JPH0744943Y2 - Air separation device - Google Patents

Air separation device

Info

Publication number
JPH0744943Y2
JPH0744943Y2 JP1989075860U JP7586089U JPH0744943Y2 JP H0744943 Y2 JPH0744943 Y2 JP H0744943Y2 JP 1989075860 U JP1989075860 U JP 1989075860U JP 7586089 U JP7586089 U JP 7586089U JP H0744943 Y2 JPH0744943 Y2 JP H0744943Y2
Authority
JP
Japan
Prior art keywords
nitrogen gas
column
pressure column
low
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989075860U
Other languages
Japanese (ja)
Other versions
JPH0318492U (en
Inventor
正幸 田中
哲夫 泉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1989075860U priority Critical patent/JPH0744943Y2/en
Publication of JPH0318492U publication Critical patent/JPH0318492U/ja
Application granted granted Critical
Publication of JPH0744943Y2 publication Critical patent/JPH0744943Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は一酸化炭素を含まない高純度の窒素を得ること
ができる空気分離装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an air separation device capable of obtaining high-purity nitrogen containing no carbon monoxide.

〔従来の技術〕[Conventional technology]

従来の空気分離装置の構成と作用を第3図によって説明
する。なお、ここでは、LNGの寒冷を利用する所謂外部
寒冷利用方式の空気分離装置を例にとっている。
The structure and operation of the conventional air separation device will be described with reference to FIG. In addition, here, an example of a so-called external cold utilization type air separation device that utilizes the cold of LNG is taken as an example.

原料空気濾過器1で濾過された原料空気は、原料圧縮機
2により吸着装置3での吸着操作を行なうのに必要な圧
力(たとえば5Kg/cm2g)まで加圧され、吸着装置3で水
分および二酸化炭素等の不要成分を除去された後、コー
ルドボックスCに入る。4は予冷器である。
The raw material air filtered by the raw material air filter 1 is pressurized by the raw material compressor 2 to a pressure (for example, 5 Kg / cm 2 g) necessary for performing the adsorption operation in the adsorption device 3 and the moisture content in the adsorption device 3 is increased. After the unnecessary components such as carbon dioxide are removed, the cold box C is entered. 4 is a precooler.

なお、吸着装置3は二つの吸着塔3a,3bから成り、これ
らが図示しない切換バルブにより一定時間間隔で交互に
吸着、再生を繰り返すように切換えられる。
The adsorption device 3 is composed of two adsorption towers 3a and 3b, which are switched by a switching valve (not shown) so that adsorption and regeneration are alternately repeated at regular time intervals.

コールドボックスCは、主熱交換器5、精留塔6、循環
窒素熱交換器10、フラッシュボトル(減圧器)11から成
っている。
The cold box C comprises a main heat exchanger 5, a rectification column 6, a circulating nitrogen heat exchanger 10, and a flash bottle (pressure reducer) 11.

また、精留塔6は、原料空気圧力(たとえば5Kg/cm2g)
で操作される高圧塔7と、これよりも低圧(たとえば0.
2〜0.5Kg/cm2g)で操作される低圧塔8と、これら両塔
7,8間で熱交換を行なう熱交換器(主蒸化器)9とから
成っている。
Further, the rectification column 6 has a raw material air pressure (for example, 5 Kg / cm 2 g).
And a lower pressure (for example, 0.
Low pressure column 8 operated at 2 to 0.5 Kg / cm 2 g) and both columns
It consists of a heat exchanger (main evaporator) 9 for exchanging heat between 7 and 8.

吸着装置3から出た原料空気は、主熱交換器5により沸
点近くまで冷却された後、精留塔6の高圧塔7に入り、
同塔内を上昇する間に還流液体窒素との接触により次第
に窒素濃度を高め、頂部では酸素含有量の少ない窒素ガ
スとなる。
The raw material air discharged from the adsorption device 3 is cooled to near the boiling point by the main heat exchanger 5, and then enters the high pressure column 7 of the rectification column 6,
While rising in the column, the nitrogen concentration gradually increases due to contact with refluxing liquid nitrogen, and nitrogen gas having a low oxygen content is obtained at the top.

