JPH0745892A - Solid-state laser equipment - Google Patents

Solid-state laser equipment

Info

Publication number
JPH0745892A
JPH0745892A JP21084393A JP21084393A JPH0745892A JP H0745892 A JPH0745892 A JP H0745892A JP 21084393 A JP21084393 A JP 21084393A JP 21084393 A JP21084393 A JP 21084393A JP H0745892 A JPH0745892 A JP H0745892A
Authority
JP
Japan
Prior art keywords
solid
crystal
semiconductor laser
state laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21084393A
Other languages
Japanese (ja)
Inventor
Hirofumi Imai
浩文 今井
Masahiro Daimon
正博 大門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21084393A priority Critical patent/JPH0745892A/en
Publication of JPH0745892A publication Critical patent/JPH0745892A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To obtain highly efficient laser motion by making polarization of a semiconductor laser beam co-axial with the c-axis direction of a Nd:YVO4 crystal without a spatial transfer of the semiconductor laser or the Nd:YVO4 crystal in semiconductor laser excitation solid-state laser equipment using the Nd:YVO4 crystal as a solid-state laser medium. CONSTITUTION:A 1/2 wavelength plate 4, a condensing lens 2, a Nd:YVO4 crystal 5 with a 1% Nd concentration as an anisotropic solid-state laser medium, and a resonator mirror 3 are arranged in this order from the semiconductor side on an optic axis of excitation light emitted from a semiconductor laser 1, and the resonator mirror 5a is formed by coating the excitation side edge surface of the Nd:YVO4 crystal. This enables polarization of excited light turn around by the 1/2 wavelength plate 4 in line with the c-axis direction of the Nd:YVO4 crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体レーザ装置に関
し、特に、半導体レーザからの光を直接あるいは光ファ
イバーなどで導光し、これを励起光として固体レーザ媒
質を端面励起する固体レーザ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state laser device, and more particularly to a solid-state laser device for guiding light from a semiconductor laser directly or through an optical fiber and exciting the solid-state laser medium with this light as an end face. Is.

【0002】[0002]

【従来の技術】異方性固体レーザ結晶の一つである Nd:
YVO4は、従来のNd:YAGに比べて半導体レーザの発振波長
での吸収係数が大きく、半導体レーザ励起に適した固体
レーザ媒質として注目されている。 Nd:YVO4は一軸性の
結晶であり、結晶のc軸方向とa軸方向とでは異なる吸
収係数を持つ。その大きさの比率は、GaAs系半導体レー
ザの発振波長に当たる 809nm付近において、4対1程度
でc軸方向の吸収係数が大きい。
2. Description of the Related Art Nd: one of anisotropic solid-state laser crystals
YVO 4 has a larger absorption coefficient at the oscillation wavelength of a semiconductor laser than conventional Nd: YAG, and is attracting attention as a solid-state laser medium suitable for pumping a semiconductor laser. Nd: YVO 4 is a uniaxial crystal and has different absorption coefficients in the c-axis direction and the a-axis direction of the crystal. The size ratio is about 4 to 1 in the vicinity of 809 nm, which corresponds to the oscillation wavelength of the GaAs semiconductor laser, and the absorption coefficient in the c-axis direction is large.

【0003】一方、一般に半導体レーザの偏光は、ほぼ
その活性層と平行な方向の直線偏光である。したがっ
て、効率の良い動作のためには半導体レーザの偏光を N
d:YVO4結晶のc軸方向に一致させて励起することが望ま
しい(例えば、特開平4−137775号公報等参
照)。しかしながら、半導体レーザの発光部である活性
層は非常に小さいため、半導体レーザの偏光を Nd:YVO4
結晶のc軸方向に正確に一致させることは容易ではな
い。実際、レーザ装置を組み立てる際には、半導体レー
ザや固体レーザ結晶の空間的な移動機構を備えなければ
ならず、全体として複雑な装置となる欠点があった。
On the other hand, generally, the polarized light of a semiconductor laser is linearly polarized light in a direction substantially parallel to the active layer. Therefore, the polarization of the semiconductor laser should be N
It is desirable to excite the d: YVO 4 crystal so that it coincides with the c-axis direction (see, for example, JP-A-4-137775). However, since the active layer, which is the light emitting part of the semiconductor laser, is very small, the polarization of the semiconductor laser is changed to Nd: YVO 4
It is not easy to exactly match the c-axis direction of the crystal. In fact, when assembling a laser device, a spatial movement mechanism for a semiconductor laser or a solid-state laser crystal must be provided, and there is a drawback that the device becomes complicated as a whole.

