JPH04137775A - Semiconductor laser excitation solid state laser - Google Patents

Semiconductor laser excitation solid state laser

Info

Publication number
JPH04137775A
JPH04137775A JP26132190A JP26132190A JPH04137775A JP H04137775 A JPH04137775 A JP H04137775A JP 26132190 A JP26132190 A JP 26132190A JP 26132190 A JP26132190 A JP 26132190A JP H04137775 A JPH04137775 A JP H04137775A
Authority
JP
Japan
Prior art keywords
laser
crystal
semiconductor laser
wavelength
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26132190A
Other languages
Japanese (ja)
Inventor
Minoru Sumiya
実 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26132190A priority Critical patent/JPH04137775A/en
Publication of JPH04137775A publication Critical patent/JPH04137775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To remarkably alleviate accuracy of waveform control of a semiconductor laser for reducing variation of output by using a-axis cut Nd:YVO4 as a solid state laser crystal to excite a semiconductor laser so that the optical and electric field direction becomes parallel with the c-axis of crystal. CONSTITUTION:A laser resonator is structured by providing a multilayer thin film mirror 3 of dielectric material at the end surface of the a-axis cut Nd:YVO4 crystal 4 in the side of a semiconductor laser 1 to achieve 100% reflectivity for 1064nm wavelength and a multilayer thin film of dielectric material to an output mirror 5 to achieve 80 to 98% reflectivity for 1064nm. Oscillation in the wavelength of 946nm and 1340nm can be realized as well as the wavelength of 1064nm by changing the wavelength of such multilayer thin film of dielectric material having high reflectivity. A semiconductor laser 1 is caused to provide the wavelength of 800nm to 815nm and phtoelectric field of laser beam to become parallel with the c-axis of the crystal 4. A laser beam radiated from the semiconductor laser 1 is condensed by a lens 2 and is then applied to the crystal 4. Thereby, Nd:YVO4 is excited and a laser beam of 1064nm can be extracted from an output mirror 5. As explained above, highly efficient excitation may be realized by selecting the direction of polarization for the crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ装置に関し、特に小型で簡便な半導体
レーザ励起固体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser device, and particularly to a compact and simple semiconductor laser pumped solid-state laser.

(従来の技術) 半導体レーザ励起固体レーザでは固体レーザ結晶として
、Nd:YAG、 Nd:YLFなどが多く用いられて
いる。これらの結晶は800nm帯に強い吸収をもつた
めに、これにあった波長の半導体レーザで励起すること
により効率よく固体レーザを励起することが可能である
。また、半導体レーザ励起固体レーザの共振器内に2次
の非線形光学結晶を設けることにより、固体レーザの光
を高い効率で高調波へ変換する、波長変換レーザを提供
することが可能である。半導体レーザ励起固体レーザに
関しては、[レーザ研究、第17巻、第10号(198
9)、pp、695−704 Jに詳しい記述がある。
(Prior Art) Nd:YAG, Nd:YLF, and the like are often used as solid-state laser crystals in semiconductor laser-excited solid-state lasers. Since these crystals have strong absorption in the 800 nm band, it is possible to efficiently excite a solid-state laser by exciting them with a semiconductor laser having a wavelength corresponding to this. Further, by providing a second-order nonlinear optical crystal in the resonator of the semiconductor laser-excited solid-state laser, it is possible to provide a wavelength conversion laser that converts the light of the solid-state laser into harmonics with high efficiency. Regarding semiconductor laser pumped solid-state lasers, see [Laser Research, Vol. 17, No. 10 (198
9), pp. 695-704 J.