この窒素ガスは熱交換器9に導入され、ここで液体酸素
との熱交換により凝縮して液体窒素となり、その一部は
低圧塔還流液として低圧塔頂部に、また一部は高圧塔還
流液として高圧塔頂部にそれぞれ供給され、残りは製品
液体窒素として液体窒素タンク12に抜き出される。
This nitrogen gas is introduced into the heat exchanger 9 where it is condensed by heat exchange with liquid oxygen to become liquid nitrogen, part of which is at the top of the low pressure column as the low pressure column reflux liquid, and part of which is the high pressure column reflux liquid. Is supplied to the top of the high-pressure column, and the rest is withdrawn as liquid nitrogen in the liquid nitrogen tank 12.

上記高圧塔還流液は、高圧塔7内を下っていく間に空気
と接触して酸素濃度を高め、塔底から酸素35〜40%を含
む液体空気となって抜き出され、低圧塔中間部に供給さ
れる。
The high-pressure column reflux liquid contacts with air to increase the oxygen concentration as it descends in the high-pressure column 7, and is withdrawn from the column bottom as liquid air containing 35 to 40% of oxygen. Is supplied to.

この液体空気は、低圧塔8内を下降する間に酸素濃度を
増し、同塔底部から液体酸素が液体酸素タンク13に抽出
され、同塔頂部から酸素含有量の少ない窒素ガスが抜き
出される。また、低圧塔上部からは酸素含有量の多い窒
素ガスが抜き出され、主熱交換器5により加熱された
後、吸着装置3に吸着塔再生ガスとして供給される。
This liquid air increases the oxygen concentration while descending in the low pressure column 8, liquid oxygen is extracted from the bottom of the column to the liquid oxygen tank 13, and nitrogen gas having a low oxygen content is extracted from the top of the column. Further, nitrogen gas having a high oxygen content is extracted from the upper part of the low pressure column, heated by the main heat exchanger 5, and then supplied to the adsorption device 3 as an adsorption column regeneration gas.

上記低圧塔頂部から出た低圧窒素ガスは、一部が主熱交
換器5により、残りが循環窒素熱交換器10によりそれぞ
れ加熱された後、循環窒素予冷器14を経て循環窒素圧縮
機15により加圧される。この加圧された窒素ガスは、LN
G熱交換器16で冷却されて液化し、循環窒素熱交換器10
の低温部に入る。
The low-pressure nitrogen gas discharged from the top of the low-pressure column is partly heated by the main heat exchanger 5 and the rest by the circulating nitrogen heat exchanger 10, then passed through the circulating nitrogen precooler 14 and the circulating nitrogen compressor 15. Pressurized. This pressurized nitrogen gas is LN
G Cooled in the heat exchanger 16 and liquefied, circulating nitrogen heat exchanger 10
Enter the low temperature section.

同熱交換器10を出た液体窒素は、フラッシュボトル11に
より高圧塔7の圧力まで減圧され、一部はガス化して熱
交換器10経由で循環窒素圧縮機15に戻り、残りは高圧塔
頂部に還流液として供給される。15aは循環窒素圧縮機1
5の低圧段圧縮機、15bは同高圧段圧縮機である。また、
17は冷媒ポンプ、18はLNG加温器である。
The liquid nitrogen discharged from the heat exchanger 10 is decompressed to the pressure of the high-pressure column 7 by the flash bottle 11, part of which is gasified and returns to the circulating nitrogen compressor 15 via the heat exchanger 10, and the rest is the top of the high-pressure column. As a reflux liquid. 15a is a circulating nitrogen compressor 1
The low-pressure stage compressor 5 and the high-pressure stage compressor 15b. Also,
Reference numeral 17 is a refrigerant pump, and 18 is an LNG warmer.

