 4 by anode joining together with the substrate 3 to apply pressure to the diaphragm part 6, and the electrode 2 moves vertically in parallel with the applied pressure. Further, when the groove width 18 of the diaphragm part 6 is narrowed down, the vertical variation quantity of the electrode 2 becomes smaller with the applied voltage, so the gap between the electrodes 1 and 2 is set to several mum and the sensitivity is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容量式圧力変換器に係り、特に検出部である
凹形のダイヤフラム部が形成され、可動電極を有する半
導体基板と、可動電極に対向する固定電極を有する基板
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a capacitive pressure transducer, in particular a semiconductor substrate in which a concave diaphragm portion serving as a detection portion is formed, a semiconductor substrate having a movable electrode, and a movable electrode. The present invention relates to a structure of a substrate having fixed electrodes facing each other.

〔従来の技術〕[Conventional technology]

従来の容量式圧力変換器の構造は、特開昭62−598
28号、 5g−160832号に記載のように、シリ
コン単結晶のダイヤフラム面上に電極が形成されており
2圧力がダイヤフラム部に印加された時、電極は円弧状
に変形していた。
The structure of the conventional capacitive pressure transducer is disclosed in Japanese Patent Application Laid-Open No. 62-598.
As described in No. 28, No. 5g-160832, an electrode was formed on the surface of a silicon single crystal diaphragm, and when two pressures were applied to the diaphragm part, the electrode deformed into an arc shape.

〔発明が解決しtうとする課題〕[Problems that the invention attempts to solve]

上記従来技術は、半導体基板上に形成されたダイヤフラ
ム部の厚みと、ダイヤフラム部上に形成された可動電極
部の厚み(可動電極部の厚み=可動電極の厚み+ダイヤ
フラム部の厚み)がほぼ同一であったため、圧力が印加
された場合、ダイヤフラム部(可動電極部)は、扇の弧
の様な形状を描き、可動電極部とダイヤフラム部のギャ
ップは、各々の電極部の各点において不均一となる。こ
の不均一性は印加圧力が大きくなればなるほど顕著とな
り、直線性や測定精度の悪化をもたらす、又、精度を上
げるために、画電極部の面積を拡げると、逆に圧力印加
時のダイヤフラム部の円弧形状が大きくなり精度向上に
必ずしもつながらない矛盾が生じる。
In the above conventional technology, the thickness of the diaphragm part formed on the semiconductor substrate and the thickness of the movable electrode part formed on the diaphragm part (thickness of the movable electrode part = thickness of the movable electrode + thickness of the diaphragm part) are almost the same. Therefore, when pressure is applied, the diaphragm part (movable electrode part) draws a shape like the arc of a fan, and the gap between the movable electrode part and the diaphragm part is uneven at each point of each electrode part. becomes. This non-uniformity becomes more pronounced as the applied pressure increases, resulting in deterioration of linearity and measurement accuracy.In addition, if the area of the image electrode is expanded to improve accuracy, the diaphragm As the arc shape becomes larger, a contradiction occurs that does not necessarily lead to improved accuracy.

よって本発明の目的は、圧力印加時のダイヤフラムの変
位、変形を円弧状ではなく、垂直平行移動させて、直線
性、精度向上を計ることにある。
Therefore, an object of the present invention is to improve linearity and accuracy by causing the diaphragm to be displaced or deformed not in an arc shape but in vertical parallel motion when pressure is applied.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、半導体基板と、半導体基板
の上面に形成された可動電極と、可動電極の周辺にマイ
クロマシニングで形成された厚さ25μm前後のダイヤ
フラム部と、半導体基板に平行で可動電極とのギャップ
が数μm、かつ、可動電極と同一面積の固定電極を有す
るガラス基板が陽極接合で溶着され、半導体基板のダイ
ヤフラム部が形成され、可動電極が圧力に比例して垂直
に変位する可動電極で構成されたものである。
In order to achieve the above purpose, a semiconductor substrate, a movable electrode formed on the upper surface of the semiconductor substrate, a diaphragm part with a thickness of about 25 μm formed by micromachining around the movable electrode, and a movable part parallel to the semiconductor substrate are used. A glass substrate having a fixed electrode with a gap of several μm and the same area as the movable electrode is welded by anodic bonding to form the diaphragm part of the semiconductor substrate, and the movable electrode is vertically displaced in proportion to the pressure. It consists of movable electrodes.

