JPS61225568A - Air separator - Google Patents

Air separator

Info

Publication number
JPS61225568A
JPS61225568A JP60063534A JP6353485A JPS61225568A JP S61225568 A JPS61225568 A JP S61225568A JP 60063534 A JP60063534 A JP 60063534A JP 6353485 A JP6353485 A JP 6353485A JP S61225568 A JPS61225568 A JP S61225568A
Authority
JP
Japan
Prior art keywords
air
hydrogen
gas
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60063534A
Other languages
Japanese (ja)
Other versions
JPH0463993B2 (en
Inventor
正博 山崎
小山 祥二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60063534A priority Critical patent/JPS61225568A/en
Publication of JPS61225568A publication Critical patent/JPS61225568A/en
Priority to JP2012587A priority patent/JPH0711384B2/en
Publication of JPH0463993B2 publication Critical patent/JPH0463993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気から窒素等の製品ガスを分離する空気分
離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air separation device for separating a product gas such as nitrogen from air.

〔発明の背景〕[Background of the invention]

一般に、空気分離装置は、原料空気を圧縮機にて圧縮昇
圧させ、この圧縮熱により高温となった原料空気をアフ
タークーラーにて冷却し、次いで原料空気中の水分(H
2O)および二酸化炭素(CO,)を吸着塔によって吸
着除去し、H2OおよびC02除去後の原料空気を熱交
換器を介して精留培に併給して製品ガス(窒素あるいは
酸素)を精留分離している。このような空気分離装置は
1例えば特開昭56−97772号、特開昭55−49
681号、特開昭55−38423号、特開昭54−1
52667号、特開昭54−84888号に開示される
In general, air separation equipment uses a compressor to compress and pressurize feed air, cools the feed air, which has become high in temperature due to the heat of compression, in an aftercooler, and then cools the feed air with moisture (H
2O) and carbon dioxide (CO,) are adsorbed and removed by an adsorption tower, and the raw air after H2O and CO2 removal is co-fed to a rectification medium via a heat exchanger to separate product gas (nitrogen or oxygen) by rectification. are doing. Such air separation devices are disclosed in, for example, JP-A-56-97772 and JP-A-55-49.
No. 681, JP-A-55-38423, JP-A-54-1
No. 52667 and Japanese Patent Application Laid-Open No. 54-84888.

ところで、半導体製造プロセス等では、大量の窒素が使
用されているが、ここで使用される窒素は、非常に高純
度のものが要求される。特に、窒素中に一酸化炭素、水
素が含まれることは、半導体の性能劣化1品質不良の原
因となり好ましくない。深冷分離により製造された窒素
ガス中には、窒素と同程度の沸点を有するか、それより
低い沸点を有する物質が混入している。この様な物質と
しては、ヘリウム、ネオン、水素、アルゴン、−酸化炭
素が挙げられる。一方、炭化水素、塩素。
Incidentally, large amounts of nitrogen are used in semiconductor manufacturing processes and the like, and the nitrogen used here is required to be of extremely high purity. In particular, the inclusion of carbon monoxide and hydrogen in nitrogen is undesirable as it causes performance deterioration and quality defects of semiconductors. Nitrogen gas produced by cryogenic separation contains a substance having a boiling point similar to or lower than that of nitrogen. Such substances include helium, neon, hydrogen, argon, and carbon oxide. On the other hand, hydrocarbons and chlorine.

二酸化炭素、水分等は、窒素より沸点が高いため。Carbon dioxide, water, etc. have higher boiling points than nitrogen.