(発明が解決しようとする) しかし、これらの固体レーザ結晶の強い吸収帯は、数n
m程度の幅しかなく、その吸収帯の中でも吸収係数が波
長により大きく変化するので、半導体レーザの波長変動
が生じると、固体レーザ出力や、第2高調波の出力も変
動してしまう。この出力変動を低減するために、ペルチ
ェ素子などにより半導体レーザに温度制御を施し、半導
体レーザの発振波長を高い所要精度で制御しなければな
らない。また、半導体レーザは各々発振波長が異なるた
めに、固体レーザの励起に適したものを選択しなければ
ならない。
(This invention attempts to solve) However, the strong absorption bands of these solid-state laser crystals are
It has a width of only about m, and the absorption coefficient changes greatly depending on the wavelength within the absorption band. Therefore, when the wavelength of the semiconductor laser changes, the output of the solid-state laser and the output of the second harmonic also change. In order to reduce this output fluctuation, the temperature of the semiconductor laser must be controlled using a Peltier device or the like, and the oscillation wavelength of the semiconductor laser must be controlled with the required high precision. Further, since each semiconductor laser has a different oscillation wavelength, it is necessary to select one suitable for excitation of the solid-state laser.

本発明の目的は、固体レーザを励起するための半導体レ
ーザの波長制御の精度を大幅に緩和し、出力変動が少な
く、また、使用する半導体レーザの選択の幅を広げる半
導体レーザ励起固体レーザを提供することにある。
An object of the present invention is to provide a semiconductor laser-pumped solid-state laser that significantly reduces the accuracy of wavelength control of a semiconductor laser for exciting the solid-state laser, has less output fluctuation, and widens the range of choices of semiconductor lasers to be used. It's about doing.

(課題を解決するための手段) 本発明の端面励起型半導体レーザ励起固体レーザでは、
固体レーザ結晶としてa軸カットのNd:YVO4を用
いて、励起用の半導体レーザの光電界の方向と前記Nd
:YVO4の結晶C軸が平行になるように励起すること
を特徴とする。また前記端面励起型半導体レーザ励起固
体レーザにおいて、レーザ共振器内に、高調波発生のた
めの2次の非線形光学結晶を設けることを特徴とする。
(Means for Solving the Problems) In the edge-pumped semiconductor laser-excited solid-state laser of the present invention,
Using a-axis cut Nd:YVO4 as a solid-state laser crystal, the direction of the optical electric field of the excitation semiconductor laser and the Nd
:It is characterized by being excited so that the crystal C axes of YVO4 are parallel. Further, the edge-pumped semiconductor laser-excited solid-state laser is characterized in that a second-order nonlinear optical crystal for generating harmonics is provided in the laser resonator.

(作用) Nd:YVO4は一軸性の結晶で、レーザ発振に用いた
ときに特定の方向に偏光して発振するばかりではなく、
その吸収特性に異方性がある。半導体レーザは一般に特
定の方向に偏光して発振するために、結晶に対する偏光
方向を選ぶことによって効率のよい励起が可能となる。
(Function) Nd:YVO4 is a uniaxial crystal, and when used for laser oscillation, it not only polarizes in a specific direction and oscillates;
Its absorption properties are anisotropic. Semiconductor lasers generally emit light polarized in a specific direction, so efficient excitation can be achieved by selecting the polarization direction with respect to the crystal.

a軸カットのNd:YVO4の吸収特性の異方性の測定
結果を第3図に示す。測定にはNd濃度1%、厚さ1m
mの試料を用い、光源の波長は、Nd:YVO4の吸収
が800nm帯では最も強い約809nmとしている。
FIG. 3 shows the measurement results of the anisotropy of the absorption characteristics of Nd:YVO4 cut along the a-axis. For measurement, Nd concentration 1%, thickness 1m
The wavelength of the light source was set to about 809 nm, where the absorption of Nd:YVO4 is the strongest in the 800 nm band.

横軸は結晶C軸と光電界の方向の間の角θで、θが0゜
または180°の時、結晶C軸と光電界は平行であると
する。縦軸は透過率である。第3図が示す通り、a軸カ
ッ) Nd:YVO4では結晶C軸と光電界が平行であ
るとき最も吸収が強く、θが00または180°となる
ところから±10°以内の範囲になるようにすれば、効
率のよい励起が可能であることがわかる。
The horizontal axis is the angle θ between the crystal C axis and the direction of the optical electric field, and when θ is 0° or 180°, the crystal C axis and the optical electric field are parallel. The vertical axis is the transmittance. As shown in Figure 3, the absorption is strongest in Nd:YVO4 when the optical electric field is parallel to the crystal C axis, and the absorption is within ±10° from where θ is 00 or 180°. It can be seen that efficient excitation is possible if