〔作用〕[Effect]

このように構成された半導体容量式圧力変換器は、ダイ
ヤフラム部で構成されており、印加圧力に対するダイヤ
フラム部の変位が、起こり、ダイヤフラム部で囲まれた
可動電極部は、印加圧力に対して垂直平行移動する。こ
のため、可動電極面中の各点は、対向する固定電極面中
の各点と常に均一のギャップを保っており、従来の移動
電極面が、印加圧力に対して円弧状に変形するのと違い
The semiconductor capacitive pressure transducer constructed in this way is composed of a diaphragm section, which undergoes displacement in response to applied pressure, and the movable electrode section surrounded by the diaphragm section is perpendicular to the applied pressure. Move in parallel. Therefore, each point on the movable electrode surface always maintains a uniform gap with each point on the opposing fixed electrode surface, which is different from the conventional movable electrode surface which deforms into an arc shape in response to applied pressure. difference.

圧力に比例した容量変化を得ることができるため、直線
性及び精度の高い圧力変換器が得られる。
Since a capacitance change proportional to pressure can be obtained, a pressure transducer with high linearity and precision can be obtained.

又、可動電極が垂直に平行移動するため、可動電極と固
定電極のギャップを数μmにできる。従って、出力感度
を高く取れるという利点もある。
Furthermore, since the movable electrode moves vertically in parallel, the gap between the movable electrode and the fixed electrode can be several μm. Therefore, there is an advantage that high output sensitivity can be achieved.

ダイヤフラム部の幅を狭くすることにより、圧力による
可動電極の変位量を小さくすることも可能である。
By narrowing the width of the diaphragm part, it is also possible to reduce the amount of displacement of the movable electrode due to pressure.

〔実施例〕〔Example〕

以下、本発明の実施例を用いて説明する。 The present invention will be explained below using examples.

第1図(a)は、本発明による半導体容量式圧力変換器
の一実施例を示す構成図である。第1図(b)は平面図
、第1図(a)は第1図(b) X−Yにおける断面図
である。第1図(c)は、その動作形態を示す。
FIG. 1(a) is a block diagram showing an embodiment of a semiconductor capacitive pressure transducer according to the present invention. FIG. 1(b) is a plan view, and FIG. 1(a) is a sectional view taken along the line XY in FIG. 1(b). FIG. 1(c) shows its operating form.

第1図(a)において、シリコン単結晶からなる半導体
シリコン基板4があり、半導体シリコン基板4の中心部
には、ダイヤフラム部6が形成されており、ダイヤフラ
ム部6に囲まれた中央部分の上面は、可動電極2が形成
された外付回路に接続できるように配線されている。(
ここで示されたダイヤフラム部6から底面部9の厚みは
、計測する最大圧力にもよるが、1気圧用で25μm前
後である。)又、可動電極2が形成されている凸部及び
ダイヤフラム部6はマイクロマシニングにて形成され、
半導体シリコン基板4の上面と、可動電極2の差は、数
μmとなるように制御する。
In FIG. 1(a), there is a semiconductor silicon substrate 4 made of silicon single crystal, a diaphragm portion 6 is formed in the center of the semiconductor silicon substrate 4, and an upper surface of the central portion surrounded by the diaphragm portion 6. is wired so that it can be connected to an external circuit on which the movable electrode 2 is formed. (
The thickness from the diaphragm part 6 to the bottom part 9 shown here is around 25 μm for 1 atmosphere, although it depends on the maximum pressure to be measured. ) Also, the convex portion on which the movable electrode 2 is formed and the diaphragm portion 6 are formed by micromachining,
The difference between the upper surface of the semiconductor silicon substrate 4 and the movable electrode 2 is controlled to be several μm.

