JP2000024445A - Production of highly cleaned dry air and dry air, and device therefor - Google Patents

Production of highly cleaned dry air and dry air, and device therefor

Info

Publication number
JP2000024445A
JP2000024445A JP10192095A JP19209598A JP2000024445A JP 2000024445 A JP2000024445 A JP 2000024445A JP 10192095 A JP10192095 A JP 10192095A JP 19209598 A JP19209598 A JP 19209598A JP 2000024445 A JP2000024445 A JP 2000024445A
Authority
JP
Japan
Prior art keywords
dry air
air
purity
purifier
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10192095A
Other languages
Japanese (ja)
Other versions
JP4519954B2 (en
Inventor
Futoshi Nakajima
太司 中島
Hideyuki Honda
秀幸 本田
Yoshio Ishihara
良夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP19209598A priority Critical patent/JP4519954B2/en
Priority to PCT/JP1999/003629 priority patent/WO2000001467A1/en
Priority to EP99926941A priority patent/EP1027913A4/en
Priority to KR10-2000-7002278A priority patent/KR100367165B1/en
Priority to TW088111435A priority patent/TW423987B/en
Priority to KR10-2002-7009696A priority patent/KR100402429B1/en
Publication of JP2000024445A publication Critical patent/JP2000024445A/en
Application granted granted Critical
Publication of JP4519954B2 publication Critical patent/JP4519954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing highly cleaned dry air and dry air by which the highly cleaned air contg. about 10 ppb impurities and the dry air to be used as before are supplied efficiently and stably. SOLUTION: This method carries out the following processes in this order, a compression process to compress raw air by an air compressor, a pre-refining process to remove the moisture in the raw air by a pre-refiner 3, a catalytic refining process to convert hydrogen and carbon monoxide to water and carbon dioxide by a catalytic refiner 5 and an adsorption refining process to remove the water and the carbon dioxide by an adsorption refiner 6 to obtain highly cleaned dry air and also to optionally collect dry air through the pre-refiner as a product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高清浄乾燥空気と
乾燥空気の製造方法及び装置に関し、詳しくは、半導体
製造工場,高密度記録媒体製造工場,液晶製造工場,太
陽電池パネル製造工場等の製造工程で使用される高純度
の空気、即ち高清浄乾燥空気を製造するとともに、この
高清浄乾燥空気と同時に、水分のみの除去を行った乾燥
空気も製造することができる方法及び装置に関する。特
に、水分を含む不純物を極力低減し、薄板状基体(ウエ
ハ,基板)等の保管又は搬送時等、外気と接触する可能
性のある箇所に、これらの保護目的のガスとしても使用
することができる高清浄乾燥空気と、それほど高純度を
必要としない箇所に使用する乾燥空気とを同時に製造す
る方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity dry air and a method and apparatus for producing dry air, and more particularly, to a semiconductor manufacturing plant, a high-density recording medium manufacturing plant, a liquid crystal manufacturing plant, a solar cell panel manufacturing plant, and the like. The present invention relates to a method and an apparatus capable of producing high-purity air used in a production process, that is, high-purity dry air, and also producing dry air from which only moisture has been removed simultaneously with the high-purity dry air. Particularly, it is possible to reduce impurities including water as much as possible, and to use these as gases for the purpose of protection at places where there is a possibility of contact with the outside air, such as when storing or transporting a thin plate-like substrate (wafer, substrate) or the like. The present invention relates to a method and an apparatus for simultaneously producing high-purity dry air that can be produced and dry air to be used in a place that does not require much high purity.

【0002】[0002]

【従来の技術】従来、半導体製造工場や液晶製造工場等
に供給されている乾燥空気は、マシン駆動用,弁作動
用,薬液圧送用,純水タンクパージ用等に主として使用
されていた。したがって、このような乾燥空気の製造装
置及び方法も、極く一般的なものであった。
2. Description of the Related Art Conventionally, dry air supplied to a semiconductor manufacturing plant, a liquid crystal manufacturing plant, and the like has been mainly used for driving a machine, operating a valve, pumping a chemical solution, purging a pure water tank, and the like. Therefore, such an apparatus and method for producing dry air are also very common.

【0003】すなわち、大気を吸入し、状況によっては
フィルターによりパーティクルの除去を行ってから、空
気圧縮機により空気を所定の圧力まで圧縮し、吸着分離
又は膜分離により、空気中に含有される水分を除去し、
汎用乾燥空気として供給していた。
That is, after inhaling the atmosphere, removing particles by a filter depending on the situation, compressing the air to a predetermined pressure with an air compressor, and adsorbing or membrane-separating the water contained in the air. To remove
It was supplied as general-purpose dry air.

【0004】通常使用している乾燥空気の仕様は、圧力
0.5〜0.7MPa,露点−70℃,流量1500〜
3000Nm/hであり、この仕様を満足する製造工
程は、前述のように現在の技術では困難性は無く、該乾
燥空気のユーザーは、前記各機器を自社工場構内に設置
して乾燥空気を製造するようにしている。
[0004] The specifications of dry air normally used include a pressure of 0.5 to 0.7 MPa, a dew point of -70 ° C, and a flow rate of 1500 to 1500.
A 3000 nm 3 / h, the manufacturing process that satisfies this specification, rather than difficulties in the current as described above technique, the user of the dry air, the dry air by installing the respective devices in the own factory premises We are going to manufacture.

【0005】一方、半導体製造工場や液晶製造工場等で
の各製品の製造工程におけるウエハ等は、マシン間の移
動,保管等の際に、保護措置が十分になされていない。
このため、ウエハ等が空気に暴露され、空気中の水分,
酸素分,炭化水素分等の影響により、不純物がウエハ等
の表面に付着し、これが原因で各製品の特性の低下,洗
浄工程の増加等の不具合、コストアップ要因が発生して
いる。
[0005] On the other hand, wafers and the like in the manufacturing process of each product in a semiconductor manufacturing plant, a liquid crystal manufacturing plant, etc., are not sufficiently protected when they are moved or stored between machines.
As a result, the wafer and the like are exposed to air,
Impurities adhere to the surface of a wafer or the like due to the influence of oxygen, hydrocarbons, and the like, which causes problems such as deterioration of the characteristics of each product, increase in the number of cleaning steps, and cost increase factors.

【0006】これを防止するため、簡易的な保管ボック
スを製作し、高純度窒素ガスによるパージを行うなどの
処置を実施している例もある。
[0006] In order to prevent this, there is an example in which a simple storage box is manufactured and measures such as purging with high-purity nitrogen gas are performed.

【0007】[0007]

【発明が解決しようとする課題】しかし、将来の半導体
製造工場,高密度記録媒体製造工場又は液晶製造工場等
の製造技術は、厳しい品質及び価格競争により、製品の
更なる経済的かつ効率的な生産が要求されてきている。
However, the manufacturing technology of the future semiconductor manufacturing plant, high-density recording medium manufacturing plant, liquid crystal manufacturing plant, and the like will require more economical and efficient products due to severe quality and price competition. Production is being demanded.

【0008】特に、半導体製造工場又は液晶製造工場に
おけるウエハ等の保護対策は、製品特性の維持,コスト
ダウンの観点から重要事項として認識されている。
In particular, protection measures for wafers and the like in a semiconductor manufacturing plant or a liquid crystal manufacturing plant are recognized as important items from the viewpoint of maintaining product characteristics and reducing costs.