窒素中にはほとんど含まれない、従って、半導体製造プ
ロセスに使用する窒素を深冷分離による空気分画法で製
造する場合には、水素および一酸化炭素を如何に除去す
るかが問題となる。この様な背景のもとで、従来は、窒
素ガス中に含まれる水素、−酸化炭素を除去する精製装
置が使用されていた。以下、従来の精製装置の構成につ
いて概略説明する。ff14図に従来の水素および一酸
化炭素の除去装置の系統図を示す。
Nitrogen contains almost no hydrogen, so when nitrogen used in semiconductor manufacturing processes is produced by air fractionation using cryogenic separation, the problem is how to remove hydrogen and carbon monoxide. Under such a background, purification equipment for removing hydrogen and carbon oxide contained in nitrogen gas has conventionally been used. The configuration of a conventional purification device will be briefly described below. Figure ff14 shows a system diagram of a conventional hydrogen and carbon monoxide removal device.

導管41から供給される水素、−酸化炭素を含む窒素ガ
スに対して、導管42を通して、燃焼用の酸素ガスが添
加される。添加する酸素ガスの量は。
Oxygen gas for combustion is added through a conduit 42 to nitrogen gas containing hydrogen and carbon oxide supplied from a conduit 41 . How much oxygen gas to add?

水素と一酸化炭素を燃焼するに必要な量より、多少要目
とし、未燃の水素、−酸化炭素が残存しない様にする。
The amount of hydrogen and carbon monoxide should be a little smaller than the amount required to burn it, so that no unburned hydrogen or carbon oxide remains.

次に、この混合ガスは、電気ヒータ51により、90〜
120℃程度まで昇温した後、燃焼触媒を充填した触媒
槽52に供給される。こnは、水素は室温でも酸素と反
応燃焼するが、−酸化炭素の燃焼開始には前記の温度ま
で昇温する必要があるためである。触媒槽52の中で、
水素は酸素と反応して水分に、−酸化炭素は酸素と反応
して二酸化炭素となる。未反応の加剰に加えられた酸素
は1次に設けらnた酸素吸収触媒〔例えばCu)を充填
した触媒槽郭により反応吸収され、窒素ガス中から除去
さnる。次いで、導管柘を介して冷却器必に辱びかれ、
ここで室ntで冷却さnる。冷却された窒素ガスは導管
47を介して吸着塔団に供給され、ここに充填されてい
る吸着剤により、水分と炭酸カスが除去される。通常、
酸素吸収触媒1f152と吸着塔団は、夫々2基設置さ
れ、切替使用される。すなわち、一方が吸収または吸着
動作中に他方はその機能を再生させ、二〇らを切替える
ことによって連続して吸収または吸着動作を行わせる。
Next, this mixed gas is heated by an electric heater 51 to
After being heated to about 120° C., it is supplied to a catalyst tank 52 filled with a combustion catalyst. This is because although hydrogen reacts and burns with oxygen even at room temperature, it is necessary to raise the temperature to the above-mentioned temperature in order to start burning carbon oxide. In the catalyst tank 52,
Hydrogen reacts with oxygen to form water, and carbon oxide reacts with oxygen to form carbon dioxide. The unreacted excess oxygen is reacted and absorbed by a catalyst tank filled with an oxygen absorption catalyst (for example, Cu) provided in the primary stage, and is removed from the nitrogen gas. Then, the cooler is humiliated through the conduit,
Here, it is cooled in a chamber. The cooled nitrogen gas is supplied to the adsorption column group via conduit 47, and water and carbon dioxide are removed by the adsorbent packed therein. usually,
Two oxygen absorption catalysts 1f152 and two adsorption tower groups are installed, and are used alternately. That is, while one is in the absorption or adsorption operation, the other regenerates its function, and by switching between the two, the absorption or adsorption operation is performed continuously.

このような精製装置を付加することによって、左党分離
装置で製造された窒素を精製し、窒素中から一酸化炭素
、水素を除去することができる。
By adding such a purification device, it is possible to purify the nitrogen produced by the left-hand separation device and remove carbon monoxide and hydrogen from the nitrogen.

しかし、こnでは’AM全体が複雑化すると共に、高純
度の酸素の使用9wIカエネルギーの消費等による運転
費のコストアップとなる。
However, in this case, the entire 'AM becomes complicated, and the operating cost increases due to the consumption of energy due to the use of high-purity oxygen.