半導体シリコン基板4の裏面も又、マイクロマシニング
にてエツチングされ、上面からエツチングしたダイヤフ
ラム部6と、裏面からエツチングした圧力だまり部7の
薄板部の残り厚さは、圧力ポート8からの圧力Pによっ
て圧力方向に感度よく変化し得るダイヤフラムとなり前
述の25μm前後とする。
The back surface of the semiconductor silicon substrate 4 is also etched by micromachining, and the remaining thickness of the diaphragm portion 6 etched from the top surface and the thin plate portion of the pressure reservoir portion 7 etched from the back surface is determined by the pressure P from the pressure port 8. It becomes a diaphragm that can change sensitively in the pressure direction, and has a thickness of about 25 μm as described above.

次に、半導体シリコン基板4とガラス基板3は陽極接合
によって溶着され、可動電極2に対向する面には、可動
電極2と同一面積の固定電極1が形成されている。この
固定電極1も可動電極2と同様に外付回路に接続可能な
ように配線されている6以上より、固定電極1と圧力に
よって垂直に平行移動する可動電極2の間において、印
加圧力に対し可変容量が形成されている。
Next, the semiconductor silicon substrate 4 and the glass substrate 3 are welded together by anodic bonding, and a fixed electrode 1 having the same area as the movable electrode 2 is formed on the surface facing the movable electrode 2. Like the movable electrode 2, this fixed electrode 1 is wired so that it can be connected to an external circuit. A variable capacitance is formed.

半導体シリコン基板4の圧力だまり部7が圧力によって
変化するダイヤフラム6となるため、圧力だまり部7に
圧力を導入するための導入管が必要となり、圧力ポート
8を形成した台座ガラス板5を半導体シリコン基板4に
上記ガラス基板3と共に陽極接合を用いて溶着すること
による。ダイヤフラム部に圧力印加が可能となる。
Since the pressure reservoir 7 of the semiconductor silicon substrate 4 becomes a diaphragm 6 that changes depending on the pressure, an introduction pipe is required to introduce pressure into the pressure reservoir 7. This is done by welding the substrate 4 together with the glass substrate 3 using anodic bonding. It becomes possible to apply pressure to the diaphragm part.

ここで用いる容量は、 A C=ε−・・・(1) (C:容量、A:電極面積、d:電極間のギャップ、ε
:比誘電率) で表され、 となり、電極間のギャップが小さい程感度が良好になる
The capacitance used here is A C=ε−...(1) (C: capacitance, A: electrode area, d: gap between electrodes, ε
: relative dielectric constant), and the smaller the gap between the electrodes, the better the sensitivity.

以上から本発明により、第1図(Q)に示すようしこ印
加圧力により可動電極2は垂直に平行移動する。又、ダ
イヤフラム部6の溝幅18(可動電極2との差)を狭く
すれば印加圧力に対して電極の垂直変化量が小さくなる
ため、固定電極1と可動電極2のギャップを数μmにす
ることが可能となり、上記(2)式に示されるように、
感度が大きく取ることが可能となる。ダイヤフラム6の
溝幅18の形成は、図示において低温マイクロ波プラズ
マエツチングで加工の垂直な形状を示したが、第6図に
示すごとく、異方性エツチングの形状で形成することは
可能であり、この際、ダイヤフラム6の溝幅18′を調
整すれば良いということは言うまでもない。従来の半導
体容量式圧力変換器は、第2図に示すように、印加圧力
に対して、可動電極2′を形成したダイヤフラム部は円
弧状となり可動型+!2′ と固定電極1′のギャップ
は必ずしも電極面の各点で均一でなくなり、出力の直線
性及び、低圧側の精度悪化の原因となる。しかし、本発
明の構成は、印加圧力に対して可動電極2の変位が垂直
に移動するため常に電極間のギャップ10は電極面全面
で均一となり、出力の直線性及び精度が良好となる。
From the above, according to the present invention, the movable electrode 2 is vertically translated in parallel by the applied pressure as shown in FIG. 1(Q). Furthermore, if the groove width 18 of the diaphragm portion 6 (difference with the movable electrode 2) is narrowed, the amount of vertical change in the electrode relative to the applied pressure will be reduced, so the gap between the fixed electrode 1 and the movable electrode 2 should be set to several μm. As shown in equation (2) above,
It is possible to increase the sensitivity. The groove width 18 of the diaphragm 6 is formed in a vertical shape by low-temperature microwave plasma etching in the illustration, but as shown in FIG. 6, it is possible to form the groove width 18 by anisotropic etching. Needless to say, at this time, the groove width 18' of the diaphragm 6 may be adjusted. In the conventional semiconductor capacitive pressure transducer, as shown in FIG. 2, the diaphragm portion forming the movable electrode 2' becomes arc-shaped in response to the applied pressure. The gap between electrode 2' and fixed electrode 1' is not necessarily uniform at each point on the electrode surface, causing deterioration in output linearity and accuracy on the low voltage side. However, in the configuration of the present invention, since the displacement of the movable electrode 2 moves perpendicularly to the applied pressure, the gap 10 between the electrodes is always uniform over the entire electrode surface, resulting in good output linearity and accuracy.