【0009】このため、保護雰囲気ガスとして高清浄乾
燥空気のニーズが高くなってきている。この高清浄乾燥
空気の仕様は、例えば、空気中に含まれる不純物、例え
ば水分,一酸化炭素,二酸化炭素,水素等の不純物を1
0ppb以下にして供給するというものである。
For this reason, the need for highly purified dry air as a protective atmosphere gas is increasing. The specification of the high-purity dry air is such that impurities contained in the air, for example, impurities such as moisture, carbon monoxide, carbon dioxide, hydrogen, etc.
It is supplied at 0 ppb or less.

【0010】そこで本発明は、上述のような不純物含有
量10ppb程度の高清浄乾燥空気と、従来から使用さ
れている乾燥空気とを効率よく、かつ、安定的に供給す
ることができる高清浄乾燥空気と乾燥空気の製造方法及
び装置を提供することを目的としている。
Therefore, the present invention provides a high clean drying air capable of efficiently and stably supplying high clean dry air having an impurity content of about 10 ppb as described above and dry air conventionally used. It is an object to provide a method and apparatus for producing air and dry air.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の高清浄乾燥空気及び乾燥空気の製造方法
は、原料空気を圧縮する圧縮工程と、該原料空気中の水
分を除去する前置精製工程と、原料空気中の水素,一酸
化炭素を水,二酸化炭素に転換する触媒精製工程と、
水,二酸化炭素を除去する吸着精製工程とを、この順で
行うことにより高清浄乾燥空気を得るとともに、前記前
置精製工程を経た乾燥空気を随時製品として採取するこ
とを特徴としている。
In order to achieve the above object, the present invention provides a highly purified dry air and a method for producing dry air, the method comprising a step of compressing raw air, and a step of removing moisture in the raw air. Refining process, and catalyst refining process for converting hydrogen and carbon monoxide in the raw material air to water and carbon dioxide.
By performing the adsorption purification step of removing water and carbon dioxide in this order, highly purified dry air is obtained, and the dry air that has undergone the pre-purification step is collected as a product as needed.

【0012】さらに、本発明の高清浄乾燥空気及び乾燥
空気の製造方法は、前記前置精製工程が吸着精製であ
り、その空間速度を12000h-1以下、好ましくは9
000〜11000h-1として行うこと、前記触媒精製
工程の空間速度を30000h-1以下、好ましくは20
00〜30000h-1として行うこと、前記吸着精製工
程の空間速度を7000h-1以下、好ましくは4000
〜6000h-1として行うことを特徴としている。
Further, in the method for producing highly purified dry air and dry air of the present invention, the pre-purification step is adsorption purification, and the space velocity is 12000 h -1 or less, preferably 9
Be carried out as 000~11000H -1, the space velocity of the catalyst purification process 30000h -1 or less, preferably 20
It is carried out as 00~30000H -1, the space velocity of the adsorptive purification step 7000h -1 or less, preferably 4000
6,000 h −1 .

【0013】また、原料空気を圧縮する圧縮工程と、該
原料空気中の水分を除去する前置精製工程と、原料空気
中の水素,一酸化炭素を水,二酸化炭素に転換する触媒
精製工程と、水,二酸化炭素を除去する吸着精製工程と
をこの順で行い、前記前置精製工程を空間速度1200
0h-1以下、好ましくは9000〜11000h-1とし
た吸着精製で行い、前記触媒精製工程の空間速度を30
000h-1以下、好ましくは2000〜30000h-1
で行い、前記吸着精製工程の空間速度を7000h-1
下、好ましくは4000〜6000h-1で行い、これに
よって高清浄乾燥空気中の水素,一酸化炭素,二酸化炭
素及び水分を10ppb以下にすることを特徴としてい
る。
A compression step of compressing the raw air, a pre-purification step of removing water in the raw air, and a catalyst purification step of converting hydrogen and carbon monoxide in the raw air into water and carbon dioxide. , Water and carbon dioxide are removed in this order, and the pre-purification step is performed at a space velocity of 1200.
0 h −1 or less, preferably 9000 to 11000 h −1, and the space velocity of the catalyst purification step was 30
000 h -1 or less, preferably 2000 to 30000 h -1
And the space velocity of the adsorption and purification step is 7000 h -1 or less, preferably 4000 to 6000 h -1 , whereby the hydrogen, carbon monoxide, carbon dioxide and moisture in the high-purity dry air are reduced to 10 ppb or less. It is characterized by.

【0014】さらに、前記吸着精製工程を経た高清浄乾
燥空気を、該高清浄乾燥空気の使用設備に供給するとと
もに、必要に応じてその一部を空気液化分離装置へ供給
すること、また、前記吸着精製工程を経た高清浄乾燥空
気を製品として使用設備へ供給し、使用後の高清浄乾燥
空気を回収して昇圧した後、前記触媒精製工程の前の原
料空気に混入すること、前記吸着精製工程を経た高清浄
乾燥空気を製品として使用設備へ供給し、使用後の高清
浄乾燥空気を回収して昇圧した後、前記吸着精製工程の
前の原料空気又は後の高清浄乾燥空気に混入することを
特徴としている。
Further, the high-purity dry air that has passed through the adsorption purification step is supplied to equipment for using the high-purity dry air, and if necessary, a part of the air is supplied to an air liquefaction / separation apparatus. Supplying high-purity dry air, which has undergone the adsorption purification step, as a product to a facility to be used, collecting the high-purity dry air after use, increasing the pressure, and mixing it into the raw material air before the catalyst purification step; The high-purity dry air that has passed through the process is supplied as a product to the equipment used, and after the high-purity dry air that has been used is recovered and pressurized, it is mixed with the raw air before the adsorption purification step or the high-purity dry air that follows. It is characterized by:

【0015】一方、本発明の高清浄乾燥空気と乾燥空気
の製造装置は、原料空気を圧縮する空気圧縮機と、該原
料空気中の水分を除去する前置精製器と、水素及び一酸
化炭素を酸素と反応させる触媒精製器と、二酸化炭素等
の不純物を除去する吸着精製器とを備えたことを特長と
している。
On the other hand, the apparatus for producing highly purified dry air and dry air of the present invention comprises an air compressor for compressing raw air, a pre-purifier for removing moisture in the raw air, hydrogen and carbon monoxide. It is characterized by comprising a catalyst purifier for reacting methane with oxygen and an adsorption purifier for removing impurities such as carbon dioxide.

【0016】さらに、本発明の高清浄乾燥空気及び乾燥
空気の製造装置は、前記前置精製器が、膜分離器、乾冷
式熱交換器、あるいは、アルミナゲル及び/又はシリカ
ゲルを充填した吸着器、あるいは、ゼオライトを充填し
た吸着器のいずれかであることを特徴とし、特に、前記
ゼオライトが、Ca−A型ゼオライト,NaーA型ゼオ
ライト,K−A型ゼオライト,Ca−X型ゼオライトを
単一又は複数組合わせたものであることを特徴としてい
る。
Further, in the apparatus for producing high-purity dry air and dry air of the present invention, the pre-purifier may be a membrane separator, a dry-cooled heat exchanger, or an adsorber filled with alumina gel and / or silica gel. Or an adsorber filled with zeolite, and in particular, the zeolite is a simple one of Ca-A zeolite, Na-A zeolite, KA zeolite, and Ca-X zeolite. It is characterized in that it is a combination of one or more.