次に、第4図にa軸カットのNd:YVO4の吸収特性
の波長依存性を示す。第4図(a)が結晶C軸と光電界
が垂直の場合で、第4図(b)が結晶C軸と光電界が平
行の場合である。第4図の(a)と(b)を比較すると
、結晶C軸に光電界が平行であるとき、垂直である場合
に比べ吸収が強いばかりでなく、吸収の強い波長帯域が
広いことがわかる。このことがら、結晶C軸と光電界の
方向が平行か、すくなくとも間の角が10°程度以内に
なるように励起することが、a軸カットのNd:YVO
4をレーザに使用する際に有効であることがわかる。
Next, FIG. 4 shows the wavelength dependence of the absorption characteristics of a-axis cut Nd:YVO4. FIG. 4(a) shows the case where the crystal C axis and the optical electric field are perpendicular, and FIG. 4(b) shows the case where the crystal C axis and the optical electric field are parallel. Comparing Figure 4 (a) and (b), it can be seen that when the optical electric field is parallel to the crystal C axis, absorption is not only stronger than when it is perpendicular, but also that the wavelength band of strong absorption is wider. . For this reason, it is important to excite the crystal C-axis so that the direction of the photoelectric field is parallel to it, or at least the angle between them is within about 10°.
4 is found to be effective when used in a laser.

第5図(b)に、厚さ3mmのa軸カットのNd:YV
O4を半導体レーザによって端面より励起して、波長1
1064nのレーザ発振させた場合の、レーザ出力の励
起波長依存性を示す。比較のために、Nd:YAGを使
用した場合の結果を第5図(a)に示す。Nd:YAG
を用いた場合、励起に使用する半導体レーザの波長に対
してレーザ出力が大きく変化するのに対して、a軸カッ
トのNd:YVO4を用い、結晶C軸と励起光の光電界
が平行になるように励起した場合、レーザ出力が広い励
起波長範囲でほぼフラットな特性が得られる。これらの
ことがら、共振器内に第2次高調波発生用の非線形光学
結晶を設ける波長変換レーザにおいても、a軸カットの
Nd:YVO4を用い、結晶C軸と励起光の光電界が平
行になるように励起した場合、第2高調波の出力は広い
励起波長範囲でほぼフラットな特性かえられることがわ
かる。
Figure 5(b) shows an a-axis cut Nd:YV with a thickness of 3 mm.
O4 is excited from the end face with a semiconductor laser, and wavelength 1
The dependence of the laser output on the excitation wavelength when oscillating a 1064n laser is shown. For comparison, the results when Nd:YAG was used are shown in FIG. 5(a). Nd: YAG
When using Nd:YVO4 with a-axis cut, the laser output changes greatly depending on the wavelength of the semiconductor laser used for excitation, whereas when using a-axis cut Nd:YVO4, the optical electric field of the excitation light becomes parallel to the crystal C-axis. When pumped in this way, the laser output can provide nearly flat characteristics over a wide excitation wavelength range. For these reasons, even in a wavelength conversion laser in which a nonlinear optical crystal for second-order harmonic generation is installed in the resonator, a-axis cut Nd:YVO4 is used, and the optical electric field of the excitation light is parallel to the crystal C-axis. It can be seen that when pumped so that