ところで、最近、半導体製造用として一酸化炭素を含ま
ない高純度窒素の需要が増大しており、これに伴い、空
気分離装置による高純度窒素の製造が要請されている。
By the way, recently, the demand for high-purity nitrogen that does not contain carbon monoxide for semiconductor production is increasing, and accordingly, the production of high-purity nitrogen by an air separation device is required.

ところが、窒素と一酸化炭素とは沸点が近いため、精留
塔での精留操作のみによってはこれらを分離することが
可能である。
However, since the boiling points of nitrogen and carbon monoxide are close to each other, it is possible to separate them only by the rectification operation in the rectification column.

そこで従来、第4図に示すように、原料空気ラインに、
白金等の貴金属触媒を用いた反応装置19を設け、この反
応装置19により原料空気中の一酸化炭素を酸素と反応さ
せて二酸化炭素としたうえで吸着装置3で吸着除去する
手段がとられている。第4図中、20は原料空気を反応装
置19に入れる前に加熱するヒータ、21は反応装置19から
出た原料空気を冷却する冷凍機、22はこの冷凍機21で冷
却された空気中から水分を除去するドレン分離器であ
る。
Therefore, conventionally, as shown in FIG.
A reaction device 19 using a noble metal catalyst such as platinum is provided, and the reaction device 19 causes carbon monoxide in the raw material air to react with oxygen to form carbon dioxide, which is then adsorbed and removed by the adsorption device 3. There is. In FIG. 4, 20 is a heater for heating the raw material air before entering the reaction apparatus 19, 21 is a refrigerator for cooling the raw material air discharged from the reaction apparatus 19, and 22 is air from the air cooled by the refrigerator 21. It is a drain separator that removes water.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかし、この従来の手段によると、原料空気の全量を反
応装置19で処理するため、反応装置19で処理すべきガス
量がきわめて多くなる。
However, according to this conventional means, the whole amount of the raw material air is processed in the reaction device 19, so that the amount of gas to be processed in the reaction device 19 becomes extremely large.

たとえば、原料空気処理量が30,000Nm3/hの大形の装置
の場合、高純度窒素の需要は100〜2,000Nm3/h程度と少
量であるにもかかわらず、すべての原料空気を処理する
ことは大変な無駄であり、使用される高価な貴金属触媒
の量が多くなることから、きわめて不経済となり、とく
に大形空気分離装置においてこれが大きな問題となって
いた。
For example, if feed air throughput of large devices 30,000 3 / h, even though the demand for high-purity nitrogen is small and approximately 100~2,000Nm 3 / h, handles all the feed air This is a great waste, and the large amount of expensive precious metal catalyst used makes it extremely uneconomical, which has been a serious problem especially in large air separation devices.

なお、この問題は、外部寒冷利用方式の空気分離装置に
限らず、原料空気を膨張タービンにより断熱膨脹させて
寒冷を発生させる方式の空気分離装置においても同様に
生じていた。
Note that this problem is not limited to the air separation device using the external cold, and similarly occurs in the air separation device in which the raw air is adiabatically expanded by the expansion turbine to generate cold.