【0004】[0004]

【発明が解決しようとする課題】このような従来技術の
問題点に鑑み、本発明の主な目的は、半導体レーザやN
d:YVO4 結晶の空間的な移動を要することなく、半導体
レーザの偏光を Nd:YVO4結晶のc軸方向に完全に一致さ
せ、効率の良いレーザ動作を得ることができる個体レー
ザ装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, the main object of the present invention is to provide a semiconductor laser or N
We provide a solid-state laser device that can achieve efficient laser operation by perfectly matching the polarization of the semiconductor laser with the c-axis direction of the Nd: YVO 4 crystal without requiring spatial movement of the d: YVO 4 crystal. To do.

【0005】[0005]

【課題を解決するための手段】このような目的は、本発
明によれば、半導体レーザと、前記半導体レーザからの
励起光により端面励起する異方性固体レーザ媒質と、一
対のミラーからなる共振器とを有する固体レーザ装置に
於いて、前記半導体レーザと前記異方性個体レーザ媒質
との間に、前記励起光を偏光回転して前記異方性固体レ
ーザ結晶の吸収係数が大となる軸方向に一致させるため
の1/2波長板を配設したことを特徴とする固体レーザ
装置を提供することにより達成される。特に、前記異方
性固体レーザ媒質が Nd:YVO4レーザ結晶であると良い。
According to the present invention, such a purpose is to resonate a semiconductor laser, an anisotropic solid-state laser medium end-pumped by pumping light from the semiconductor laser, and a pair of mirrors. In a solid-state laser device having a container, an axis between the semiconductor laser and the anisotropic solid-state laser medium for polarization-rotating the excitation light to increase the absorption coefficient of the anisotropic solid-state laser crystal. This is achieved by providing a solid-state laser device characterized by disposing a half-wave plate for matching the directions. In particular, the anisotropic solid-state laser medium is preferably a Nd: YVO 4 laser crystal.

【0006】[0006]

【作用】半導体レーザと Nd:YVO4結晶との間に配置され
た1/2波長板は、水晶のような透明な異方性結晶で作
られているが、光が異方性結晶中を伝播するとき、軸方
向による屈折率の違いからそれぞれの軸方向で位相速度
差を生じる。光が速く進む方向の速軸と遅く進む方向の
遅軸とが直交しており、1/2波長板では速軸と遅軸と
の位相差がちょうどπになるようになっているため、入
射光の遅軸方向に振動する成分が、速軸方向に比べてπ
だけ位相が遅れる。例えば入射光の偏光が1/2波長の
速軸に対して45゜であるとき、出射光の偏光はちょう
ど90゜回転することになる。一般に入射光の偏光方向
と1/2波長板の速軸方向とがなす角をθとすると、出
射光の偏光は2θだけ回転する。例えば、 Nd:YVO4結晶
がa軸カットになっていて、半導体レーザの偏光方向と
Nd:YVO4結晶のc軸とが45゜をなしているとすると、
半導体レーザと1/2波長板の速軸とのなす角を22.
5゜に設定すれば、半導体レーザの偏光を45゜回転さ
せることができ、半導体レーザの偏光を Nd:YVO4結晶の
c軸方向に完全に一致させることができる。
[Function] The half-wave plate placed between the semiconductor laser and the Nd: YVO 4 crystal is made of a transparent anisotropic crystal such as quartz. When propagating, a phase velocity difference occurs in each axial direction due to the difference in refractive index depending on the axial direction. Since the fast axis in the direction in which light travels fast and the slow axis in the direction in which light slows are orthogonal to each other, and the phase difference between the fast axis and the slow axis in the half-wave plate is exactly π, The component that oscillates in the slow axis direction of light is π compared to the fast axis direction.
Only the phase is delayed. For example, if the polarization of the incident light is 45 ° with respect to the fast axis of ½ wavelength, the polarization of the emitted light will rotate exactly 90 °. Generally, when the angle formed by the polarization direction of incident light and the fast axis direction of the half-wave plate is θ, the polarization of emitted light is rotated by 2θ. For example, the Nd: YVO 4 crystal has an a-axis cut, and the polarization direction of the semiconductor laser is
If the c-axis of Nd: YVO 4 crystal forms 45 °,
The angle formed by the semiconductor laser and the fast axis of the half-wave plate is 22.
If it is set to 5 °, the polarization of the semiconductor laser can be rotated by 45 °, and the polarization of the semiconductor laser can be perfectly matched with the c-axis direction of the Nd: YVO 4 crystal.