(実施例) 以下図面を参照しながら本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1の実施例の斜視図である。a軸カ
ットのNd:YVO4結晶4は、2面のa軸カット面う
ち半導体レーザ1のある側の面に、11064nに対し
て100%反射となる様に、誘電体多層薄膜ミラー3を
つけである。出力ミラー5には11064nに対して8
0〜98%程度の反射率になるように、誘電体多層薄膜
をつけである。誘電体多層薄膜ミラー3と出力ミラー5
.、により、レーザ共振器を構成している。これらの誘
電体多層薄膜の高反射になる波長を変えるえることによ
り、11064n以外に、946nmや1340nmな
どの波長で発振させることも可能である。半導体レーザ
lは波長が800nm〜815nmで、そのレーザ光の
光電界がNd:YVO4結晶4のC軸と平行になるよう
にしである。ここで、光電界と結晶C軸は完全に平行で
なくとも、平行からのずれが10°程度まではほとんど
効率は変わらない。半導体レーザ1より放射されるレー
ザ光をレンズ2で集光し、Nd:YVO4結晶に照射す
ることにより、Nd:YVO4を励起し、11064n
のレーザ光を出力ミラー5から取り呂している。
FIG. 1 is a perspective view of a first embodiment of the invention. The a-axis cut Nd:YVO4 crystal 4 has a dielectric multilayer thin film mirror 3 attached to the side where the semiconductor laser 1 is located among the two a-axis cut surfaces so that 11064n is 100% reflected. be. Output mirror 5 has 8 for 11064n.
A dielectric multilayer thin film is applied so that the reflectance is about 0 to 98%. Dielectric multilayer thin film mirror 3 and output mirror 5
.. , constitute a laser resonator. By changing the wavelength at which these dielectric multilayer thin films exhibit high reflection, it is also possible to oscillate at wavelengths other than 11064n, such as 946nm and 1340nm. The semiconductor laser 1 has a wavelength of 800 nm to 815 nm, and the optical electric field of the laser beam is parallel to the C axis of the Nd:YVO4 crystal 4. Here, even if the optical electric field and the crystal C axis are not completely parallel, the efficiency hardly changes until the deviation from parallelism is about 10°. The laser beam emitted from the semiconductor laser 1 is focused by the lens 2 and irradiated onto the Nd:YVO4 crystal, thereby exciting the Nd:YVO4 and producing 11064n.
The laser beam is taken from the output mirror 5.

第2図は本発明の第2の実施例の斜視図である。FIG. 2 is a perspective view of a second embodiment of the invention.

第1の実施例との違いは、Nd:YVO4結晶4と出力
ミラー5の間に、波長変換用の非線形光学結晶であるK
TP(KTiOPO4)結晶6を設けていることである
。効率よく第2高調波を発生するために、出力ミラー5
の反射率はNd:”’l’VO4の発振波長に対して1
00%になるようにしである。なお、本実施例では、波
長変換の非線形光学結晶としてKTPを用いているが、
Nd:YVO4の発振波長を基本波として、その第2高
調波を発生するための位相整合条件を満たすものであれ
ば、BBO(β−BaB204)、LBO(LiB4O
7)、LiIO3などKTP以外の非線形光学結晶を用
いうろことは言うまでもない。
The difference from the first embodiment is that a nonlinear optical crystal for wavelength conversion is provided between the Nd:YVO4 crystal 4 and the output mirror 5.
TP (KTiOPO4) crystal 6 is provided. In order to efficiently generate the second harmonic, the output mirror 5
The reflectance of Nd:"'l' is 1 for the oscillation wavelength of VO4.
It is set so that it becomes 00%. Note that in this example, KTP is used as the nonlinear optical crystal for wavelength conversion, but
Nd: BBO (β-BaB204), LBO (LiB4O
7) It goes without saying that nonlinear optical crystals other than KTP, such as LiIO3, are used.