そこで本考案は、従来と同じ高純度窒素を得るのに反応
装置で処理すべきガス量を大幅に減少させることがで
き、これにより貴金属触媒の使用量を減少させることが
できる空気分離装置を提供するものである。
Therefore, the present invention provides an air separation device that can significantly reduce the amount of gas to be processed in the reactor to obtain the same high-purity nitrogen as the conventional one, and thereby reduce the amount of precious metal catalyst used. To do.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、原料空気を液体空気と窒素ガスとに分離する
高圧塔と、上記液体空気を液体酸素と窒素ガスとに分離
する低圧塔とから成る精留塔を備えた空気分離装置にお
いて、上記精留塔の高圧塔が上段部と下段部とに上下に
仕切られ、上記下段部で生成された酸素および一酸化炭
素を含む低純度窒素ガスを全量取出す窒素ガスラインが
設けられ、この窒素ガスラインに、上記低純度窒素ガス
中の一酸化炭素と酸素しを反応させて二酸化炭素とする
反応装置と、この反応装置で生成された二酸化炭素を吸
着除去して高純度窒素ガスとする吸着装置とが設けら
れ、窒素ガスラインの出口側が上記高圧塔の上段部に接
続されてなるものである。
The present invention provides an air separation apparatus comprising a rectification column comprising a high pressure column for separating raw air into liquid air and nitrogen gas, and a low pressure column for separating liquid air into liquid oxygen and nitrogen gas. The high-pressure column of the rectification column is vertically divided into an upper part and a lower part, and a nitrogen gas line is provided to take out all the low-purity nitrogen gas containing oxygen and carbon monoxide produced in the lower part. In the line, a reaction device for reacting carbon monoxide and oxygen in the low-purity nitrogen gas to produce carbon dioxide, and an adsorption device for adsorbing and removing the carbon dioxide produced in this reaction device to produce high-purity nitrogen gas And the nitrogen gas line outlet side is connected to the upper stage of the high-pressure column.

〔作用〕[Action]

上記構成によると、精留塔の高圧塔(下段部)で生成さ
れた低純度窒素ガスを窒素ガスラインに取出して反応装
置で処理するため、この反応装置での処理量が従来装置
と比較して遥かに減少させることができる。従って、反
応装置に使用すべき高価な貴金属触媒の量を大幅に減少
させることができる。
According to the above configuration, since the low-purity nitrogen gas generated in the high-pressure column (lower part) of the rectification column is taken out to the nitrogen gas line and processed in the reactor, the throughput of this reactor is lower than that of the conventional device. Can be greatly reduced. Therefore, the amount of expensive noble metal catalyst to be used in the reactor can be greatly reduced.

また、精留塔の高圧塔から高圧の窒素ガスを取出して処
理するため、同窒素ガスを吸着装置での吸着操作を行な
うのに必要な圧力まで加圧する必要がない。すなわち、
低圧塔から低圧の窒素ガスを取出す場合のように、別途
加圧手段を設ける必要がない。
Further, since high-pressure nitrogen gas is taken out from the high-pressure column of the rectification column for processing, it is not necessary to pressurize the nitrogen gas to a pressure necessary for performing the adsorption operation in the adsorption device. That is,
There is no need to provide a separate pressurizing means as in the case of taking out low-pressure nitrogen gas from the low-pressure column.

さらに、精留塔の高圧塔下段部内に発生する窒素ガスの
全量を反応装置で処理して高圧塔上段部に戻し、液化さ
せるため、高圧塔で生成される窒素ガスの一部のみを取
り出して処理する場合と比較して、処理量が多く、高純
度窒素ガスを効率良く製造することができる。
Further, in order to liquefy by treating all the nitrogen gas generated in the lower part of the high pressure column of the rectification column with the reactor and returning it to the upper part of the high pressure column, take out only a part of the nitrogen gas generated in the high pressure column. Compared with the case of processing, the amount of processing is large and high-purity nitrogen gas can be manufactured efficiently.

また、反応処理後の窒素ガスを別の精留塔(副精留塔)
に入れて精留・液化させる場合と比較して、設備が簡単
となり、コストが安くてすむ。
In addition, the nitrogen gas after the reaction treatment is used as another rectification column (sub-rectification column).
Compared with the case of rectifying and liquefying by putting in, the equipment is simple and the cost is low.

〔実施例〕〔Example〕

本考案の実施例を第1図および第2図によって説明す
る。
An embodiment of the present invention will be described with reference to FIGS.

以下の実施例では、前記従来説明に合わせて、外部寒冷
利用方式の空気分離装置を適用対象として例にとってい
る。また、以下の実施例において、第3図および第4図
に示す従来装置と同一部分には同一符号を付して示し、
その重複説明を省略する。
In the following embodiments, an air separation device using an external cold is used as an example of application in accordance with the above-mentioned conventional description. In the following embodiments, the same parts as those of the conventional device shown in FIGS. 3 and 4 are designated by the same reference numerals,
The duplicate description will be omitted.