〔発明の目的〕[Purpose of the invention]

本発明の目的は1分離ガス中に一酸化炭素、水素を含ま
ない空気分離IINを提供することである・〔発明の概
要〕 未発明は、原料空気を圧縮する圧縮機と、圧縮された原
料空気中の可燃成分(−酸化炭素、水素等)と酸素とを
反応させる触媒槽と、この触媒槽で反応後の原料空気中
の水分および二酸化炭素を吸着除去する吸着塔と、この
吸着塔を経た原料空気から製品ガスを精留分離する装置
大体とを有することを特徴とする。
An object of the present invention is to provide an air separation IIN that does not contain carbon monoxide or hydrogen in the separated gas. A catalyst tank that reacts combustible components in the air (carbon oxide, hydrogen, etc.) with oxygen, an adsorption tower that adsorbs and removes moisture and carbon dioxide from the raw air after the reaction in this catalyst tank, and this adsorption tower. It is characterized by having an apparatus for rectifying and separating a product gas from the raw material air that has passed through the air.

〔発明の実施例〕[Embodiments of the invention]

以下、!5@明を実施例により説明する。第1図は本発
明の一実施例を示すフローシート図である。
below,! 5@Ming will be explained using examples. FIG. 1 is a flow sheet diagram showing one embodiment of the present invention.

第1図において、フィルター1は原料となる空気中のち
り等を除去する。空気圧縮機2はフィルター1通過後の
原料空気を圧縮(昇圧)する。触媒槽3には、白金やパ
ラジウム等の触媒が充填されており、ここで空気中の可
燃成分が燃焼される。
In FIG. 1, a filter 1 removes dust and the like from the air, which is a raw material. The air compressor 2 compresses (increases the pressure) the raw air that has passed through the filter 1. The catalyst tank 3 is filled with a catalyst such as platinum or palladium, and combustible components in the air are burned here.

冷却器4は原料空気を冷却する。吸着塔5には、水分お
よび二酸化炭素を吸着する吸着剤が充填さnており、こ
こで原料空気中の水分および二酸化炭素を吸着除去する
。100は深冷分離部であり、6.7等で構成される。
The cooler 4 cools the raw air. The adsorption tower 5 is filled with an adsorbent that adsorbs moisture and carbon dioxide, and adsorbs and removes moisture and carbon dioxide from the raw air. Reference numeral 100 denotes a cryogenic separation section, which is composed of 6.7, etc.

熱交換器6は、原料空気な精留塔からの戻りガスの寒冷
によって深冷温度まで低下させる。精留塔7は、熱交換
器6によって低温となった原料空気の供給を受け、製品
ガス(この例では、窒素のみ)を精留分離する。ここで
の廃ガスおよび製品ガスは、熱交換器6の戻りガスとな
る。8は精留塔上部の凝縮器、11〜23は導管、31
は膨張弁、32〜39は吸着塔5の切替弁である。
The heat exchanger 6 cools the return gas from the rectification column, which is raw material air, to lower it to a deep cooling temperature. The rectifying column 7 is supplied with the raw material air that has been cooled by the heat exchanger 6, and rectifies and separates the product gas (in this example, only nitrogen). The waste gas and product gas here become the return gas of the heat exchanger 6. 8 is a condenser at the top of the rectification column, 11 to 23 are conduits, 31
is an expansion valve, and 32 to 39 are switching valves of the adsorption tower 5.

水素、−酸化炭素等を燃焼させる燃焼触媒を充填した触
媒槽3は、空気圧縮機2の出口と、冷却器4の中間に設
けられている。こnは、圧縮熱により空気の温度が90
〜120 ’Cに上昇していムことを利用して触媒槽3
における反応を起こさせろためである。空気中の水素、
−酸化炭素は空気中に大過剰に存在する酸素と燃焼触媒
のもとで反応する。反応生成物は、水分および二酸化炭
素である。
A catalyst tank 3 filled with a combustion catalyst for burning hydrogen, carbon oxide, etc. is provided between the outlet of the air compressor 2 and the cooler 4. This means that the temperature of the air increases to 90℃ due to the heat of compression.
Taking advantage of the fact that the temperature has risen to ~120'C, the catalyst tank 3
This is to cause a reaction in. hydrogen in the air,
- Carbon oxide reacts with oxygen, which is present in large excess in the air, under a combustion catalyst. The reaction products are moisture and carbon dioxide.