【0007】このようにすれば、半導体レーザや Nd:YV
O4結晶の空間的な移動を要することなく、半導体レーザ
の偏光を Nd:YVO4結晶のc軸方向に完全に一致させるこ
とができる。
In this way, the semiconductor laser and Nd: YV
The polarization of the semiconductor laser can be perfectly matched to the c-axis direction of the Nd: YVO 4 crystal without requiring spatial movement of the O 4 crystal.

【0008】[0008]

【実施例】以下、本発明の好適実施例を添付の図面によ
り詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0009】図1は、本発明が適用された実施例におけ
る固体レーザ装置の構成を示す模式的斜視図である。本
実施例では、図1に示されるように、半導体レーザ1か
ら発光される励起光の光軸上に、半導体レーザ1側から
1/2波長板4と、集光レンズ2と、異方性固体レーザ
媒質としてのNd濃度1%の Nd:YVO4結晶5と、共振器ミ
ラー3とが、この順に配置されている。 Nd:YVO4結晶5
の励起側端面には、コーティングにより形成された共振
器ミラー5aが設けられている。
FIG. 1 is a schematic perspective view showing the structure of a solid-state laser device in an embodiment to which the present invention is applied. In the present embodiment, as shown in FIG. 1, on the optical axis of the excitation light emitted from the semiconductor laser 1, the half-wave plate 4, the condenser lens 2, and the anisotropy from the semiconductor laser 1 side. An Nd: YVO 4 crystal 5 having a Nd concentration of 1% as a solid-state laser medium and a resonator mirror 3 are arranged in this order. Nd: YVO 4 crystal 5
A resonator mirror 5a formed by coating is provided on the end face on the excitation side of the.

【0010】Nd:YVO4結晶5は、3×3×1t mmの大き
さであり、a-c面でカットされている。半導体レーザ
1の偏光と Nd:YVO4結晶5のc軸とは、ほぼ45゜をな
すようにされている。半導体レーザ1と集光レンズ2と
の間に、半導体レーザ1の波長で機能する1/2波長板
4を配置しており、その1/2波長板4を用いて、半導
体レーザ1の偏光を回転し、 Nd:YVO4結晶5の吸収係数
の大きいc軸に一致させた。
The Nd: YVO 4 crystal 5 has a size of 3 × 3 × 1 t mm and is cut in the ac plane. The polarization of the semiconductor laser 1 and the c-axis of the Nd: YVO 4 crystal 5 are set to be about 45 °. A half-wave plate 4 which functions at the wavelength of the semiconductor laser 1 is arranged between the semiconductor laser 1 and the condenser lens 2, and the half-wave plate 4 is used to change the polarization of the semiconductor laser 1. The Nd: YVO 4 crystal 5 was rotated so as to coincide with the c-axis having a large absorption coefficient.