第1実施例(第1図参照) 精留塔6の高圧塔7が下段部7aと上段部7bとに上下に仕
切られ、窒素ガスライン23の入口側がこの高圧塔7の下
段部7aに、出口側が上段部7bにそれぞれ接続されてい
る。
First Example (See FIG. 1) The high-pressure column 7 of the rectification column 6 is vertically divided into a lower stage 7a and an upper stage 7b, and the inlet side of the nitrogen gas line 23 is in the lower stage 7a of the high-pressure column 7. The outlet side is connected to each of the upper steps 7b.

この窒素ガスライン23は、主熱交換器5を通ってコール
ドボックスC外に導出され、このコールドボックスC外
に導出された窒素ガスライン23中に、同ライン入口側か
ら順に、加熱用ヒータ24、白金等の貴金属触媒を有する
反応装置25、冷凍機26、二酸化炭素吸着除去用の副吸着
装置27が設けられている。
This nitrogen gas line 23 is led out of the cold box C through the main heat exchanger 5, and in the nitrogen gas line 23 led out of the cold box C, a heater 24 for heating is sequentially provided from the inlet side of the line. A reaction device 25 having a noble metal catalyst such as platinum, a refrigerator 26, and a sub-adsorption device 27 for removing and adsorbing carbon dioxide are provided.

この副吸着装置27は、原料空気用の吸着装置3(以下、
副吸着装置27との区別のため主吸着装置という)と同
様、二つの吸着塔27a,27bからなり、これらが図示しな
い切換バルブにより一定時間間隔で交互に吸着、再生を
繰り返すように切換えられる。
The sub-adsorption device 27 is an adsorption device 3 for raw material air (hereinafter,
Like the main adsorption device (to distinguish it from the sub-adsorption device 27), it comprises two adsorption towers 27a and 27b, which are switched by a switching valve (not shown) so as to repeat adsorption and regeneration at regular time intervals.

なお、この副吸着装置27の吸着塔再生には、主吸着装置
3同様、精留塔6における低圧塔8の上部から取出され
た窒素ガスが使用される。
Note that, as in the main adsorption device 3, the nitrogen gas taken out from the upper part of the low-pressure column 8 in the rectification column 6 is used for regeneration of the adsorption column of the secondary adsorption device 27.

この構成において、精留塔6の高圧塔下段部7aから窒素
ガスライン23に取込まれた酸素と一酸化炭素とを含む低
純度窒素ガスは、加熱器24を経て反応装置25に送られ、
ここで窒素ガス中の一酸化炭素と酸素とが反応して二酸
化炭素となる。
In this configuration, the low-purity nitrogen gas containing oxygen and carbon monoxide, which has been taken into the nitrogen gas line 23 from the high pressure column lower stage portion 7a of the rectification column 6, is sent to the reactor 25 via the heater 24,
Here, carbon monoxide in the nitrogen gas and oxygen react to form carbon dioxide.

この二酸化炭素は副吸着装置27で吸着除去され、この二
酸化炭素除去後の高純度窒素ガス(少量の酸素を含む)
が高圧塔上段部7bに戻される。
This carbon dioxide is adsorbed and removed by the secondary adsorption device 27, and the high-purity nitrogen gas (containing a small amount of oxygen) after this carbon dioxide is removed.
Is returned to the upper stage section 7b of the high-pressure column.

この高純度窒素ガスは、高圧塔上段部7bで精留作用を受
けた後、低圧塔8に送られて液化し、高純度液体窒素と
なる。
This high-purity nitrogen gas is subjected to rectification in the upper stage section 7b of the high-pressure column and then sent to the low-pressure column 8 to be liquefied and become high-purity liquid nitrogen.

この高純度液体窒素は、一部が還流用として低圧塔上部
に送られ、残りが高純度液体窒素タンク31に取出され
る。
A part of this high-purity liquid nitrogen is sent to the upper part of the low-pressure column for reflux, and the rest is taken out to the high-purity liquid nitrogen tank 31.

