JPH04137775A - Semiconductor laser excitation solid state laser - Google Patents
Semiconductor laser excitation solid state laserInfo
- Publication number
- JPH04137775A JPH04137775A JP26132190A JP26132190A JPH04137775A JP H04137775 A JPH04137775 A JP H04137775A JP 26132190 A JP26132190 A JP 26132190A JP 26132190 A JP26132190 A JP 26132190A JP H04137775 A JPH04137775 A JP H04137775A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- crystal
- semiconductor laser
- wavelength
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 35
- 230000005284 excitation Effects 0.000 title claims abstract description 16
- 239000007787 solid Substances 0.000 title abstract 2
- 239000013078 crystal Substances 0.000 claims abstract description 44
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 230000005684 electric field Effects 0.000 claims abstract description 17
- 229910017502 Nd:YVO4 Inorganic materials 0.000 abstract description 21
- 239000010409 thin film Substances 0.000 abstract description 8
- 230000010355 oscillation Effects 0.000 abstract description 5
- 230000010287 polarization Effects 0.000 abstract description 2
- 239000003989 dielectric material Substances 0.000 abstract 3
- 238000002310 reflectometry Methods 0.000 abstract 3
- 238000010521 absorption reaction Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 2
- 229910009372 YVO4 Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、レーザ装置に関し、特に小型で簡便な半導体
レーザ励起固体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser device, and particularly to a compact and simple semiconductor laser pumped solid-state laser.
(従来の技術)
半導体レーザ励起固体レーザでは固体レーザ結晶として
、Nd:YAG、 Nd:YLFなどが多く用いられて
いる。これらの結晶は800nm帯に強い吸収をもつた
めに、これにあった波長の半導体レーザで励起すること
により効率よく固体レーザを励起することが可能である
。また、半導体レーザ励起固体レーザの共振器内に2次
の非線形光学結晶を設けることにより、固体レーザの光
を高い効率で高調波へ変換する、波長変換レーザを提供
することが可能である。半導体レーザ励起固体レーザに
関しては、[レーザ研究、第17巻、第10号(198
9)、pp、695−704 Jに詳しい記述がある。(Prior Art) Nd:YAG, Nd:YLF, and the like are often used as solid-state laser crystals in semiconductor laser-excited solid-state lasers. Since these crystals have strong absorption in the 800 nm band, it is possible to efficiently excite a solid-state laser by exciting them with a semiconductor laser having a wavelength corresponding to this. Further, by providing a second-order nonlinear optical crystal in the resonator of the semiconductor laser-excited solid-state laser, it is possible to provide a wavelength conversion laser that converts the light of the solid-state laser into harmonics with high efficiency. Regarding semiconductor laser pumped solid-state lasers, see [Laser Research, Vol. 17, No. 10 (198
9), pp. 695-704 J.
(発明が解決しようとする)
しかし、これらの固体レーザ結晶の強い吸収帯は、数n
m程度の幅しかなく、その吸収帯の中でも吸収係数が波
長により大きく変化するので、半導体レーザの波長変動
が生じると、固体レーザ出力や、第2高調波の出力も変
動してしまう。この出力変動を低減するために、ペルチ
ェ素子などにより半導体レーザに温度制御を施し、半導
体レーザの発振波長を高い所要精度で制御しなければな
らない。また、半導体レーザは各々発振波長が異なるた
めに、固体レーザの励起に適したものを選択しなければ
ならない。(This invention attempts to solve) However, the strong absorption bands of these solid-state laser crystals are
It has a width of only about m, and the absorption coefficient changes greatly depending on the wavelength within the absorption band. Therefore, when the wavelength of the semiconductor laser changes, the output of the solid-state laser and the output of the second harmonic also change. In order to reduce this output fluctuation, the temperature of the semiconductor laser must be controlled using a Peltier device or the like, and the oscillation wavelength of the semiconductor laser must be controlled with the required high precision. Further, since each semiconductor laser has a different oscillation wavelength, it is necessary to select one suitable for excitation of the solid-state laser.