【0017】また、前記触媒精製器が、Pd,Pt,A
u,Fe,Cr,Ni,Co,Mn,Cu,Sn,Zn
等の金属を単体又は複数個を組合わせたもの若しくはこ
れらの金属のいずれかの組合わせでなる合金を主成分と
した金属系触媒を充填したものであり、かつ、該金属系
触媒が前記触媒精製器中に単位空気量当たり0.033
リットル以上、好ましくは0.4リットル以上充填され
ていることを特徴としている。
Further, the catalyst purifier comprises Pd, Pt, A
u, Fe, Cr, Ni, Co, Mn, Cu, Sn, Zn
Or a combination of a plurality of such metals, or a metal-based catalyst containing an alloy of any combination of these metals as a main component, and the metal-based catalyst is the catalyst. 0.033 per unit air volume in the purifier
It is characterized by being filled with at least 0.4 liter, preferably at least 0.4 liter.

【0018】さらに、前記吸着精製器は、合成ゼオライ
トを単位空気量当たり0.14リットル以上、好ましく
は0.2リットル以上充填した吸着精製器であることを
特徴とし、特に、前記合成ゼオライトが、Ca−X型ゼ
オライト、NaーX型ゼオライト、Li−X型ゼオライ
ト、Ca−A型ゼオライト、Na−A型ゼオライトを単
一あるいはこれらを複数組合わせたものであることを特
徴としている。
Further, the adsorption purifier is an adsorption purifier filled with a synthetic zeolite in an amount of 0.14 liter or more, preferably 0.2 liter or more per unit air amount. It is characterized by a single Ca-X type zeolite, a Na-X type zeolite, a Li-X type zeolite, a Ca-A type zeolite, or a combination of a plurality of these types.

【0019】加えて、前記吸着精製器を導出した高清浄
乾燥空気を、該高清浄乾燥空気の使用設備に供給する経
路と、使用設備で使用後の高清浄乾燥空気を回収する経
路と、該回収高清浄乾燥空気を昇圧する手段と、該昇圧
した回収高清浄乾燥空気を、前記触媒精製器の前及び/
又は前記吸着精製器の前及び/又は後の空気に混入する
経路と、これらの経路にそれぞれ設けられた弁とを備え
たことを特徴としている。
In addition, a path for supplying the high-purity dry air derived from the adsorption purifier to equipment for using the high-purity dry air, a path for collecting the high-purity dry air after use in the use equipment, and Means for increasing the pressure of the recovered high-purity dry air; and supplying the pressurized recovered high-purity dry air to the catalyst purifier before and / or
Alternatively, it is characterized by comprising a path for mixing with air before and / or after the adsorption purifier, and a valve provided in each of these paths.

【0020】また、本発明では、前記乾燥空気を原料と
して触媒精製工程により該乾燥空気中にppmレベルで
含まれる水素,一酸化炭素等の不純物を10ppb以下
まで低減することを特徴とする。また、本発明の吸着精
製工程は、もともと空気中に含まれる水分,二酸化炭素
と、前記触媒精製器での反応により発生した水分,二酸
化炭素を併せて吸着除去し、それぞれ10ppb以下に
して送出することを特徴とする。また、前記吸着精製工
程は,空気中に含まれるメタン,エタン,プロパン等の
飽和炭化水素以外の不飽和炭化水素を吸着除去すること
を特徴とする。また、前記吸着精製器の出口から高清浄
乾燥空気を空気液化分離装置へ導出可能とする経路を設
けたことを特徴とする。また、半導体製造工場又は液晶
製造工場等で使用された高清浄乾燥空気を、そのまま前
記触媒精製工程の前、又は前記吸着精製工程の前又は後
に回収する経路を併設していることを特徴とする。ま
た、前記回収高清浄乾燥空気の少なくとも一部を前記前
置精製工程及び/又は吸着精製工程の再生ガスとして使
用する経路も併設したことを特徴とする。また、前記回
収高清浄乾燥空気は、昇圧設備で循環に必要な圧力まで
昇圧し、循環ガスとして利用できることを特徴とする。
また、前記回収高清浄乾燥空気を、循環ガスとして、該
ガスに含まれる不純物の組成により、触媒精製器,吸着
精製器入口,吸着精製器出口の必要箇所に導入可能な経
路を設けたことを特徴とする。
Further, the present invention is characterized in that impurities such as hydrogen and carbon monoxide contained in the dry air at ppm level are reduced to 10 ppb or less by the catalyst refining step using the dry air as a raw material. In the adsorption purification step of the present invention, the water and carbon dioxide originally contained in the air and the water and carbon dioxide generated by the reaction in the catalyst purifier are adsorbed and removed together, and each is sent to 10 ppb or less. It is characterized by the following. Further, the adsorption refining step is characterized in that unsaturated hydrocarbons other than saturated hydrocarbons such as methane, ethane and propane contained in the air are adsorbed and removed. Further, a path is provided that allows highly purified dry air to be led out from the outlet of the adsorption purifier to the air liquefaction / separation apparatus. Further, a path for recovering highly purified dry air used in a semiconductor manufacturing plant or a liquid crystal manufacturing plant or the like before the catalyst purification step or before or after the adsorption purification step is provided. . Further, a path for using at least a part of the recovered high-purity dry air as a regeneration gas in the pre-purification step and / or the adsorption purification step is also provided. Further, the recovered high-purity dry air is pressurized to a pressure required for circulation by a pressurization facility, and can be used as a circulating gas.
Further, a path capable of introducing the recovered high-purity dry air as a circulating gas into necessary parts of a catalyst purifier, an adsorption purifier inlet, and an adsorption purifier outlet according to the composition of impurities contained in the gas is provided. Features.

【0021】上記構成によれば、乾燥空気及び高清浄乾
燥空気を並行して安定にかつ経済的に供給することがで
きる。高清浄乾燥空気中の不純物、即ち水素,一酸化炭
素,水分,二酸化炭素は、それぞれ10ppb以下まで
に低減して高純度で供給できる。
According to the above configuration, dry air and highly clean dry air can be supplied stably and economically in parallel. Impurities, ie, hydrogen, carbon monoxide, moisture, and carbon dioxide, in the high-purity dry air can be reduced to 10 ppb or less and supplied with high purity.

【0022】[0022]

【発明の実施の形態】図1は、高清浄乾燥空気と乾燥空
気とを製造するための本発明装置の一形態例を示す系統
図である。以下、この高清浄乾燥空気及び乾燥空気の製
造装置を、空気の流れに基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing one embodiment of the apparatus of the present invention for producing high-purity dry air and dry air. Hereinafter, the high-purity dry air and the apparatus for producing dry air will be described based on the flow of air.

【0023】まず、経路1aから大気を吸入して空気圧
縮機1により必要圧力まで昇圧する。大気を吸入し、該
空気圧縮機1に導入する間に、必要に応じてフィルター
(図示せず)を介してダストやパーティクルの除去を行
うことができる。圧縮圧力は、通常、0.5〜0.7M
Paである。また、原料空気の流量が1500〜200
00Nm/hであれば、スクリュー式又はターボ式の
圧縮機を用いることができる。
First, the air is sucked from the passage 1a and the pressure is increased to a required pressure by the air compressor 1. While inhaling the air and introducing the air into the air compressor 1, dust and particles can be removed through a filter (not shown) as necessary. The compression pressure is usually 0.5-0.7M
Pa. Moreover, the flow rate of the raw material air is 1500 to 200
If it is 00 Nm 3 / h, a screw-type or turbo-type compressor can be used.