酸素21%に対して、水素、−酸化炭素の濃度は高々数
十ppm8度であり、未反応の水素、−酸化炭素が残存
する可能性は非常に希である。反応による生成熱もわず
かTあり、温度上昇は高々数層Cなので、加熱防止等の
考慮は必要でない。水素、−酸化炭素等が燃焼除去され
た空気は、導管】3を通って冷却器4に導びかれる。冷
却器で水により室温まで冷却された後、導Irf!14
により、吸着塔5に導びかnる。吸着塔は通常2基かそ
れ以上設けられ、一方を再生しながら、交互に切替えら
nて使用される。吸着塔5には水分、炭酸ガスを吸着除
去する吸着剤が充填されているので、吸着塔出口の空気
中には水分、二酸化炭素はほとんど含まnない。吸着塔
5を出た空気は、熱交換器6゜精留塔7等で構成さnる
深冷分離部100  に導びかれろつまず、導管巧によ
り原料空気は熱交換器6に導入される。原料空気は、こ
こで窒素ガス、廃ガスと熱交換し冷却される。更にこの
空気は、精留塔7の底部に導管16を通して供給される
。ここで、原料空気は塔内に多数設けられている精留皿
上の液体と気液接触し、精留分離さnる。この結果、精
留塔7の底部Iこは酸素濃度の高い液体空気が溜まる。
With respect to 21% oxygen, the concentration of hydrogen and carbon oxide is at most several tens of ppm 8 degrees, and it is very unlikely that unreacted hydrogen and carbon oxide remain. The heat generated by the reaction is only T, and the temperature rise is at most several layers C, so there is no need to take measures to prevent heating. The air from which hydrogen, carbon oxide, etc. have been burned off is led to a cooler 4 through a conduit 3. After being cooled down to room temperature by water in a cooler, the conductor Irf! 14
This leads to the adsorption tower 5. Usually, two or more adsorption towers are provided, and one of them is regenerated and used by switching alternately. Since the adsorption tower 5 is filled with an adsorbent that adsorbs and removes moisture and carbon dioxide, the air at the outlet of the adsorption tower contains almost no moisture or carbon dioxide. The air coming out of the adsorption tower 5 is guided to a cryogenic separation section 100 consisting of a heat exchanger 6, a rectification tower 7, etc., and the feed air is introduced into the heat exchanger 6 through a conduit. Ru. Here, the raw air is cooled by exchanging heat with nitrogen gas and waste gas. Furthermore, this air is fed to the bottom of the rectification column 7 through a conduit 16. Here, the raw air comes into gas-liquid contact with the liquid on a large number of rectification plates provided in the column, and is separated by rectification. As a result, liquid air with a high oxygen concentration accumulates at the bottom of the rectification column 7.