(発明の効果) 本発明によれば、固体レーザを励起するための半導体レ
ーザの波長制御の精度を太幅に緩和し、出力変動が少な
く、また、使用する半導体レーザの選択の幅を広げる半
導体レーザ励起固体レーザを提供することができる。
(Effects of the Invention) According to the present invention, the accuracy of wavelength control of a semiconductor laser for exciting a solid-state laser is greatly relaxed, output fluctuation is small, and the range of selection of the semiconductor laser to be used is widened. A laser-pumped solid-state laser can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明するための斜視図
、第2図は本発明の第2の実施例を説明するための斜視
図、第3図〜第4図は本発明に係る、Nd:”嘗′04
結晶の吸収特性を示すもので、第3図はNd:YVO4
結晶C軸と光電界の方向のなす角と吸収特性の関係を示
す図、第4図(a)はNd:YVO4結晶のC軸と光電
界が垂直であるときの吸収特性を示す図、第4図(b)
はNd:YVO4結晶のC軸と光電界が平行であるとき
の吸収特性を示す図、また第5図(a)はNd:YAG
によりレーザ発振させたときのレーザ出力の励起波長依
存性を示す図、第5図(b)はa軸カットのNd:YV
O4を結晶C軸と励起光の電界が平行になるように励起
してレーザ発振させたときのレーザ出力の励起波長依存
性を示す図である。図において、 1・・・半導体レーザ、2・・ルンズ、3・・・誘電体
多層薄膜ミラー、4・・・Nd:YVO4結晶、5・・
・出力ミラー、6゜、、KTP結晶
FIG. 1 is a perspective view for explaining the first embodiment of the present invention, FIG. 2 is a perspective view for explaining the second embodiment of the present invention, and FIGS. 3 and 4 are for explaining the present invention. Regarding, Nd:”嘗′04
It shows the absorption characteristics of crystals, and Figure 3 shows Nd:YVO4
Figure 4(a) is a diagram showing the relationship between the angle between the crystal C-axis and the direction of the optical electric field and the absorption characteristics. Figure 4(b)
is a diagram showing the absorption characteristics when the C axis of Nd:YVO4 crystal and the optical electric field are parallel, and Figure 5 (a) is a diagram showing the absorption characteristics when the C axis of Nd:YVO4 crystal and the optical electric field are parallel.
Figure 5(b) shows the dependence of the laser output on the excitation wavelength when the laser is oscillated by the a-axis cut Nd:YV.
FIG. 3 is a diagram showing the excitation wavelength dependence of the laser output when O4 is excited and oscillated so that the electric field of the excitation light is parallel to the crystal C axis. In the figure, 1... Semiconductor laser, 2... Luns, 3... Dielectric multilayer thin film mirror, 4... Nd:YVO4 crystal, 5...
・Output mirror, 6°, KTP crystal

Claims (2)

【特許請求の範囲】[Claims] (1)端面励起型半導体レーザ励起固体レーザにおいて
、固体レーザ結晶としてa軸カットのNd:YVO_4
を用いて、励起用の半導体レーザの光電界の方向と前記
Nd:YVO_4の結晶c軸が平行になるように励起す
ることを特徴とする半導体レーザ励起固体レーザ。
(1) In an end-pumped semiconductor laser pumped solid-state laser, a-axis cut Nd:YVO_4 is used as the solid-state laser crystal.
A semiconductor laser-excited solid-state laser characterized in that the laser is excited using a semiconductor laser for excitation such that the direction of the optical electric field of the excitation semiconductor laser and the crystal c axis of the Nd:YVO_4 are parallel to each other.
(2)請求項1記載の半導体レーザ励起固体レーザにお
いて、 前記固体レーザの共振器内に高調波発生のための2次の
非線形光学結晶を設けることを特徴とする半導体レーザ
励起固体レーザ。
(2) The semiconductor laser pumped solid-state laser according to claim 1, wherein a second-order nonlinear optical crystal for generating harmonics is provided in a resonator of the solid-state laser.
JP26132190A 1990-09-28 1990-09-28 Semiconductor laser excitation solid state laser Pending JPH04137775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26132190A JPH04137775A (en) 1990-09-28 1990-09-28 Semiconductor laser excitation solid state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26132190A JPH04137775A (en) 1990-09-28 1990-09-28 Semiconductor laser excitation solid state laser

Publications (1)

Publication Number Publication Date
JPH04137775A true JPH04137775A (en) 1992-05-12

Family

ID=17360188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26132190A Pending JPH04137775A (en) 1990-09-28 1990-09-28 Semiconductor laser excitation solid state laser

Country Status (1)