【0024】空気圧縮機1を導出した圧縮原料空気は、
経路1bにより熱交換器4aに導入され、後述する前置
精製器3の再生ガスを加温し、自身は降温して予冷設備
2へ導入される。この予冷設備2は、まず、水冷却器で
前記圧縮原料空気を5℃〜常温まで冷却し、次いでドレ
ンセパレータ(図示せず)に導入して凝縮水分を除去す
る形式のものが用いられる。すなわち、圧縮原料空気中
に含まれる水分をできるだけ除去し、前置精製器3内へ
の持込み水分量を低減することにより、前置精製器3や
後述の吸着精製器6の運転効率を高めるようにしてい
る。水冷却器での冷却温度は、低いほどドレイン量が増
加し、前置精製器3の負荷は軽減されるが、前置精製工
程が吸着精製の場合、通常の運転では前記温度範囲内で
行えばよい。
The compressed raw material air derived from the air compressor 1 is:
The gas is introduced into the heat exchanger 4a through the path 1b, and heats the regenerated gas of the pre-purifier 3 described later, and the temperature of the gas itself is lowered and introduced into the precooling equipment 2. The pre-cooling equipment 2 is of a type in which the compressed raw material air is first cooled to 5 ° C. to room temperature by a water cooler, and then introduced into a drain separator (not shown) to remove condensed water. That is, the operation efficiency of the pre-purifier 3 and the below-described adsorption purifier 6 is increased by removing as much moisture contained in the compressed raw material air as possible and reducing the amount of water carried into the pre-purifier 3. I have to. As the cooling temperature in the water cooler decreases, the drain amount increases and the load on the pre-purifier 3 is reduced. However, when the pre-purification step is adsorption purification, the operation is performed within the above temperature range in normal operation. Just do it.

【0025】前記予冷設備2を導出した原料空気は、前
置精製器3に導入される。前置精製器3による前置精製
工程は、一般に、吸着器や膜分離器により行われ、原料
空気中の水分を分離して露点を−70℃以下にする、い
わゆる乾燥工程である。なお、前置精製工程は、水除去
熱交換器,凝縮分離式精製器又は冷乾熱交換器による低
温分離式乾燥器を用いることもできる。
The raw air from the pre-cooling facility 2 is introduced into a pre-refiner 3. The pre-purification step by the pre-purifier 3 is generally performed by an adsorber or a membrane separator, and is a so-called drying step in which water in the raw material air is separated to have a dew point of −70 ° C. or less. In the pre-refining step, a low-temperature separation type dryer using a water removal heat exchanger, a condensing separation type purification unit, or a cold / dry heat exchanger can also be used.

【0026】膜分離器には、ポリ塩化ビニル,フッ素系
ポリマー(商品名テフロン,フッ素樹脂等),セルロー
スエステル(セルロースアセテート等),ポリアミド,
ポリスルホン,ポリイミド等の膜を用いることができ
る。
The membrane separator includes polyvinyl chloride, fluorine-based polymer (trade name: Teflon, fluororesin, etc.), cellulose ester (cellulose acetate, etc.), polyamide,
A film of polysulfone, polyimide, or the like can be used.

【0027】通常の前置精製工程は、切換使用される複
数、例えば2個の吸着筒を使用して行われる。通常は、
縦型の円筒に、シリカゲル,アルミナゲル,Ca−A型
ゼオライト、Na−A型ゼオライト、Ca−X型ゼオラ
イト又はK−A型ゼオライト(商品名:モレキュラーシ
ーブ5A,4A,10X又は3A)等を単一又は複数組
合わせて充填したものを吸着筒としている。
The usual pre-purification step is carried out by using a plurality of, for example, two adsorption columns which are switched and used. Normally,
In a vertical cylinder, silica gel, alumina gel, Ca-A type zeolite, Na-A type zeolite, Ca-X type zeolite or KA type zeolite (trade name: Molecular sieve 5A, 4A, 10X or 3A), etc. A single or a plurality of combinations are filled to form an adsorption cylinder.

【0028】前記前置精製工程を上記吸着精製により行
う場合は、その空間速度を12000h-1以下、好まし
くは9000〜11000h-1で行うことが好ましい。
空間速度が高くなると、水分を十分に除去できなくなる
ことがある。
In the case where the pre-purification step is carried out by the above-mentioned adsorption purification, the space velocity is preferably 12000 h -1 or less, preferably 9000 to 11000 h -1 .
When the space velocity increases, it may not be possible to sufficiently remove water.

【0029】2個の吸着筒を切換使用する場合、両吸着
筒は、一方の吸着筒が吸着工程のとき、他方の吸着筒は
再生工程であり、再生工程は、加熱再生段階と冷却段階
とにより行われる。
In the case where the two adsorption cylinders are switched and used, both adsorption cylinders are in the adsorption step and the other adsorption cylinder is in the regeneration step. The regeneration step includes a heating regeneration step and a cooling step. It is performed by

【0030】再生工程での加熱再生段階及び冷却段階に
用いる再生ガスは、製品精製ガスを使用することを基本
とするが、水分を含まない他のプロセスからの排出ガ
ス、例えば、空気液化分離装置の排ガスを使用すれば、
製品精製ガスを使用することがなくなるので効率が向上
する。加熱再生段階で使用する加熱用ガスは、上記再生
ガスを、空気圧縮機1での圧縮熱で昇温した圧縮原料空
気と熱交換器4aで熱交換させ、該圧縮原料空気の保有
する熱量を回収することにより再生ガスを昇温して使用
する。
The regeneration gas used in the heating regeneration step and the cooling step in the regeneration step is based on the use of a product purified gas, but is an exhaust gas from another process that does not contain moisture, for example, an air liquefaction separation device. If you use the exhaust gas of
Since the purified gas is not used, the efficiency is improved. The heating gas used in the heating regeneration step is such that the regeneration gas is exchanged with the compressed raw material air heated by the heat of compression in the air compressor 1 in the heat exchanger 4a, and the heat quantity of the compressed raw material air is reduced. The recovered gas is heated and used by collecting.

【0031】再生温度は、通常100〜150℃前後で
あるが、圧縮原料空気の熱量が不足する場合は、加熱器
4b又は他の熱源により所定温度に加温してから吸着筒
に導入する。この再生温度は、再生時間,再生ガス量等
により異なってくるので、他のプロセスの排出ガスを用
いる場合は、該プロセスの運転バランス等を勘案して決
定する。
The regeneration temperature is usually about 100 to 150 ° C., but if the calorific value of the compressed air is insufficient, the compressed air is heated to a predetermined temperature by the heater 4b or another heat source before being introduced into the adsorption column. Since the regeneration temperature varies depending on the regeneration time, the amount of regeneration gas, and the like, when using the exhaust gas of another process, it is determined in consideration of the operation balance of the process.

【0032】前置精製器3で前置精製工程を行うことに
より得られた乾燥空気は、経路10を通り、その一部が
経路12に分岐して半導体製造工場又は液晶製造工場等
の乾燥空気使用設備31に供給される。
The dry air obtained by performing the pre-purification step in the pre-purifier 3 passes through a path 10 and a part thereof branches into a path 12 to dry air in a semiconductor manufacturing plant or a liquid crystal manufacturing plant. It is supplied to the use facility 31.