本発明の目的は、固体レーザを励起するための半導体レ
ーザの波長制御の精度を大幅に緩和し、出力変動が少な
く、また、使用する半導体レーザの選択の幅を広げる半
導体レーザ励起固体レーザを提供することにある。An object of the present invention is to provide a semiconductor laser-pumped solid-state laser that significantly reduces the accuracy of wavelength control of a semiconductor laser for exciting the solid-state laser, has less output fluctuation, and widens the range of choices of semiconductor lasers to be used. It's about doing.
(課題を解決するための手段)
本発明の端面励起型半導体レーザ励起固体レーザでは、
固体レーザ結晶としてa軸カットのNd:YVO4を用
いて、励起用の半導体レーザの光電界の方向と前記Nd
:YVO4の結晶C軸が平行になるように励起すること
を特徴とする。また前記端面励起型半導体レーザ励起固
体レーザにおいて、レーザ共振器内に、高調波発生のた
めの2次の非線形光学結晶を設けることを特徴とする。(Means for Solving the Problems) In the edge-pumped semiconductor laser-excited solid-state laser of the present invention,
Using a-axis cut Nd:YVO4 as a solid-state laser crystal, the direction of the optical electric field of the excitation semiconductor laser and the Nd
:It is characterized by being excited so that the crystal C axes of YVO4 are parallel. Further, the edge-pumped semiconductor laser-excited solid-state laser is characterized in that a second-order nonlinear optical crystal for generating harmonics is provided in the laser resonator.
(作用)
Nd:YVO4は一軸性の結晶で、レーザ発振に用いた
ときに特定の方向に偏光して発振するばかりではなく、
その吸収特性に異方性がある。半導体レーザは一般に特
定の方向に偏光して発振するために、結晶に対する偏光
方向を選ぶことによって効率のよい励起が可能となる。(Function) Nd:YVO4 is a uniaxial crystal, and when used for laser oscillation, it not only polarizes in a specific direction and oscillates;
Its absorption properties are anisotropic. Semiconductor lasers generally emit light polarized in a specific direction, so efficient excitation can be achieved by selecting the polarization direction with respect to the crystal.
a軸カットのNd:YVO4の吸収特性の異方性の測定
結果を第3図に示す。測定にはNd濃度1%、厚さ1m
mの試料を用い、光源の波長は、Nd:YVO4の吸収
が800nm帯では最も強い約809nmとしている。FIG. 3 shows the measurement results of the anisotropy of the absorption characteristics of Nd:YVO4 cut along the a-axis. For measurement, Nd concentration 1%, thickness 1m
The wavelength of the light source was set to about 809 nm, where the absorption of Nd:YVO4 is the strongest in the 800 nm band.
横軸は結晶C軸と光電界の方向の間の角θで、θが0゜
または180°の時、結晶C軸と光電界は平行であると
する。縦軸は透過率である。第3図が示す通り、a軸カ
ッ) Nd:YVO4では結晶C軸と光電界が平行であ
るとき最も吸収が強く、θが00または180°となる
ところから±10°以内の範囲になるようにすれば、効
率のよい励起が可能であることがわかる。The horizontal axis is the angle θ between the crystal C axis and the direction of the optical electric field, and when θ is 0° or 180°, the crystal C axis and the optical electric field are parallel. The vertical axis is the transmittance. As shown in Figure 3, the absorption is strongest in Nd:YVO4 when the optical electric field is parallel to the crystal C axis, and the absorption is within ±10° from where θ is 00 or 180°. It can be seen that efficient excitation is possible if
次に、第4図にa軸カットのNd:YVO4の吸収特性
の波長依存性を示す。第4図(a)が結晶C軸と光電界
が垂直の場合で、第4図(b)が結晶C軸と光電界が平
行の場合である。第4図の(a)と(b)を比較すると
、結晶C軸に光電界が平行であるとき、垂直である場合
に比べ吸収が強いばかりでなく、吸収の強い波長帯域が
広いことがわかる。このことがら、結晶C軸と光電界の
方向が平行か、すくなくとも間の角が10°程度以内に
なるように励起することが、a軸カットのNd:YVO
4をレーザに使用する際に有効であることがわかる。Next, FIG. 4 shows the wavelength dependence of the absorption characteristics of a-axis cut Nd:YVO4. FIG. 4(a) shows the case where the crystal C axis and the optical electric field are perpendicular, and FIG. 4(b) shows the case where the crystal C axis and the optical electric field are parallel. Comparing Figure 4 (a) and (b), it can be seen that when the optical electric field is parallel to the crystal C axis, absorption is not only stronger than when it is perpendicular, but also that the wavelength band of strong absorption is wider. . For this reason, it is important to excite the crystal C-axis so that the direction of the photoelectric field is parallel to it, or at least the angle between them is within about 10°.