Country Link
JP (1) JPH04137775A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041179A1 (en) * 1999-03-31 2000-10-04 Fuji Photo Film Co., Ltd. Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage plane
WO2003061085A1 (en) * 2002-01-16 2003-07-24 Lumera Laser Gmbh Device and method for optically exciting laser-active crystals with polarization-dependent absorption
WO2004049523A3 (en) * 2002-11-21 2004-10-14 Coherent Inc Off-peak optical pumping of yttrium orthovanadate
US6947465B2 (en) 2002-10-18 2005-09-20 Orc Manufacturing Co., Ltd. Solid state laser
EP1845595A1 (en) 2006-04-12 2007-10-17 Fujifilm Corporation Optically anisotropic solid state laser pumped with perpendicularly polarized pump light
US7995638B2 (en) 2005-10-28 2011-08-09 Laserscope High power, end pumped laser with off-peak pumping
US8897326B2 (en) 2008-09-08 2014-11-25 Ams Research Corporation Pump energy wavelength stabilization

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041179A1 (en) * 1999-03-31 2000-10-04 Fuji Photo Film Co., Ltd. Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage plane
US6558465B1 (en) 1999-03-31 2003-05-06 Fuji Photo Film Co., Ltd. Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage
US6797250B2 (en) 1999-03-31 2004-09-28 Fuji Photo Film Co., Ltd. Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage plane
WO2003061085A1 (en) * 2002-01-16 2003-07-24 Lumera Laser Gmbh Device and method for optically exciting laser-active crystals with polarization-dependent absorption
US7203211B2 (en) 2002-01-16 2007-04-10 Lumera Laser Gmbh Device and method for the optically exciting laser-active crystals with polarization-dependent absorption
US6947465B2 (en) 2002-10-18 2005-09-20 Orc Manufacturing Co., Ltd. Solid state laser
US6898231B2 (en) 2002-11-21 2005-05-24 Coherent, Inc. Off-peak optical pumping of yttrium orthovanadate
US7203214B2 (en) 2002-11-21 2007-04-10 Coherent, Inc. Off-peak optical pumping of yttrium orthovanadate
WO2004049523A3 (en) * 2002-11-21 2004-10-14 Coherent Inc Off-peak optical pumping of yttrium orthovanadate
US7995638B2 (en) 2005-10-28 2011-08-09 Laserscope High power, end pumped laser with off-peak pumping
EP1845595A1 (en) 2006-04-12 2007-10-17 Fujifilm Corporation Optically anisotropic solid state laser pumped with perpendicularly polarized pump light
JP2007281388A (en) * 2006-04-12 2007-10-25 Fujifilm Corp Laser equipment
US8897326B2 (en) 2008-09-08 2014-11-25 Ams Research Corporation Pump energy wavelength stabilization
US9407058B2 (en) 2008-09-08 2016-08-02 Boston Scientific Scimed, Inc. Pump energy wavelength stabilization

Similar Documents

Publication Publication Date Title
JP4231829B2 (en) Internal cavity sum frequency mixing laser
JP2000216467A (en) Laser device and laser-machining device
JP2824884B2 (en) Polarization control element and solid-state laser device
JPH06283794A (en) Laser-diode-pumped solid laser
JP3683360B2 (en) Polarization control element and solid-state laser
JPH04137775A (en) Semiconductor laser excitation solid state laser
JP2002055369A (en) Laser beam generating device
EP1717916A2 (en) Laser oscillation device
JPH0922037A (en) Laser beam generator
JPH1041573A (en) Laser oscillator
JPH09298331A (en) Selectable wavelength laser oscillator of variable wavelength laser
JPH0595144A (en) Semiconductor laser-excited solid state laser
JP2000114633A (en) Wavelength conversion solid laser device
JPH0621555A (en) Semiconductor laser excitation solid laser
JPH09232665A (en) Output stabilizing second harmonics light source
JPH05299751A (en) Laser-diode pumping solid-state laser
JP2021132127A (en) Semiconductor laser-excitation solid-state laser
JPH0714666U (en) Solid-state laser device
JPH06216453A (en) Solid-state laser device
JP3282221B2 (en) Laser light generator
JP2000138405A (en) Semiconductor laser-excited solid-state laser system
JP2005123226A (en) Internal resonator type sum frequency mixing laser
JPH06350173A (en) Polarized beam and longitudinal mode control element and solid-state laser device
JP2004219675A (en) Far-infrared solid laser oscillation system
JPH07131100A (en) Laser light generator