【0033】また、乾燥空気の残部は、経路11を経て
触媒精製器5に導入される。この触媒精製器5は、空気
中の水素,一酸化炭素,炭化水素を、触媒反応により酸
化して水,二酸化炭素とする触媒精製工程を行うもので
ある。触媒精製器5は、筒内に、Pt,Pd,Au等の
貴金属系触媒、Fe,Mn,Ni,Cr,Co,Mn,
Cu,Sn,Zn等を単体で、あるいはこれらを含む合
金又はこれらを組合わせたものを主成分とした触媒を充
填したものである。
The remaining portion of the dry air is introduced into the catalyst purifier 5 via the path 11. The catalyst purifier 5 performs a catalyst refining process of oxidizing hydrogen, carbon monoxide, and hydrocarbons in the air into water and carbon dioxide by a catalytic reaction. The catalyst purifier 5 includes a precious metal-based catalyst such as Pt, Pd, or Au, Fe, Mn, Ni, Cr, Co, Mn,
It is filled with a catalyst containing Cu, Sn, Zn or the like as a single substance, an alloy containing them, or a combination thereof as a main component.

【0034】また、上記触媒は、単位空気量(1N
)当たり0.033リットル以上、特に0.4リッ
トル以上充填することが好ましい。さらに、該触媒精製
工程は、空間速度を30000h-1以下、特に2000
〜30000h-1で行うことが好ましい。この空間速度
が高くなると、十分な反応を行えなくなくなることがあ
る。なお、前記前置精製工程で水分を除去した後に、こ
の触媒精製工程を行うことにより、その空間速度を大き
く設定することができる。
The catalyst has a unit air volume (1N).
It is preferable to fill at least 0.033 liter, particularly at least 0.4 liter per m 3 ). Further, the catalyst purification step has a space velocity of not more than 30,000 h -1 ,
It is preferably carried out at で 30000 h −1 . When the space velocity is high, a sufficient reaction may not be performed. The space velocity can be set high by performing the catalyst purification step after removing the water in the pre-purification step.

【0035】触媒精製工程における触媒反応は、水素,
一酸化炭素の除去の場合は、通常、30〜190℃で行
うことができ、触媒精製工程での反応温度を得るため、
触媒精製器5の前段には、加熱器5aが設けられてい
る。さらに、触媒精製器5の入口空気と出口空気とを熱
交換させる熱交換器5bを設けることにより、出口空気
の熱回収を行って効率よく装置を運転することができ
る。
The catalytic reaction in the catalyst refining step includes hydrogen,
In the case of removing carbon monoxide, it can be usually performed at 30 to 190 ° C., and in order to obtain a reaction temperature in the catalyst purification step,
A heater 5 a is provided at a stage preceding the catalyst purifier 5. Further, by providing the heat exchanger 5b for exchanging heat between the inlet air and the outlet air of the catalyst purifier 5, heat can be recovered from the outlet air and the device can be operated efficiently.

【0036】また、触媒精製工程に貴金属系触媒を使用
することにより、空気中にppmレベルで含まれている
水素,一酸化炭素を10ppb以下まで容易に低減でき
る。一方、この触媒精製工程において、メタン等の飽和
炭化水素を10ppb以下にまで除去するためには、3
50℃程度まで昇温して反応させるようにすればよい。
Further, by using a noble metal-based catalyst in the catalyst refining step, hydrogen and carbon monoxide contained in air at ppm level can be easily reduced to 10 ppb or less. On the other hand, in order to remove saturated hydrocarbons such as methane to 10 ppb or less in this catalyst refining step, 3
What is necessary is just to raise a temperature to about 50 degreeC, and to make it react.

【0037】なお、触媒精製工程での反応温度が低い場
合は、その温度に応じて前記加熱器5aや熱交換器5b
を省略することができる。
When the reaction temperature in the catalyst purification step is low, the heater 5a or the heat exchanger 5b
Can be omitted.

【0038】触媒精製工程を終えた原料空気は、予冷設
備7を経て吸着精製器6に導入される。予冷設備7は、
吸着精製器6に導入する原料空気を、5℃〜常温に冷却
するものである。この予冷設備7で吸着精製器6の入口
空気を前記温度まで冷却することにより、吸着精製器6
の運転効率を高めることができる。冷却温度は、低い程
効率が向上するが、冷却温度は、前記温度範囲内であれ
ばよい。また、冷却方法は、通常は水冷却により行う
が、水冷却に限定されるものではない。
The raw material air after the catalyst refining step is introduced into the adsorption purifier 6 through the precooling equipment 7. Pre-cooling equipment 7
The raw material air introduced into the adsorption purifier 6 is cooled to 5 ° C. to room temperature. By cooling the inlet air of the adsorptive purifier 6 to the above-mentioned temperature by the precooling equipment 7, the adsorptive purifier 6
Operation efficiency can be improved. The efficiency is improved as the cooling temperature is lower, but the cooling temperature may be within the above-mentioned temperature range. The cooling method is usually performed by water cooling, but is not limited to water cooling.

【0039】吸着精製器6は、原料空気中の水分及び二
酸化炭素を除去し、含有水分及び二酸化炭素を10pp
b以下として高純度乾燥空気を生成するためのもので、
通常は、切換使用される複数個、例えば2個の吸着筒に
より行われる。この吸着筒は、一般に、縦型の円筒に、
Ca−X型ゼオライト(商品名:モレキュラーシーブ
(MS)10X),Na−X型ゼオライト(商品名:M
S13X),Li−X型ゼオライト,Ca−A型ゼオラ
イト(商品名:MS5A)又はNa−A型ゼオライト
(商品名:MS4A)を充填したものを用いることがで
きる。
The adsorption purifier 6 removes water and carbon dioxide from the raw material air, and removes the contained water and carbon dioxide by 10 pp.
b or less to produce high-purity dry air,
Usually, the operation is performed by a plurality of, for example, two suction cylinders that are switched and used. This adsorption cylinder is generally a vertical cylinder,
Ca-X type zeolite (trade name: molecular sieve (MS) 10X), Na-X type zeolite (trade name: M
S13X), Li-X type zeolite, Ca-A type zeolite (trade name: MS5A) or Na-A type zeolite (trade name: MS4A) can be used.

【0040】前記吸着精製器6への合成ゼオライトの充
填量は、単位空気量当たり(原料空気1Nm当た
り)、0.14リットル以上、特に0.2リットル以上
であることが好ましい。そして、該吸着精製工程におけ
る空間速度を、7000h-1以下、好ましくは4000
〜6000h-1にして行うようにすることにより、二酸
化炭素,水分を、それぞれ10ppb以下まで、より確
実に除去することができる。
The amount of the synthetic zeolite charged into the adsorption purifier 6 is preferably 0.14 liter or more, particularly preferably 0.2 liter or more per unit air amount (per 1 Nm 3 of raw material air). The space velocity in the adsorption purification step is 7000 h −1 or less, preferably 4000 h −1.
By performing the process at 66000 h −1 , carbon dioxide and moisture can be more reliably removed to 10 ppb or less.

【0041】吸着精製器6を、切換使用する2個の吸着
筒で形成した場合、一方の吸着筒が吸着工程のとき、他
方の吸着筒では再生工程が行われ、この再生工程は、更
に加熱再生段階と冷却段階とにより行われる。再生工程
で使用する再生ガス、すなわち、加熱再生段階の加熱ガ
ス,冷却段階の冷却ガスは、該吸着精製器6を導出した
高清浄乾燥空気の一部を使用することを基本とするが、
水分,二酸化炭素等をほとんど含まない使用済み高清浄
乾燥空気や空気液化分離装置のプロセス排ガスを再生ガ
スとして使用すれば、効率はより向上する。
In the case where the adsorption purifier 6 is formed of two adsorption cylinders that are switched and used, when one of the adsorption cylinders is in the adsorption step, the other adsorption cylinder performs a regeneration step. It is performed by a regeneration stage and a cooling stage. The regeneration gas used in the regeneration process, that is, the heating gas in the heating regeneration stage and the cooling gas in the cooling stage are based on using a part of the high-purity dry air derived from the adsorption purifier 6.
Efficiency is further improved if used high-purity dry air containing little water, carbon dioxide and the like or process exhaust gas from an air liquefaction / separation apparatus is used as a regeneration gas.