【0011】半導体レーザ1から発光された励起光( 8
09nm)は、まず1/2波長板4を通り、偏光回転してか
ら集光レンズ2で集められ、 Nd:YVO4結晶5に照射さ
れ、 Nd:YVO4結晶5を励起し、基本レーザ光波長での自
然放出光(1064nm)を生じさせる。 Nd:YVO4結晶5から
放射された自然放出光は、共振器ミラー3で反射され、
もと来た光路を逆に通って Nd:YVO4結晶5に戻り、ここ
で誘導放出により増幅されつつ、 Nd:YVO4結晶5の励起
側端面の共振器ミラー5aにより反射され、共振器内を
往復する。こうして共振器ミラー5a・3がレーザ発振
の条件を満足すれば、レーザ発振が生じる。発振した基
本レーザ光は、出力側端面の出力ミラー3から出射され
る。
Excitation light (8
09Nm) passes through half-wave plate 4 first, is collected by the condenser lens 2 from the circular polarization, Nd: irradiates the YVO 4 crystal 5, Nd: YVO 4 to excite the crystal 5, basic laser beam Generates spontaneous emission light (1064 nm) at a wavelength. The spontaneous emission light emitted from the Nd: YVO 4 crystal 5 is reflected by the resonator mirror 3,
Returning to the Nd: YVO 4 crystal 5 in the reverse direction of the original optical path, where it is amplified by stimulated emission, reflected by the resonator mirror 5a on the end face on the excitation side of the Nd: YVO 4 crystal 5, and inside the resonator. Make a round trip. In this way, if the resonator mirrors 5a and 3 satisfy the conditions for laser oscillation, laser oscillation occurs. The oscillated basic laser light is emitted from the output mirror 3 on the output side end face.

【0012】1/2波長板4の配置の調整は、 Nd:YVO4
の基本レーザ発振出力の大きさを観測しながら、出力が
最大となるように行うことができる。例えば、励起入力
を750mWとしたとき、 Nd:YVO4の基本レーザ発振出力
として350mWが得られた。これは1/2波長板を挿入
しないときに比較して30%の出力向上である。
Adjustment of the arrangement of the half-wave plate 4 is performed by Nd: YVO 4
The output can be maximized while observing the magnitude of the basic laser oscillation output of. For example, when the excitation input was 750 mW, 350 mW was obtained as the fundamental laser oscillation output of Nd: YVO 4 . This is an output improvement of 30% as compared with the case where the half-wave plate is not inserted.

【0013】なお、本実施例においては、レーザ媒質と
して Nd:YVO4結晶を用いたが、他の異方性結晶であって
も良い。また、1/2波長板4の設置位置は、半導体レ
ーザ1と Nd:YVO4結晶5との間であればどこでも良い。
In this embodiment, Nd: YVO 4 crystal is used as the laser medium, but other anisotropic crystal may be used. The half-wave plate 4 may be installed anywhere between the semiconductor laser 1 and the Nd: YVO 4 crystal 5.

【0014】[0014]