次に第1図の応用変形例を示す。Next, a modified example of FIG. 1 will be shown.

従来の容量式圧゛力変換器は、第1図のように。A conventional capacitive pressure transducer is shown in Figure 1.

容量検出部が1か所であったが、より精度を向上させる
ために第3図(b)に示すように、同一厚みのダイヤフ
ラムを4か新形成し、4か所の容量部をブリッジ構成す
ることにより微小な圧力変化にも対応でき、高精度化も
図れる。(第3図(d))第1図と同様に、微小可動1
極11と微小固定電極との間に容量を検出するとともに
、アクチュエーター可動部13と、アクチュエーターボ
ート14において、圧力が印加されると同時に、アクチ
ュエーター可動部13が上下に変化し、アクチュエータ
ーボート14をふさぐことにより外部に圧力信号として
取り出し、他の可動部として利用することができる。又
、第3図(C)の如く、アクチュエーター可動部13は
、先端13′のように三角錐とすることにより、より高
精度の制御をすることも可能である。
There was only one capacitance detection section, but in order to further improve accuracy, four new diaphragms of the same thickness were formed, and the four capacitance sections were configured in a bridge configuration, as shown in Figure 3(b). By doing so, it is possible to respond to minute pressure changes and achieve high accuracy. (Fig. 3(d)) Similar to Fig. 1, minute movable 1
Capacitance is detected between the pole 11 and the minute fixed electrode, and at the same time pressure is applied to the actuator movable part 13 and the actuator boat 14, the actuator movable part 13 changes up and down to block the actuator boat 14. This allows it to be taken out as a pressure signal to the outside and used as another movable part. Further, as shown in FIG. 3(C), the actuator movable portion 13 may be shaped like a triangular pyramid like the tip 13', thereby allowing more accurate control.

又、第4図に示すように第3図を変形したもので、ダイ
ヤフラム厚さを変えた電極構成(すなわち、高さを変え
たり可動電極15を設けることによ各月も可能であると
いうことは言うまでもない。
In addition, as shown in FIG. 4, which is a modification of FIG. 3, an electrode configuration in which the diaphragm thickness is changed (that is, by changing the height or providing a movable electrode 15, it is possible to create an electrode configuration for each month) Needless to say.

第5図も本発明実施例の1つで、全体実装部19に、1
チツプ(又は、2チツプ)上に、上記全体検出部16(
容量部)と温度補償回路17及び、増幅回路17′等の
補正回路を搭載した回路部を形成した例である。
FIG. 5 is also one of the embodiments of the present invention, in which one
On the chip (or two chips), the entire detection section 16 (
This is an example in which a circuit section is formed in which a capacitor section), a temperature compensation circuit 17, and a correction circuit such as an amplifier circuit 17' are mounted.

第1図、第3図、第4図において、ダイヤフラム6上の
可動電極2の形状を四角形にしであるが。
In FIGS. 1, 3, and 4, the shape of the movable electrode 2 on the diaphragm 6 is square.