【0042】再生時の加熱温度は、通常、100〜15
0℃前後であり、上記再生ガスを加熱器8又は他の熱源
により加温してから吸着精製器6(吸着筒)に導入す
る。再生温度は、再生時間や再生ガス量等により異なっ
てくるので、他のプロセスの排出ガス条件と当該装置の
運転バランスとを勘案して決定すればよい。
The heating temperature during regeneration is usually 100 to 15
The temperature is about 0 ° C., and the regeneration gas is heated by the heater 8 or another heat source, and then introduced into the adsorption purifier 6 (adsorption cylinder). The regeneration temperature varies depending on the regeneration time, the amount of regeneration gas, and the like, and may be determined in consideration of the exhaust gas conditions of other processes and the operation balance of the apparatus.

【0043】なお、触媒精製器5と吸着精製器6とは、
この両方を1個の容器に収納した方式のガス精製器とし
てもよい。その際、吸着筒内部に充填する吸着剤や触媒
の種類,充填層の形態等は、いろいろなケースが考えら
れるが、吸着筒の入口から順に、乾燥剤層,触媒層,そ
して水分及び二酸化炭素の除去層を形成するのが通常の
充填形態である。
The catalyst purifier 5 and the adsorption purifier 6 are
A gas purifier of a type in which both are contained in one container may be used. At this time, the type of the adsorbent and the catalyst to be filled in the adsorption cylinder, the form of the packed bed, and the like can be considered in various cases, but the desiccant layer, the catalyst layer, and the water and carbon dioxide are sequentially arranged from the inlet of the adsorption cylinder. The usual filling mode forms a removal layer of the above.

【0044】吸着精製器6から送出される高清浄乾燥空
気は、経路13により、半導体製造工場,高密度記録媒
体製造工場,液晶製造工場又は太陽電池パネル製造工場
等の高清浄乾燥空気使用設備32へ供給される。
The high-purity dry air sent from the adsorption purifier 6 is supplied to a high-purity dry air facility 32 such as a semiconductor manufacturing plant, a high-density recording medium manufacturing plant, a liquid crystal manufacturing plant, or a solar cell panel manufacturing plant through a path 13. Supplied to

【0045】なお、経路13に分岐経路14を設け、前
記高清浄乾燥空気の一部を、別に設置する空気液化分離
装置等に供給するなど、多目的に利用することも可能で
ある。
The branch 13 can be used for multiple purposes, for example, by providing a branch path 14 in the path 13 and supplying a part of the high-purity dry air to an air liquefaction / separation device installed separately.

【0046】また、半導体製造工場,高密度記録媒体製
造工場,液晶製造工場あるいは太陽電池パネル製造工場
等の前記使用設備32で使用された高清浄乾燥空気を回
収して利用することにより、新規に製造する高清浄乾燥
空気量を低減することができ、動力費の低減や設備費の
低減が図れる。
Further, by collecting and using the high-purity dry air used in the use equipment 32 such as a semiconductor manufacturing plant, a high-density recording medium manufacturing plant, a liquid crystal manufacturing plant, or a solar cell panel manufacturing plant, it is newly provided. The amount of high-purity dry air to be manufactured can be reduced, and power costs and equipment costs can be reduced.

【0047】例えば、使用設備32で使用した後の高清
浄乾燥空気を回収経路15に回収し、この回収高清浄乾
燥空気を、経路16を介して吸着精製器6の再生ガスと
して、あるいは、経路17を介して前置精製器3の再生
ガスとして、前述のように使用することができる。
For example, high-purity dry air that has been used in the use facility 32 is recovered in the recovery path 15, and this recovered high-purity dry air is used as a regeneration gas for the adsorption purifier 6 via the path 16, or As the regeneration gas of the pre-purifier 3 via the gas recirculation device 17, it can be used as described above.

【0048】さらに、回収経路15の回収高清浄乾燥空
気を昇圧機9で昇圧した後、その汚染度や回収量に応じ
て、前記触媒精製器5の前、前記吸着精製器6の前又は
後のいずれかに循環させて再利用することができる。
Further, after the recovered high-purity dry air in the recovery path 15 is pressurized by the pressurizer 9, it is provided before the catalyst purifier 5, before or after the adsorption purifier 6, depending on the degree of contamination and the recovered amount. And can be recycled.

【0049】すなわち、回収高清浄乾燥空気は、プロセ
ス配管や機器からの水分の脱離等によって汚染されてい
ることが考えられるため、通常は、経路18,弁19を
介して前記吸着精製器6の前の原料空気に混入すること
により、水分を除去して循環再利用することができる。
That is, it is considered that the recovered high-purity dry air is contaminated by the desorption of moisture from the process piping and equipment, and the like. By mixing with the raw material air before, the water can be removed and recycled.

【0050】しかし、装置の連続運転等で水分の脱離等
による汚染がほとんどなくなった場合は、あるいはもと
もと影響がない場合は、経路20,弁21を介して前記
吸着精製器6の後の高清浄乾燥空気に直接混入し、その
まま循環再利用することもできる。
However, if the contamination due to the desorption of water or the like has almost disappeared in the continuous operation of the apparatus, or if there is no influence from the beginning, the high water after the adsorption purifier 6 is passed through the path 20 and the valve 21. It can be directly mixed with clean dry air and recycled as it is.

【0051】一方、その他の様々な要因により、回収高
清浄乾燥空気が水素や一酸化炭素等の成分で汚染されて
いるような場合は、経路22,弁23を介して前記触媒
精製器5の前の原料空気に混入すればよい。
On the other hand, when the recovered high-purity dry air is contaminated with components such as hydrogen and carbon monoxide due to various other factors, the catalyst purifier 5 is passed through the passage 22 and the valve 23. What is necessary is just to mix in the raw material air before.

【0052】なお、前記昇圧機9は、その循環圧力ある
いは流量により適宜な機種を選定すればよく、一般的に
は、軸流式,遠心式,容積式圧縮機又はブロワーを選定
することができる。
The pressurizer 9 may be of an appropriate type depending on its circulating pressure or flow rate. Generally, an axial flow type, a centrifugal type, a positive displacement type compressor or a blower can be selected. .

【0053】[0053]

【発明の効果】以上説明したように、本発明によれば、
半導体製造工場,高密度記録媒体製造工場,液晶製造工
場又は太陽電池パネル製造工場等で要求されている不純
物10ppb以下の高清浄乾燥空気や、汎用の乾燥空気
を安定して経済的に供給することができる。
As described above, according to the present invention,
Stable and economical supply of high-purity dry air with impurities of 10 ppb or less and general-purpose dry air required at semiconductor manufacturing plants, high-density recording medium manufacturing plants, liquid crystal manufacturing plants, solar cell panel manufacturing plants, etc. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 高清浄乾燥空気と乾燥空気とを製造するため
の本発明装置の一形態例を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of the apparatus of the present invention for producing high-purity dry air and dry air.