一方窒素ガスは、精留塔上部の導管17を通して精留塔
より抜出され、空気熱交換器6の内部で温度回復して、
製品窒素ガスとして導管18を通して送出さ几る。この
場合、精留操作「でCO,H2を除去しており、製品窒
素ガス中に一酸化炭素、水素は含まれない。なお、この
例では、精留塔7は、窒素のみを製造する単式精留塔と
したが、これは酸素ガスを同時に採取する複式精留塔で
あってもかまわない。一方液体空気は導管19を通して
精留塔から抜出され、途中膨張弁31で脱圧さn、所謂
ジュール・トムソン効果により、進度降下した後、凝縮
器8の冷熱源として凝縮器に供給さn、ここで蒸発した
後、導管21. ?!気熟熱交換器6通して常温まで温
度回復し、吸着塔5の再生ガスとして使用され、大気中
に導管nを通して放出される。
On the other hand, nitrogen gas is extracted from the rectification column through the conduit 17 at the top of the rectification column, and its temperature is recovered inside the air heat exchanger 6.
The product nitrogen gas is delivered through conduit 18. In this case, CO and H2 are removed by a rectification operation, and carbon monoxide and hydrogen are not included in the product nitrogen gas. Although a rectification column is used, this may be a double rectification column that simultaneously extracts oxygen gas.On the other hand, liquid air is extracted from the rectification column through a conduit 19, and is depressurized by an expansion valve 31 on the way. , due to the so-called Joule-Thomson effect, the rate of heat decreases, and then it is supplied to the condenser as a cold heat source for the condenser 8, where it evaporates, and then returns to normal temperature through the conduit 21. It is used as regeneration gas in the adsorption tower 5 and is discharged into the atmosphere through conduit n.

上述した実施例では、圧縮熱を利用しているので、水素
、−酸化炭素を燃焼温度まで昇温するヒーターが不用と
なっている。又、深冷方式の空気分離装Σと組合せであ
るので、窒素ガスより沸点の低い炭化水素類も除去でき
る等の効果を同時に得ることが出来る。
In the embodiment described above, since the heat of compression is utilized, a heater for raising the temperature of hydrogen and carbon oxide to the combustion temperature is unnecessary. Furthermore, since it is combined with a deep-cooling type air separation device Σ, it is possible to simultaneously obtain effects such as being able to remove hydrocarbons having a boiling point lower than that of nitrogen gas.

第2図は、空気の圧縮熱が十分でない場合の本発明の他
の実施例である。圧縮機2と触媒槽3の間に加熱器9を
設けて、水素および一酸化炭素の燃焼に適当な温ff才
で、加熱器で昇温しでいる。
FIG. 2 shows another embodiment of the present invention when the heat of compression of air is insufficient. A heater 9 is provided between the compressor 2 and the catalyst tank 3, and the temperature is raised by the heater to a temperature suitable for combustion of hydrogen and carbon monoxide.

加熱器の熱源としては、電気、蒸気、燃焼ガスなどが挙
げられる。水素、−酸化炭素等を除去した後の系統は第
1図の場合と同様であり、i明は省略する。
Examples of the heat source for the heater include electricity, steam, and combustion gas. The system after removing hydrogen, carbon oxide, etc. is the same as that shown in FIG. 1, and the details are omitted.

IE3図は、圧縮空気が冷却器4を通ってから。IE3 diagram shows compressed air after it passes through cooler 4.

水素、−酸化炭素を除去する場合の本発明の他の実施例
である。この様な例は、圧縮空気が空気分離以外の用途
にも使用される場合に多畷見られ、圧縮空気源が別に股
画されている場合などである。
This is another embodiment of the present invention in which hydrogen and carbon oxides are removed. Examples of this are common when compressed air is used for purposes other than air separation, and where the compressed air source is separate.

冷却器4によりて常温まで冷却された圧縮空気は、熱交
換器10内で、戻りの水素、−酸化炭素を除去された温
度の高い圧縮空気と熱交換して温度上昇する。更に加熱
器により昇温さnてから、触媒槽3内で水素、−酸化炭
素が燃焼除去さn、熱交換器10内で、常温まで冷却さ
れる。大側は処理空気量の多い場合に、熱交換器によっ
て熱回収しているので、加熱器の容量を小さくできて有
利である。
The compressed air cooled to room temperature by the cooler 4 exchanges heat in the heat exchanger 10 with the high-temperature compressed air from which hydrogen and carbon oxides have been removed, thereby increasing its temperature. After the temperature is further raised by a heater, hydrogen and carbon oxides are burned off in the catalyst tank 3, and then cooled to room temperature in the heat exchanger 10. On the large side, when the amount of air to be processed is large, heat is recovered by a heat exchanger, which is advantageous because the capacity of the heater can be reduced.