4 is found to be effective when used in a laser.
第5図(b)に、厚さ3mmのa軸カットのNd:YV
O4を半導体レーザによって端面より励起して、波長1
1064nのレーザ発振させた場合の、レーザ出力の励
起波長依存性を示す。比較のために、Nd:YAGを使
用した場合の結果を第5図(a)に示す。Nd:YAG
を用いた場合、励起に使用する半導体レーザの波長に対
してレーザ出力が大きく変化するのに対して、a軸カッ
トのNd:YVO4を用い、結晶C軸と励起光の光電界
が平行になるように励起した場合、レーザ出力が広い励
起波長範囲でほぼフラットな特性が得られる。これらの
ことがら、共振器内に第2次高調波発生用の非線形光学
結晶を設ける波長変換レーザにおいても、a軸カットの
Nd:YVO4を用い、結晶C軸と励起光の光電界が平
行になるように励起した場合、第2高調波の出力は広い
励起波長範囲でほぼフラットな特性かえられることがわ
かる。Figure 5(b) shows an a-axis cut Nd:YV with a thickness of 3 mm.
O4 is excited from the end face with a semiconductor laser, and wavelength 1
The dependence of the laser output on the excitation wavelength when oscillating a 1064n laser is shown. For comparison, the results when Nd:YAG was used are shown in FIG. 5(a). Nd: YAG
When using Nd:YVO4 with a-axis cut, the laser output changes greatly depending on the wavelength of the semiconductor laser used for excitation, whereas when using a-axis cut Nd:YVO4, the optical electric field of the excitation light becomes parallel to the crystal C-axis. When pumped in this way, the laser output can provide nearly flat characteristics over a wide excitation wavelength range. For these reasons, even in a wavelength conversion laser in which a nonlinear optical crystal for second-order harmonic generation is installed in the resonator, a-axis cut Nd:YVO4 is used, and the optical electric field of the excitation light is parallel to the crystal C-axis. It can be seen that when pumped so that
(実施例) 以下図面を参照しながら本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.
第1図は本発明の第1の実施例の斜視図である。a軸カ
ットのNd:YVO4結晶4は、2面のa軸カット面う
ち半導体レーザ1のある側の面に、11064nに対し
て100%反射となる様に、誘電体多層薄膜ミラー3を
つけである。出力ミラー5には11064nに対して8
0〜98%程度の反射率になるように、誘電体多層薄膜
をつけである。誘電体多層薄膜ミラー3と出力ミラー5
.、により、レーザ共振器を構成している。これらの誘
電体多層薄膜の高反射になる波長を変えるえることによ
り、11064n以外に、946nmや1340nmな
どの波長で発振させることも可能である。半導体レーザ
lは波長が800nm〜815nmで、そのレーザ光の
光電界がNd:YVO4結晶4のC軸と平行になるよう
にしである。ここで、光電界と結晶C軸は完全に平行で
なくとも、平行からのずれが10°程度まではほとんど
効率は変わらない。半導体レーザ1より放射されるレー
ザ光をレンズ2で集光し、Nd:YVO4結晶に照射す
ることにより、Nd:YVO4を励起し、11064n
のレーザ光を出力ミラー5から取り呂している。FIG. 1 is a perspective view of a first embodiment of the invention. The a-axis cut Nd:YVO4 crystal 4 has a dielectric multilayer thin film mirror 3 attached to the side where the semiconductor laser 1 is located among the two a-axis cut surfaces so that 11064n is 100% reflected. be. Output mirror 5 has 8 for 11064n.