【符号の説明】[Explanation of symbols]

1…空気圧縮機、2…予冷設備、3…前置精製器、4a
…熱交換器、4b…加熱器、5…触媒精製器、5a…加
熱器、5b…熱交換器、6…吸着精製器、7…予冷設
備、8…加熱器、9…昇圧機、15…回収経路、31…
乾燥空気使用設備、32…高清浄乾燥空気使用設備
DESCRIPTION OF SYMBOLS 1 ... Air compressor, 2 ... Pre-cooling equipment, 3 ... Pre-purifier, 4a
... heat exchanger, 4b ... heater, 5 ... catalyst purifier, 5a ... heater, 5b ... heat exchanger, 6 ... adsorption purifier, 7 ... pre-cooling equipment, 8 ... heater, 9 ... booster, 15 ... Collection route, 31 ...
Equipment using dry air, 32 ... Equipment using high-purity dry air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 良夫 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 4D012 CA01 CA03 CB16 CD01 CE02 CE03 CF02 CF03 CF04 CF05 CG01 CH01 CH05 CH08 CJ05 CK01 CK05 4D052 AA01 BA01 CD00 DA02 DB01 EA01 FA01 GA01 GA03 GB01 GB02 GB03 GB04 GB08 HA01 HA02 HA03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshio Ishihara 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo F-term in Nippon Sanso Corporation (reference) 4D012 CA01 CA03 CB16 CD01 CE02 CE03 CF02 CF03 CF04 CF05 CG01 CH01 CH05 CH08 CJ05 CK01 CK05 4D052 AA01 BA01 CD00 DA02 DB01 EA01 FA01 GA01 GA03 GB01 GB02 GB03 GB04 GB08 HA01 HA02 HA03

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を圧縮する圧縮工程と、該原料
空気中の水分を除去する前置精製工程と、原料空気中の
水素,一酸化炭素を水,二酸化炭素に転換する触媒精製
工程と、水,二酸化炭素を除去する吸着精製工程とを、
この順で行うことにより高清浄乾燥空気を得るととも
に、前記前置精製工程を経た乾燥空気を随時製品として
採取することを特徴とする高清浄乾燥空気及び乾燥空気
の製造方法。
1. A compression step of compressing raw air, a pre-purification step of removing water in the raw air, and a catalyst purification step of converting hydrogen and carbon monoxide in the raw air into water and carbon dioxide. And an adsorption purification process to remove water and carbon dioxide.
A method for producing high-purity dry air and dry air, characterized by obtaining high-purity dry air by carrying out in this order and collecting dry air that has passed through the pre-purification step as a product as needed.
【請求項2】 前記前置精製工程が吸着精製であり、そ
の空間速度を12000h-1以下として行うことを特徴
とする請求項1記載の高清浄乾燥空気及び乾燥空気の製
造方法。
2. The method for producing highly purified dry air and dry air according to claim 1, wherein the pre-purification step is adsorption purification, and the space velocity is performed at 12000 h -1 or less.
【請求項3】 前記触媒精製工程の空間速度を3000
0h-1以下として行うことを特徴とする請求項1記載の
高清浄乾燥空気及び乾燥空気の製造方法。
3. The space velocity of the catalyst purification step is 3000
2. The method for producing highly purified dry air and dry air according to claim 1, wherein the drying is performed at 0h -1 or less.
【請求項4】 前記吸着精製工程の空間速度を7000
-1以下として行うことを特徴とする請求項1記載の高
清浄乾燥空気及び乾燥空気の製造方法。
4. The method according to claim 1, wherein the space velocity in the adsorption purification step is 7000.
2. The method for producing highly purified dry air and dry air according to claim 1, wherein the method is performed at h- 1 or less.
【請求項5】 原料空気を圧縮する圧縮工程と、該原料
空気中の水分を除去する前置精製工程と、原料空気中の
水素,一酸化炭素を水,二酸化炭素に転換する触媒精製
工程と、水,二酸化炭素を除去する吸着精製工程とをこ
の順で行い、前記前置精製工程を空間速度12000h
-1以下とした吸着精製で行い、前記触媒精製工程の空間
速度を30000h-1以下で行い、前記吸着精製工程の
空間速度を7000h-1以下で行い、これによって高清
浄乾燥空気中の水素,一酸化炭素,二酸化炭素及び水分
を10ppb以下にすることを特徴とする高清浄乾燥空
気及び乾燥空気の製造方法。
5. A compression step of compressing the raw air, a pre-purification step of removing water in the raw air, and a catalyst purification step of converting hydrogen and carbon monoxide in the raw air into water and carbon dioxide. , Water and carbon dioxide are removed in this order, and the pre-purification step is performed at a space velocity of 12000 h.
−1 or less, the space velocity of the catalyst purification step is performed at 30,000 h −1 or less, and the space velocity of the adsorption purification step is performed at 7000 h −1 or less. A highly purified dry air and a method for producing dry air, characterized in that carbon monoxide, carbon dioxide and moisture are reduced to 10 ppb or less.
【請求項6】 前記吸着精製工程を経た高清浄乾燥空気
を、該高清浄乾燥空気の使用設備に供給するとともに、
空気液化分離装置へも供給することを特徴とする請求項
1又は5記載の高清浄乾燥空気及び乾燥空気の製造方
法。
6. The highly purified dry air that has passed through the adsorption purification step is supplied to equipment using the highly purified dry air,
The method for producing highly purified dry air and dry air according to claim 1 or 5, wherein the method is also supplied to an air liquefaction separation device.
【請求項7】 前記吸着精製工程を経た高清浄乾燥空気
を製品として使用設備へ供給し、使用後の高清浄乾燥空
気を回収して昇圧した後、前記触媒精製工程の前の原料
空気に混入することを特徴とする請求項1又は5記載の
高清浄乾燥空気及び乾燥空気の製造方法。
7. The high-purity dry air that has passed through the adsorption purification step is supplied as a product to a facility to be used, and after the high-purity dry air that has been used is recovered and pressurized, it is mixed with the raw air before the catalyst purification step. The method for producing high-purity dry air and dry air according to claim 1 or 5, wherein:
【請求項8】 前記吸着精製工程を経た高清浄乾燥空気
を製品として使用設備へ供給し、使用後の高清浄乾燥空
気を回収して昇圧した後、前記吸着精製工程の前の原料
空気又は後の高清浄乾燥空気に混入することを特徴とす
る請求項1又は5記載の高清浄乾燥空気及び乾燥空気の
製造方法。
8. The high-purity dry air that has passed through the adsorption / purification step is supplied as a product to a facility to be used, the high-purity dry air after use is recovered and pressurized, and then the raw air before or after the adsorption / purification step The highly purified dry air and the method for producing dry air according to claim 1 or 5, wherein the method is mixed with the highly purified dry air.
【請求項9】 原料空気を圧縮する空気圧縮機と、該原
料空気中の水分を除去する前置精製器と、水素及び一酸
化炭素を酸素と反応させる触媒精製器と、二酸化炭素等
の不純物を除去する吸着精製器とを備えたことを特長と
する高清浄乾燥空気及び乾燥空気の製造装置。
9. An air compressor for compressing raw air, a pre-purifier for removing moisture in the raw air, a catalytic purifier for reacting hydrogen and carbon monoxide with oxygen, and impurities such as carbon dioxide An apparatus for producing high-purity dry air and dry air, comprising: an adsorption purifier for removing air.
【請求項10】 前記前置精製器が膜分離器であること
を特徴とする請求項9記載の高清浄乾燥空気及び乾燥空
気の製造装置。
10. The apparatus for producing high-purity dry air and dry air according to claim 9, wherein the pre-purifier is a membrane separator.
【請求項11】 前記前置精製器が乾冷式熱交換器であ
ることを特徴とする請求項9記載の高清浄乾燥空気及び
乾燥空気の製造装置。
11. The apparatus for producing high-purity dry air and dry air according to claim 9, wherein the pre-refiner is a dry-cooled heat exchanger.
【請求項12】 前記前置精製器がアルミナゲル及び/
又はシリカゲルを充填した吸着器であることを特徴とす
る請求項9記載の高清浄乾燥空気及び乾燥空気の製造装
置。
12. The method according to claim 12, wherein the pre-purifier is an alumina gel and / or an alumina gel.
10. The apparatus for producing highly purified dry air and dry air according to claim 9, wherein the apparatus is an adsorber filled with silica gel.
【請求項13】 前記前置精製器がゼオライトを充填し
た吸着器であることを特徴とする請求項9記載の高清浄
乾燥空気及び乾燥空気の製造装置。
13. The apparatus for producing high-purity dry air and dry air according to claim 9, wherein the pre-refiner is an adsorber filled with zeolite.
【請求項14】 前記ゼオライトが、Ca−A型ゼオラ
イト,NaーA型ゼオライト,K−A型ゼオライト,C
a−X型ゼオライトを単一又は複数組合わせたものであ
ることを特徴とする請求項13記載の高清浄乾燥空気及
び乾燥空気の製造装置。
14. The zeolite may be a Ca-A type zeolite, a Na-A type zeolite, a KA type zeolite, or a C-type zeolite.
14. The apparatus for producing highly purified dry air and dry air according to claim 13, wherein the apparatus is a single or a combination of a-X type zeolites.
【請求項15】 前記触媒精製器が、Pd,Pt,A
u,Fe,Cr,Ni,Co,Mn,Cu,Sn,Zn
等の金属を単体又は複数個を組合わせたもの若しくはこ
れらの金属のいずれかの組合わせでなる合金を主成分と
した金属系触媒を充填したものであり、かつ、該金属系
触媒が前記触媒精製器中に単位空気量当たり0.033
リットル以上充填されていることを特徴とする請求項9
記載の高清浄乾燥空気及び乾燥空気の製造装置。
15. The catalyst purifier according to claim 1, wherein the catalyst purifier is Pd, Pt, A
u, Fe, Cr, Ni, Co, Mn, Cu, Sn, Zn
Or a combination of a plurality of such metals, or a metal-based catalyst containing an alloy of any combination of these metals as a main component, and the metal-based catalyst is the catalyst. 0.033 per unit air volume in the purifier
10. Filled in liters or more.
An apparatus for producing highly purified dry air and dry air as described above.
【請求項16】 前記吸着精製器は、合成ゼオライトを
単位空気量当たり0.14リットル以上充填した吸着精
製器であることを特徴とする請求項9記載の高清浄乾燥
空気及び乾燥空気の製造装置。
16. The apparatus for producing high-purity dry air and dry air according to claim 9, wherein the adsorption purifier is an adsorption purifier filled with synthetic zeolite in an amount of 0.14 liter or more per unit air amount. .
【請求項17】 前記合成ゼオライトは、Ca−X型ゼ
オライト、NaーX型ゼオライト、Li−X型ゼオライ
ト、Ca−A型ゼオライト、Na−A型ゼオライトを単
一あるいはこれらを複数組合わせたものであることを特
徴とする請求項16記載の高清浄乾燥空気及び乾燥空気
の製造装置。
17. The synthetic zeolite may be one of Ca-X type zeolite, Na-X type zeolite, Li-X type zeolite, Ca-A type zeolite, Na-A type zeolite, or a combination thereof. 17. The apparatus for producing high-purity dry air and dry air according to claim 16, wherein:
【請求項18】 前記吸着精製器を導出した高清浄乾燥
空気を、該高清浄乾燥空気の使用設備に供給する経路
と、使用設備で使用後の高清浄乾燥空気を回収する経路
と、該回収高清浄乾燥空気を昇圧する手段と、該昇圧し
た回収高清浄乾燥空気を、前記触媒精製器の前及び/又
は前記吸着精製器の前及び/又は後の空気に混入する経
路と、これらの経路にそれぞれ設けられた弁とを備えた
ことを特徴とする請求項9記載の高清浄乾燥空気及び乾
燥空気の製造装置。
18. A path for supplying the high-purity dry air derived from the adsorption purifier to a facility using the high-purity dry air, a path for collecting the high-purity dry air after use in the use facility, and Means for increasing the pressure of the high-purity dry air, a path for mixing the recovered high-purity dry air into the air before the catalyst purifier and / or before and / or after the adsorption purifier, and these paths 10. The apparatus for producing high-purity dry air and dry air according to claim 9, further comprising a valve provided in each of the first and second embodiments.
JP19209598A 1998-07-07 1998-07-07 Highly clean dry air and method and apparatus for producing dry air Expired - Fee Related JP4519954B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19209598A JP4519954B2 (en) 1998-07-07 1998-07-07 Highly clean dry air and method and apparatus for producing dry air
PCT/JP1999/003629 WO2000001467A1 (en) 1998-07-07 1999-07-06 Method and apparatus for producing highly clean dry air
EP99926941A EP1027913A4 (en) 1998-07-07 1999-07-06 Method and apparatus for producing highly clean dry air
KR10-2000-7002278A KR100367165B1 (en) 1998-07-07 1999-07-06 Method for producing highly clean dry air
TW088111435A TW423987B (en) 1998-07-07 1999-07-06 A manufacture method and device of highly pure dry air
KR10-2002-7009696A KR100402429B1 (en) 1998-07-07 1999-07-06 Apparatus for producing highly clean dry air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19209598A JP4519954B2 (en) 1998-07-07 1998-07-07 Highly clean dry air and method and apparatus for producing dry air