小型のものでは、第3図における機器の圧縮空気に対す
る設置の順番を冷却器4.加熱器9.触媒槽3とし、こ
の後に更に冷却器4を設けた方が装置として簡単になる
。第3例でも、水素、−酸化炭素除去後の系統は、第1
例と同じなので説明を省略する。
For small-sized devices, the order of installation for compressed air in the equipment shown in Figure 3 is 4. Heater9. The device will be simpler if the catalyst tank 3 is provided and the cooler 4 is further provided after the catalyst tank 3. In the third example, the system after hydrogen and carbon oxide removal is
Since it is the same as the example, the explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、未発明にょnば1分離ガス中に水
素および一酸化炭素を含まない空気分離装置を提供する
ことが出来る。
As explained above, it is possible to provide an air separation device that does not contain hydrogen and carbon monoxide in the separated gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、夫々未発明の実施例を示す系統図で
あり、第2図は従来の窒素精製装置の一例を示す系統図
である。 1・・・・・・フィルター、2・・・・・・空気圧縮機
、3・・・・・・触媒槽、4・・1.・・冷却器、5・
・・・・・吸着塔、6・・間熱交換器、7・・・・・・
精留塔、8・・・・・・凝縮器、11〜23・・・・・
・導管、31・・・・・・膨張弁 才1図 牙2 図 第4図 手続補正書(方式) 事件の表示 昭和 60年特許願第 63534  号発・明の名称 空気分離装置 補正をする者 手性との関係 特許出願人 名  称   □510)株式会社  日  立 製作
折代   理   人 H1!MJ@、の凹面の簡単な説明の彎補正の内容
1 to 3 are system diagrams showing uninvented embodiments, and FIG. 2 is a system diagram showing an example of a conventional nitrogen purification apparatus. 1...Filter, 2...Air compressor, 3...Catalyst tank, 4...1.・・Cooler, 5・
...adsorption tower, 6 ... heat exchanger, 7 ...
Rectification column, 8...Condenser, 11-23...
・Conduit, 31...Expansion valve 1 Figure 2 Figure 4 Procedural amendment (method) Indication of the case Showa 60 patent application No. 63534 Name of the air separation device Amended person's hand Relationship with gender Patent applicant name □510) Hitachi Co., Ltd. Manufacturer H1! Contents of curvature correction for a simple explanation of the concave surface of MJ@.

Claims (1)

【特許請求の範囲】[Claims] 1、原料空気を圧縮する圧縮機と、該圧縮された原料空
気中の可燃成分と酸素とを反応させる触媒槽と、該触媒
槽で反応後の原料空気中の水分および二酸化炭素を吸着
除去する吸着塔と、該吸着塔を経た原料空気から製品ガ
スを精留分離する装置本体とを有することを特徴とする
空気分離装置。
1. A compressor that compresses raw material air, a catalyst tank that reacts combustible components in the compressed raw material air with oxygen, and a catalyst tank that adsorbs and removes moisture and carbon dioxide in the raw material air after the reaction. An air separation apparatus comprising an adsorption tower and an apparatus main body for rectifying and separating a product gas from the raw air that has passed through the adsorption tower.
JP60063534A 1985-03-29 1985-03-29 Air separator Granted JPS61225568A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60063534A JPS61225568A (en) 1985-03-29 1985-03-29 Air separator
JP2012587A JPH0711384B2 (en) 1985-03-29 1990-01-24 Nitrogen production method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063534A JPS61225568A (en) 1985-03-29 1985-03-29 Air separator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012587A Division JPH0711384B2 (en) 1985-03-29 1990-01-24 Nitrogen production method and device

Publications (2)

Publication Number Publication Date
JPS61225568A true JPS61225568A (en) 1986-10-07
JPH0463993B2 JPH0463993B2 (en) 1992-10-13

Family

ID=13231976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063534A Granted JPS61225568A (en) 1985-03-29 1985-03-29 Air separator

Country Status (1)