【発明の効果】このように本発明による固体レーザ装置
によれば、半導体レーザや Nd:YVO4結晶の空間的な移動
を要することなく、半導体レーザの偏光を Nd:YVO4結晶
のc軸方向に完全に一致させることができ、効率の良い
レーザ動作が得られる。
As described above, according to the solid-state laser device of the present invention, the polarization of the semiconductor laser and the Nd: YVO 4 crystal can be polarized in the c-axis direction of the Nd: YVO 4 crystal without requiring spatial movement of the semiconductor laser and the Nd: YVO 4 crystal. Can be perfectly matched with, and efficient laser operation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された固体レーザ装置の構成を示
す斜視的模式図。
FIG. 1 is a perspective schematic view showing a configuration of a solid-state laser device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 集光レンズ 3 共振器ミラー 4 1/2波長板 5 Nd:YVO4結晶 5a 共振器ミラー1 semiconductor laser 2 condenser lens 3 resonator mirror 4 1/2 wavelength plate 5 Nd: YVO 4 crystal 5a resonator mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体レーザと、前記半導体レーザから
の励起光により端面励起する異方性固体レーザ媒質と、
一対のミラーからなる共振器とを有する固体レーザ装置
に於いて、 前記半導体レーザと前記異方性個体レーザ媒質との間
に、前記励起光を偏光回転して前記異方性固体レーザ結
晶の吸収係数が大となる軸方向に一致させるための1/
2波長板を配設したことを特徴とする固体レーザ装置。
1. A semiconductor laser, and an anisotropic solid-state laser medium that is end-pumped by pumping light from the semiconductor laser,
In a solid-state laser device having a resonator composed of a pair of mirrors, the excitation light is polarized and rotated between the semiconductor laser and the anisotropic solid-state laser medium to absorb the anisotropic solid-state laser crystal. 1 / to match the axial direction where the coefficient is large
A solid-state laser device having a two-wave plate.
【請求項2】 前記異方性固体レーザ媒質が Nd:YVO4
ーザ結晶であることを特徴とする請求項1に記載の固体
レーザ装置。
2. The solid-state laser device according to claim 1, wherein the anisotropic solid-state laser medium is an Nd: YVO 4 laser crystal.
JP21084393A 1993-08-02 1993-08-02 Solid-state laser equipment Withdrawn JPH0745892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21084393A JPH0745892A (en) 1993-08-02 1993-08-02 Solid-state laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21084393A JPH0745892A (en) 1993-08-02 1993-08-02 Solid-state laser equipment

Publications (1)

Publication Number Publication Date
JPH0745892A true JPH0745892A (en) 1995-02-14

Family

ID=16596037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21084393A Withdrawn JPH0745892A (en) 1993-08-02 1993-08-02 Solid-state laser equipment

Country Status (1)

Country Link
JP (1) JPH0745892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641119B2 (en) 2001-01-29 2003-11-04 Tokai Rubber Industries, Ltd. Vibration-damping device having independent mass member
JP2009290151A (en) * 2008-06-02 2009-12-10 Opto Design:Kk Solid state laser apparatus
JP2010034345A (en) * 2008-07-30 2010-02-12 Omron Corp Solid-state laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641119B2 (en) 2001-01-29 2003-11-04 Tokai Rubber Industries, Ltd. Vibration-damping device having independent mass member
JP2009290151A (en) * 2008-06-02 2009-12-10 Opto Design:Kk Solid state laser apparatus
JP2010034345A (en) * 2008-07-30 2010-02-12 Omron Corp Solid-state laser device

Similar Documents

Publication Publication Date Title
JP4754020B2 (en) Planar waveguide laser device
WO2006028078A1 (en) Passive q switch laser device
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JP2001251002A (en) Laser device
KR100269028B1 (en) An apparatus of unidirectionally operating laser by using semi-monolithic ring cavity
JPH06130328A (en) Polarization control element and solid laser device
EP0957546A2 (en) solid-state laser device and solid-state laser amplifier provided therewith
JPH10107356A (en) Polarization control element and solid-state laser
JPH11103118A (en) Solid-state laser device and its manufacture
US20050036531A1 (en) Laser device
JPH0745892A (en) Solid-state laser equipment
JPH0730173A (en) Solid-state laser device
JPH104233A (en) Wavelength conversion laser
JPWO2004102752A1 (en) Solid state laser equipment
JPH04137775A (en) Semiconductor laser excitation solid state laser
JPH0621555A (en) Semiconductor laser excitation solid laser
JPH0595144A (en) Semiconductor laser-excited solid state laser
JPH0714666U (en) Solid-state laser device
JPH07131101A (en) Laser beam generating device
JPH1154820A (en) Semiconductor laser pumped solid-state laser and optical device using the same
JPH06209132A (en) Solid-state laser
JPH0710964U (en) Solid-state laser device
JPH06164045A (en) Laser apparatus and second-harmonic generation method
JP2792437B2 (en) Ring type solid laser device
JPH0758379A (en) Solid laser device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003