この空気分離装置においては、上記のように精留塔6の
高圧塔下段部7aから取出した低純度窒素ガス、すなわち
処理すべきガスに絞り込んで反応装置25で処理するた
め、第4図に示すように原料空気の全量を処理対象とす
る従来装置の反応装置19と比較してこの反応装置25の処
理ガス量が遥かに少なくなる。
In this air separation device, the low-purity nitrogen gas taken out from the lower part 7a of the high-pressure column of the rectification column 6 as described above, that is, the gas to be treated is narrowed down and treated in the reaction device 25. As described above, the amount of processing gas in the reaction device 25 is much smaller than that in the reaction device 19 of the conventional device which treats the entire amount of the raw material air.

このため、反応装置25に使用すべき貴金属触媒の量を大
幅に減少させることができる。
Therefore, the amount of the noble metal catalyst to be used in the reaction device 25 can be greatly reduced.

たとえば、原料空気使用量が50,000Nm3/hの空気分離装
置において、一酸化炭素を含まない高純度窒素ガスが50
0Nm3/h必要な場合、従来装置では反応装置19に必要な貴
金属触媒の量が10m3であったのに対し、本装置によると
反応装置25で必要とする貴金属触媒の量が100分の1の
0.1m3ですむこととなる。
For example, in an air separator with a raw air consumption of 50,000 Nm 3 / h, high-purity nitrogen gas that does not contain carbon monoxide is 50%.
When 0 Nm 3 / h is required, the amount of noble metal catalyst required in the reactor 19 was 10 m 3 in the conventional device, whereas the amount of noble metal catalyst required in the reactor 25 was 100 minutes in the present device. One
0.1m 3 is enough.

第2実施例(第2図参照) 第1実施例との相違点のみを説明する。Second Embodiment (see FIG. 2) Only differences from the first embodiment will be described.

第1実施例では、主吸着装置3とは別に窒素ガスライン
23専用の副吸着装置27を設けたのに対し、第2実施例で
は兼用吸着装置28を用いている。
In the first embodiment, a nitrogen gas line is provided separately from the main adsorption device 3.
While the auxiliary suction device 27 dedicated to 23 is provided, the dual suction device 28 is used in the second embodiment.

すなわち、兼用吸着装置28は三つの吸着塔28a,28b,28c
によって構成し、これらを一定時間間隔で交互に原料空
気ライン、窒素ガスライン23、再生ラインに接続して、
原料空気を対象とする吸着作用、低純度窒素ガスを対象
とする吸着作用、再生を繰り返し行なうように構成して
いる。29.30はこれら各吸着塔28a,28b,28cを切換える切
換バルブである。
That is, the combined adsorption device 28 comprises three adsorption towers 28a, 28b, 28c.
By connecting them to the raw material air line, the nitrogen gas line 23, and the regeneration line alternately at regular time intervals,
It is configured to repeat the adsorption action for the raw material air, the adsorption action for the low-purity nitrogen gas, and the regeneration. 29.30 is a switching valve for switching these adsorption towers 28a, 28b, 28c.

この構成とすれば、第1実施例のように原料空気用と窒
素ガス用の別々の吸着装置3,27を用いる場合と比較して
吸着設備が簡単となり、設備コストが安くてすむ。
With this configuration, the adsorption equipment becomes simpler and the equipment cost can be reduced as compared with the case where the separate adsorbing devices 3 and 27 for the raw material air and the nitrogen gas are used as in the first embodiment.

ところで、高純度窒素は、運搬その他の面で上記各実施
例のように液体窒素の形で取出すのが有利であるが、窒
素ガスの形で取出すようにしてもよい。
By the way, it is advantageous to take out high-purity nitrogen in the form of liquid nitrogen as in each of the above embodiments in terms of transportation and the like, but it may be taken out in the form of nitrogen gas.