A dielectric multilayer thin film is applied so that the reflectance is about 0 to 98%. Dielectric multilayer thin film mirror 3 and output mirror 5
.. , constitute a laser resonator. By changing the wavelength at which these dielectric multilayer thin films exhibit high reflection, it is also possible to oscillate at wavelengths other than 11064n, such as 946nm and 1340nm. The semiconductor laser 1 has a wavelength of 800 nm to 815 nm, and the optical electric field of the laser beam is parallel to the C axis of the Nd:YVO4 crystal 4. Here, even if the optical electric field and the crystal C axis are not completely parallel, the efficiency hardly changes until the deviation from parallelism is about 10°. The laser beam emitted from the semiconductor laser 1 is focused by the lens 2 and irradiated onto the Nd:YVO4 crystal, thereby exciting the Nd:YVO4 and producing 11064n.
The laser beam is taken from the output mirror 5.
第2図は本発明の第2の実施例の斜視図である。FIG. 2 is a perspective view of a second embodiment of the invention.
第1の実施例との違いは、Nd:YVO4結晶4と出力
ミラー5の間に、波長変換用の非線形光学結晶であるK
TP(KTiOPO4)結晶6を設けていることである
。効率よく第2高調波を発生するために、出力ミラー5
の反射率はNd:”’l’VO4の発振波長に対して1
00%になるようにしである。なお、本実施例では、波
長変換の非線形光学結晶としてKTPを用いているが、
Nd:YVO4の発振波長を基本波として、その第2高
調波を発生するための位相整合条件を満たすものであれ
ば、BBO(β−BaB204)、LBO(LiB4O
7)、LiIO3などKTP以外の非線形光学結晶を用
いうろことは言うまでもない。The difference from the first embodiment is that a nonlinear optical crystal for wavelength conversion is provided between the Nd:YVO4 crystal 4 and the output mirror 5.
TP (KTiOPO4) crystal 6 is provided. In order to efficiently generate the second harmonic, the output mirror 5
The reflectance of Nd:"'l' is 1 for the oscillation wavelength of VO4.
It is set so that it becomes 00%. Note that in this example, KTP is used as the nonlinear optical crystal for wavelength conversion, but
Nd: BBO (β-BaB204), LBO (LiB4O
7) It goes without saying that nonlinear optical crystals other than KTP, such as LiIO3, are used.
(発明の効果)
本発明によれば、固体レーザを励起するための半導体レ
ーザの波長制御の精度を太幅に緩和し、出力変動が少な
く、また、使用する半導体レーザの選択の幅を広げる半
導体レーザ励起固体レーザを提供することができる。(Effects of the Invention) According to the present invention, the accuracy of wavelength control of a semiconductor laser for exciting a solid-state laser is greatly relaxed, output fluctuation is small, and the range of selection of the semiconductor laser to be used is widened. A laser-pumped solid-state laser can be provided.