多角形や丸形の形状等であっても良く、これらは上部に
設定される固定電極1と相対していれば、良いというこ
とは言うまでもない。
It goes without saying that the shape may be polygonal or round, as long as it faces the fixed electrode 1 set above.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上述べたことかられかる様に、印加圧力に
対して直線性が優れ、かつ、高精度な容量式圧力変換器
が得られる。
As can be seen from the above description, the present invention provides a capacitive pressure transducer that has excellent linearity with respect to applied pressure and is highly accurate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の半導体容量式圧力変換器の構造
断面図、第1図(b)は本発明の平面図。 第1図(c)は本発明における圧力印加時の電極面の変
形図、第2図は従来の容量式圧力変換器の圧力印加時の
電極面変形図、第3図、第4図は本発明の実施例を示す
図、第5図は本発明の実装例を示す図、第6図は本発明
のエツチング形状の実施例を示す図である。 1.1′・・・固定電極、2,2′・・・(ダイヤフラ
ム上の)可動電極、3・・・ガラス基板、4・・・半導
体シリコン基板、5・・・台座ガラス板、6・・・ダイ
ヤフラム部、7・・・圧力だまり部、8・・・圧力ポー
ト、9・・・底面部、10・・・ギャップ、11・・・
微小可動電極。 12・・・微小固定電極、13.13’・・・アクチュ
エーター可動部、14・・・アクチュエーターポート、
15・・・高さを変えた可動電極部、16・・・全体検
出部、17.17’・・・温度補償及び増幅回路、18
・・・溝幅、19・・・全体実装部。 第3図 (OL) <a−> 第3 f 4図 第5図
FIG. 1(a) is a structural sectional view of a semiconductor capacitive pressure transducer of the present invention, and FIG. 1(b) is a plan view of the present invention. Fig. 1(c) is a deformation diagram of the electrode surface when pressure is applied in the present invention, Fig. 2 is a deformation diagram of the electrode surface when pressure is applied in a conventional capacitive pressure transducer, and Figs. 3 and 4 are diagrams of the present invention. FIG. 5 is a diagram showing an embodiment of the invention, FIG. 5 is a diagram showing an implementation example of the invention, and FIG. 6 is a diagram showing an embodiment of the etching shape of the invention. 1.1'... Fixed electrode, 2,2'... Movable electrode (on the diaphragm), 3... Glass substrate, 4... Semiconductor silicon substrate, 5... Pedestal glass plate, 6... ...Diaphragm part, 7...Pressure pool part, 8...Pressure port, 9...Bottom part, 10...Gap, 11...
Microscopic movable electrode. 12... Micro fixed electrode, 13.13'... Actuator movable part, 14... Actuator port,
15... Movable electrode section with different height, 16... Overall detection section, 17.17'... Temperature compensation and amplification circuit, 18
...Groove width, 19...Entire mounting part. Figure 3 (OL) <a-> Figure 3 f 4 Figure 5

Claims (1)

【特許請求の範囲】 1、シリコン基板をエッチングしてダイヤフラム状に形
成し、その中央部に容量検出用の電極を設けた半導体基
板と、その上面に相対する電極を設けたガラス板にて容
量検出用のギャップを構成するガラス基板及び、中央シ
リコン基板の下面に台座用のガラス基板と共に陽極接合
で溶着され、圧力に比例して出力が検出されることを特
徴とした半導体容量式圧力変換器。 2、特許請求範囲第1項において、容量検出部を複数個
所組合せることを特徴とした半導体容量式圧力変換器。 3、特許請求範囲第2項において、容量検出部の組合せ
構成で電極高さを変えたことを特徴とした半導体容量式
圧力変換器。 4、特許請求範囲第1項または第2項において、圧力検
出用の中央部にアクチュエーター構造を設けたことを特
徴とした半導体容量式圧力変換器。
[Claims] 1. A silicon substrate is etched to form a diaphragm, and a semiconductor substrate is provided with an electrode for capacitance detection in the center thereof, and a glass plate is provided with an opposing electrode on the top surface of the semiconductor substrate to form a diaphragm. A semiconductor capacitive pressure transducer characterized in that a glass substrate constituting a detection gap and a glass substrate for a pedestal are welded to the lower surface of a central silicon substrate by anodic bonding, and output is detected in proportion to pressure. . 2. A semiconductor capacitive pressure transducer according to claim 1, characterized in that a plurality of capacitance detection sections are combined. 3. A semiconductor capacitive pressure transducer according to claim 2, characterized in that the electrode height is changed by the combination configuration of the capacitive detection section. 4. A semiconductor capacitive pressure transducer according to claim 1 or 2, characterized in that an actuator structure is provided in the center for pressure detection.
JP29733189A 1989-11-17 1989-11-17 Semiconductor capacity type pressure transducer Pending JPH03158731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29733189A JPH03158731A (en) 1989-11-17 1989-11-17 Semiconductor capacity type pressure transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29733189A JPH03158731A (en) 1989-11-17 1989-11-17 Semiconductor capacity type pressure transducer