一方、本考案は、上記実施例で例示した外部寒冷利用方
式の空気分離装置に限らず、膨張タービンにより寒冷を
発生させる方式の空気分離装置にも適用することができ
る。
On the other hand, the present invention can be applied not only to the external cold utilization type air separation device exemplified in the above embodiment but also to the type air separation device of which the expansion turbine produces cold.

〔考案の効果〕[Effect of device]

上記のように本考案によるときは、精留塔の高圧塔を下
段部と上段部とに仕切り、下段部で生成された低純度窒
素ガスを全量取出し、これを反応装置で処理した上で上
段部に戻すように構成したから、反応装置での処理量
を、原料空気の全量を処理対象とする従来装置と比較し
て遥かに減少させることができる。従って、反応装置に
使用すべき高価な貴金属触媒の量を大幅に減少させるこ
とができるため、コストが非常に安くてすむ。
As described above, according to the present invention, the high-pressure column of the rectification column is divided into a lower section and an upper section, and all the low-purity nitrogen gas produced in the lower section is taken out, treated with a reactor, and then treated in the upper section. Since it is configured to be returned to the unit, the treatment amount in the reaction device can be greatly reduced as compared with the conventional device that treats the entire amount of raw material air. Therefore, the amount of expensive noble metal catalyst to be used in the reactor can be greatly reduced, and the cost can be very low.

また、反応装置で処理すべき低純度窒素ガスとして、精
留塔の高圧塔から高圧の窒素ガスを取出すため、同窒素
ガスを吸着装置での吸着操作を行なうのに必要な圧力ま
で加圧する必要がない。すなわち、低圧塔から窒素ガス
を取出す場合のように、別途加圧手段を設ける必要がな
い。このため、設備が簡単ですみ、設備コストが安くて
すむ。
Further, since high-pressure nitrogen gas is taken out from the high-pressure column of the rectification column as the low-purity nitrogen gas to be treated in the reactor, it is necessary to pressurize the nitrogen gas to a pressure necessary for performing the adsorption operation in the adsorption device. There is no. That is, there is no need to provide a separate pressurizing means as in the case of taking out nitrogen gas from the low pressure column. Therefore, the equipment is simple and the equipment cost is low.

さらに、精留塔の高圧塔下段部内に発生する窒素ガスの
全量を反応装置で処理して高圧塔上段部に戻し、液化さ
せるため、高圧塔で生成される窒素ガスの一部のみを取
り出して処理する場合と比較して、処理量が多く、高純
度窒素ガスを効率良く製造することができる。
Further, in order to liquefy by treating all the nitrogen gas generated in the lower part of the high pressure column of the rectification column with the reactor and returning it to the upper part of the high pressure column, take out only a part of the nitrogen gas generated in the high pressure column. Compared with the case of processing, the amount of processing is large and high-purity nitrogen gas can be manufactured efficiently.

また、反応処理後の窒素ガスを別の精留塔(副精留塔)
に入れて精留・液化させる場合と比較して、設備が簡単
となり、コストが安くてすむ。
In addition, the nitrogen gas after the reaction treatment is used as another rectification column (sub-rectification column).
Compared with the case of rectifying and liquefying by putting in, the equipment is simple and the cost is low.