第1図は本発明の第1の実施例を説明するための斜視図
、第2図は本発明の第2の実施例を説明するための斜視
図、第3図〜第4図は本発明に係る、Nd:”嘗′04
結晶の吸収特性を示すもので、第3図はNd:YVO4
結晶C軸と光電界の方向のなす角と吸収特性の関係を示
す図、第4図(a)はNd:YVO4結晶のC軸と光電
界が垂直であるときの吸収特性を示す図、第4図(b)
はNd:YVO4結晶のC軸と光電界が平行であるとき
の吸収特性を示す図、また第5図(a)はNd:YAG
によりレーザ発振させたときのレーザ出力の励起波長依
存性を示す図、第5図(b)はa軸カットのNd:YV
O4を結晶C軸と励起光の電界が平行になるように励起
してレーザ発振させたときのレーザ出力の励起波長依存
性を示す図である。図において、
1・・・半導体レーザ、2・・ルンズ、3・・・誘電体
多層薄膜ミラー、4・・・Nd:YVO4結晶、5・・
・出力ミラー、6゜、、KTP結晶FIG. 1 is a perspective view for explaining the first embodiment of the present invention, FIG. 2 is a perspective view for explaining the second embodiment of the present invention, and FIGS. 3 and 4 are for explaining the present invention. Regarding, Nd:”嘗′04
It shows the absorption characteristics of crystals, and Figure 3 shows Nd:YVO4
Figure 4(a) is a diagram showing the relationship between the angle between the crystal C-axis and the direction of the optical electric field and the absorption characteristics. Figure 4(b)
is a diagram showing the absorption characteristics when the C axis of Nd:YVO4 crystal and the optical electric field are parallel, and Figure 5 (a) is a diagram showing the absorption characteristics when the C axis of Nd:YVO4 crystal and the optical electric field are parallel.
Figure 5(b) shows the dependence of the laser output on the excitation wavelength when the laser is oscillated by the a-axis cut Nd:YV.
FIG. 3 is a diagram showing the excitation wavelength dependence of the laser output when O4 is excited and oscillated so that the electric field of the excitation light is parallel to the crystal C axis. In the figure, 1... Semiconductor laser, 2... Luns, 3... Dielectric multilayer thin film mirror, 4... Nd:YVO4 crystal, 5...
・Output mirror, 6°, KTP crystal
Claims (2)
、固体レーザ結晶としてa軸カットのNd:YVO_4
を用いて、励起用の半導体レーザの光電界の方向と前記
Nd:YVO_4の結晶c軸が平行になるように励起す
ることを特徴とする半導体レーザ励起固体レーザ。(1) In an end-pumped semiconductor laser pumped solid-state laser, a-axis cut Nd:YVO_4 is used as the solid-state laser crystal.
A semiconductor laser-excited solid-state laser characterized in that the laser is excited using a semiconductor laser for excitation such that the direction of the optical electric field of the excitation semiconductor laser and the crystal c axis of the Nd:YVO_4 are parallel to each other.
いて、 前記固体レーザの共振器内に高調波発生のための2次の
非線形光学結晶を設けることを特徴とする半導体レーザ
励起固体レーザ。(2) The semiconductor laser pumped solid-state laser according to claim 1, wherein a second-order nonlinear optical crystal for generating harmonics is provided in a resonator of the solid-state laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26132190A JPH04137775A (en) | 1990-09-28 | 1990-09-28 | Semiconductor laser excitation solid state laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26132190A JPH04137775A (en) | 1990-09-28 | 1990-09-28 | Semiconductor laser excitation solid state laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04137775A true JPH04137775A (en) | 1992-05-12 |
Family
ID=17360188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26132190A Pending JPH04137775A (en) | 1990-09-28 | 1990-09-28 | Semiconductor laser excitation solid state laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04137775A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1041179A1 (en) * | 1999-03-31 | 2000-10-04 | Fuji Photo Film Co., Ltd. | Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage plane |
WO2003061085A1 (en) * | 2002-01-16 | 2003-07-24 | Lumera Laser Gmbh | Device and method for optically exciting laser-active crystals with polarization-dependent absorption |
WO2004049523A3 (en) * | 2002-11-21 | 2004-10-14 | Coherent Inc | Off-peak optical pumping of yttrium orthovanadate |
US6947465B2 (en) | 2002-10-18 | 2005-09-20 | Orc Manufacturing Co., Ltd. | Solid state laser |
EP1845595A1 (en) | 2006-04-12 | 2007-10-17 | Fujifilm Corporation | Optically anisotropic solid state laser pumped with perpendicularly polarized pump light |