Publications (1)

Publication Number Publication Date
JPH03158731A true JPH03158731A (en) 1991-07-08

Family

ID=17845134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29733189A Pending JPH03158731A (en) 1989-11-17 1989-11-17 Semiconductor capacity type pressure transducer

Country Status (1)

Country Link
JP (1) JPH03158731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085486A (en) * 1994-06-15 1996-01-12 Sensor Gijutsu Kenkyusho:Kk Method of measuring gas supply pressure
JP2013537972A (en) * 2010-09-30 2013-10-07 シェンゼン キングイールド テクノロジー カンパニー,リミテッド Movable electrode device, pressure sensor and electronic pressure gauge
KR20140033211A (en) * 2011-06-29 2014-03-17 인벤센스 인코포레이티드. Process for a sealed mems device with a portion exposed to the environment
JP2014521071A (en) * 2011-06-29 2014-08-25 インベンセンス,インク. Hermetically sealed MEMS devices partially exposed to the environment with vertical integrated electronic circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085486A (en) * 1994-06-15 1996-01-12 Sensor Gijutsu Kenkyusho:Kk Method of measuring gas supply pressure
JP2013537972A (en) * 2010-09-30 2013-10-07 シェンゼン キングイールド テクノロジー カンパニー,リミテッド Movable electrode device, pressure sensor and electronic pressure gauge
KR20140033211A (en) * 2011-06-29 2014-03-17 인벤센스 인코포레이티드. Process for a sealed mems device with a portion exposed to the environment
JP2014521071A (en) * 2011-06-29 2014-08-25 インベンセンス,インク. Hermetically sealed MEMS devices partially exposed to the environment with vertical integrated electronic circuits

Similar Documents

Publication Publication Date Title
US6651506B2 (en) Differential capacitive pressure sensor and fabricating method therefor
KR0137931B1 (en) Capacitive semiconductor sensor with hinged diaphragm for planar motion
JP3114570B2 (en) Capacitive pressure sensor
EP1316786B1 (en) Capacity type pressure sensor and method of manufacturing the pressure sensor
US4951174A (en) Capacitive pressure sensor with third encircling plate
FI74350C (en) Capacitive absolute pressure sensor.
CN1126948C (en) Pressure sensor
CN102128953B (en) Capacitive micro-acceleration sensor with symmetrically inclined folded beam structure
US4954925A (en) Capacitive sensor with minimized dielectric drift
JPS6356935B2 (en)
US5448444A (en) Capacitive pressure sensor having a reduced area dielectric spacer
US20120160029A1 (en) Acceleration sensor
JPH0264430A (en) Semiconductor pressure converter
JPH03158731A (en) Semiconductor capacity type pressure transducer
JP2007225344A (en) Pressure sensor
JP2007101222A (en) Pressure sensor
JPH07174652A (en) Semiconductor pressure sensor and its manufacture as well as pressure detection method
US7398694B2 (en) Pressure sensor and method for manufacturing pressure sensor
US20010048139A1 (en) Deformation gauge
JP2896728B2 (en) Capacitive pressure sensor
JP2004226294A (en) Static and dynamic pressure detection sensor
JPH05187947A (en) Capacitance type pressure sensor
JPH0666658A (en) Capacitive pressure sensor
JPH04278464A (en) Semiconductor acceleration sensor
JP3489563B2 (en) Capacitive pressure sensor