【図面の簡単な説明】 第1図は外部寒冷利用方式の空気分離装置を適用対象と
して例にとった本考案の第1実施例、第2図は同第2実
施例をそれぞれ示すフローシート、第3図および第4図
は従来装置を示すフローシートである。 6……精留塔、7……精留塔の高圧塔、7a……同高圧塔
の下段部、7b……同上段部、8……低圧塔、23……窒素
ガスライン、25……反応装置、27……吸着装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a first embodiment of the present invention, and FIG. 2 is a flow chart showing the second embodiment of the present invention, which is applied to an air separation device using an external cold. 3 and 4 are flow sheets showing a conventional device. 6 rectification tower, 7 rectification tower high pressure tower, 7a ...... lower part of the high pressure tower, 7b ...... upper part, 8 ...... low pressure tower, 23 ...... nitrogen gas line, 25 ...... Reactor, 27 ... Adsorption device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】原料空気を液体空気と窒素ガスとに分離す
る高圧塔と、上記液体空気を液体酸素と窒素ガスとに分
離する低圧塔とから成る精留塔を備えた空気分離装置に
おいて、上記精留塔の高圧塔が上段部と下段部とに上下
に仕切られ、上記下段部で生成された酸素および一酸化
炭素を含む低純度窒素ガスを全量取出す窒素ガスライン
が設けられ、この窒素ガスラインに、上記低純度窒素ガ
ス中の一酸化炭素と酸素とを反応させて二酸化炭素とす
る反応装置と、この反応装置で生成された二酸化炭素を
吸着除去して高純度窒素ガスとする吸着装置とが設けら
れ、窒素ガスラインの出口側が上記高圧塔の上段部に接
続されてなることを特徴とする空気分離装置。
1. An air separation apparatus comprising a rectification column comprising a high-pressure column for separating raw air into liquid air and nitrogen gas, and a low-pressure column for separating the liquid air into liquid oxygen and nitrogen gas. The high-pressure column of the rectification column is vertically partitioned into an upper part and a lower part, and a nitrogen gas line is provided for taking out all low-purity nitrogen gas containing oxygen and carbon monoxide produced in the lower part. In the gas line, a reactor for reacting carbon monoxide and oxygen in the low-purity nitrogen gas into carbon dioxide, and an adsorption for removing the carbon dioxide produced in this reactor to obtain high-purity nitrogen gas An air separation device, wherein the device is provided, and the outlet side of the nitrogen gas line is connected to the upper stage part of the high-pressure column.
JP1989075860U 1989-06-27 1989-06-27 Air separation device Expired - Lifetime JPH0744943Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989075860U JPH0744943Y2 (en) 1989-06-27 1989-06-27 Air separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989075860U JPH0744943Y2 (en) 1989-06-27 1989-06-27 Air separation device

Publications (2)

Publication Number Publication Date
JPH0318492U JPH0318492U (en) 1991-02-22
JPH0744943Y2 true JPH0744943Y2 (en) 1995-10-11

Family

ID=31616813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989075860U Expired - Lifetime JPH0744943Y2 (en) 1989-06-27 1989-06-27 Air separation device

Country Status (1)

Country Link
JP (1) JPH0744943Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659181A (en) * 1979-10-17 1981-05-22 Hitachi Ltd Chilled air separator
JPS63267878A (en) * 1987-04-24 1988-11-04 株式会社日立製作所 Argon purifying method recovering argon and hydrogen in purified argon tower waste gas

Also Published As

Publication number Publication date
JPH0318492U (en) 1991-02-22

Similar Documents

Publication Publication Date Title
CA1233109A (en) Process and apparatus for obtaining pure co
JPH06304432A (en) Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
JPH0735470A (en) Method and device for manufacturing superhigh purity dinitrogen monoxide
JP3306517B2 (en) Air liquefaction separation apparatus and method
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JPH09184681A (en) Method for manufacturing super high-purity oxygen and nitrogen
JPH11228116A (en) Recovering and purifying method of argon and device therefor
JPS61228286A (en) Air separator
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH0744943Y2 (en) Air separation device
JP3364724B2 (en) Method and apparatus for separating high purity argon
JPH08291967A (en) Method and apparatus for separating the air
CN212842469U (en) Single-tower cryogenic rectification argon recovery system with argon circulation and hydrogen circulation
JPS61225568A (en) Air separator
JPH0658663A (en) Method and apparatus for manufacturing ultra high purity nitrogen
JP3325805B2 (en) Air separation method and air separation device
JPH05262506A (en) Production of argon and its apparatus
JP3373013B2 (en) Nitrogen gas production equipment
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JPH07127971A (en) Argon separator
JP3082092B2 (en) Oxygen purification method and apparatus
JPH0252980A (en) Air separating device
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
JP2003262463A (en) Method and apparatus for manufacturing extra-high purity oxygen