US7995638B2 (en) | 2005-10-28 | 2011-08-09 | Laserscope | High power, end pumped laser with off-peak pumping |
US8897326B2 (en) | 2008-09-08 | 2014-11-25 | Ams Research Corporation | Pump energy wavelength stabilization |
-
1990
- 1990-09-28 JP JP26132190A patent/JPH04137775A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1041179A1 (en) * | 1999-03-31 | 2000-10-04 | Fuji Photo Film Co., Ltd. | Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage plane |
US6558465B1 (en) | 1999-03-31 | 2003-05-06 | Fuji Photo Film Co., Ltd. | Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage |
US6797250B2 (en) | 1999-03-31 | 2004-09-28 | Fuji Photo Film Co., Ltd. | Single-crystal optical element having flat light-transmitting end surface inclined relative to cleavage plane |
WO2003061085A1 (en) * | 2002-01-16 | 2003-07-24 | Lumera Laser Gmbh | Device and method for optically exciting laser-active crystals with polarization-dependent absorption |
US7203211B2 (en) | 2002-01-16 | 2007-04-10 | Lumera Laser Gmbh | Device and method for the optically exciting laser-active crystals with polarization-dependent absorption |
US6947465B2 (en) | 2002-10-18 | 2005-09-20 | Orc Manufacturing Co., Ltd. | Solid state laser |
US6898231B2 (en) | 2002-11-21 | 2005-05-24 | Coherent, Inc. | Off-peak optical pumping of yttrium orthovanadate |
US7203214B2 (en) | 2002-11-21 | 2007-04-10 | Coherent, Inc. | Off-peak optical pumping of yttrium orthovanadate |
WO2004049523A3 (en) * | 2002-11-21 | 2004-10-14 | Coherent Inc | Off-peak optical pumping of yttrium orthovanadate |
US7995638B2 (en) | 2005-10-28 | 2011-08-09 | Laserscope | High power, end pumped laser with off-peak pumping |
EP1845595A1 (en) | 2006-04-12 | 2007-10-17 | Fujifilm Corporation | Optically anisotropic solid state laser pumped with perpendicularly polarized pump light |
JP2007281388A (en) * | 2006-04-12 | 2007-10-25 | Fujifilm Corp | Laser equipment |
US8897326B2 (en) | 2008-09-08 | 2014-11-25 | Ams Research Corporation | Pump energy wavelength stabilization |
US9407058B2 (en) | 2008-09-08 | 2016-08-02 | Boston Scientific Scimed, Inc. | Pump energy wavelength stabilization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4231829B2 (en) | Internal cavity sum frequency mixing laser | |
JP2000216467A (en) | Laser device and laser-machining device | |
JP2824884B2 (en) | Polarization control element and solid-state laser device | |
JPH06283794A (en) | Laser-diode-pumped solid laser | |
JP3683360B2 (en) | Polarization control element and solid-state laser | |
JPH04137775A (en) | Semiconductor laser excitation solid state laser | |
JP2002055369A (en) | Laser beam generating device | |
EP1717916A2 (en) | Laser oscillation device | |
JPH0922037A (en) | Laser beam generator | |
JPH1041573A (en) | Laser oscillator | |
JPH09298331A (en) | Selectable wavelength laser oscillator of variable wavelength laser | |
JPH0595144A (en) | Semiconductor laser-excited solid state laser | |
JP2000114633A (en) | Wavelength conversion solid laser device | |
JPH0621555A (en) | Semiconductor laser excitation solid laser | |
JPH09232665A (en) | Output stabilizing second harmonics light source | |
JPH05299751A (en) | Laser-diode pumping solid-state laser | |
JP2021132127A (en) | Semiconductor laser-excitation solid-state laser | |
JPH0714666U (en) | Solid-state laser device | |
JPH06216453A (en) | Solid-state laser device | |
JP3282221B2 (en) | Laser light generator | |
JP2000138405A (en) | Semiconductor laser-excited solid-state laser system | |
JP2005123226A (en) | Internal resonator type sum frequency mixing laser | |
JPH06350173A (en) | Polarized beam and longitudinal mode control element and solid-state laser device | |
JP2004219675A (en) | Far-infrared solid laser oscillation system | |
JPH07131100A (en) | Laser light generator |