Country Link
JP (1) JPS61225568A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295410A (en) * 1988-09-30 1990-04-06 Hitachi Ltd Method and apparatus for removing carbon monoxide with packing material set in two beds
JPH02307506A (en) * 1989-05-22 1990-12-20 Teisan Kk Purifying method for air
JPH0576759A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Poisoning resistant catalyst, production thereof and method for using same
WO1994024501A1 (en) * 1993-04-22 1994-10-27 Nippon Sanso Corporation Method of and apparatus for manufacturing various kinds of gases to be supplied to semiconductor manufacturing factories
US5359857A (en) * 1992-05-08 1994-11-01 Nippon Sanso Corporation Installation for air liquefaction separation and process therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137643A (en) * 1997-07-18 1999-02-12 Osaka Oxygen Ind Ltd Method and facility for separating air
JP3466437B2 (en) * 1997-09-24 2003-11-10 ジャパン・エア・ガシズ株式会社 Air separation equipment
JP3665451B2 (en) * 1997-09-24 2005-06-29 ジャパン・エア・ガシズ株式会社 Air purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243478A (en) * 1975-10-01 1977-04-05 Ibm Sample retainer for spectrophotometer
JPS5649319A (en) * 1972-07-31 1981-05-02 Lilly Co Eli Animal medicine composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649319A (en) * 1972-07-31 1981-05-02 Lilly Co Eli Animal medicine composition
JPS5243478A (en) * 1975-10-01 1977-04-05 Ibm Sample retainer for spectrophotometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295410A (en) * 1988-09-30 1990-04-06 Hitachi Ltd Method and apparatus for removing carbon monoxide with packing material set in two beds
JPH02307506A (en) * 1989-05-22 1990-12-20 Teisan Kk Purifying method for air
JPH0576759A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Poisoning resistant catalyst, production thereof and method for using same
US5359857A (en) * 1992-05-08 1994-11-01 Nippon Sanso Corporation Installation for air liquefaction separation and process therefor
WO1994024501A1 (en) * 1993-04-22 1994-10-27 Nippon Sanso Corporation Method of and apparatus for manufacturing various kinds of gases to be supplied to semiconductor manufacturing factories
US5656557A (en) * 1993-04-22 1997-08-12 Nippon Sanso Corporation Process for producing various gases for semiconductor production factories

Also Published As

Publication number Publication date
JPH0463993B2 (en) 1992-10-13

Similar Documents

Publication Publication Date Title
TW453974B (en) Method and apparatus for purification of argon
JP2000024445A (en) Production of highly cleaned dry air and dry air, and device therefor
US3216178A (en) Process for regenerating an adsorbent bed
JPH04227017A (en) Manufactur of carbon dioxide including recovery of nitrogen and argon by-product
TW513382B (en) Purification of gases
KR100328419B1 (en) Method and apparatus for producing clean dry air having application to air separation
US5783162A (en) Argon purification process
EP1027913A1 (en) Method and apparatus for producing highly clean dry air
JPS61225568A (en) Air separator
EP0606081A1 (en) Purification system using heat of compression
JPH0711384B2 (en) Nitrogen production method and device
AU659630B2 (en) Process and apparatus for the production of argon
JPH08291967A (en) Method and apparatus for separating the air
JP2645137B2 (en) Equipment for purifying raw material air for nitrogen production equipment
JP2872631B2 (en) Nitrogen / oxygen production system
JPH02282682A (en) Argon recoverying method
GB2260086A (en) Removal of hydrocarbon from gas; ozone production
JP3364724B2 (en) Method and apparatus for separating high purity argon
JPH0579754A (en) Manufacturing method of high purity nitrogen
JP2000211904A (en) Purification of gas
JP4091755B2 (en) Hydrogen purification method and system at liquefied natural gas receiving terminal
KR19980070370A (en) Catalytic Removal of Acetylene During Separation of Air
JP3532466B2 (en) Air separation device
JP2551461B2 (en) Pretreatment method of raw material air in air separation device
JP3466437B2 (en) Air separation equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term