Publications (2)

Publication Number Publication Date
JP2000024445A true JP2000024445A (en) 2000-01-25
JP4519954B2 JP4519954B2 (en) 2010-08-04

Family

ID=16285569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19209598A Expired - Fee Related JP4519954B2 (en) 1998-07-07 1998-07-07 Highly clean dry air and method and apparatus for producing dry air

Country Status (1)

Country Link
JP (1) JP4519954B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079081A (en) * 2000-09-06 2002-03-19 Sumitomo Osaka Cement Co Ltd Porous powder, and method for manufacturing and using the same
JP2006014290A (en) * 2004-05-28 2006-01-12 Hitachi Kokusai Electric Inc Spread spectrum communication apparatus
JP2011504136A (en) * 2007-11-12 2011-02-03 エクソンモービル アップストリーム リサーチ カンパニー Production and use of utility gas
EP2427255A2 (en) * 2008-04-06 2012-03-14 Innosepra Llc Carbon dioxide recovery
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
JP2015035607A (en) * 2009-07-17 2015-02-19 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9126138B2 (en) 2008-04-30 2015-09-08 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220346B2 (en) 2015-10-27 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
JP2020505229A (en) * 2017-01-10 2020-02-20 エマージング・コンパウンズ・トリートメント・テクノロジーズ・インコーポレイテッド Systems and methods for improving the adsorption of contaminated vapors to increase the capacity of the adsorption media
US10603626B2 (en) 2016-09-01 2020-03-31 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895181A (en) * 1981-11-30 1983-06-06 株式会社日立製作所 Pre-treatment method for air separator
JPH0292374A (en) * 1988-09-28 1990-04-03 Tokai Kogyo Kk Reducing device for room interior carbon dioxide in structure
JPH0478414A (en) * 1990-07-20 1992-03-12 Kinki Reinetsu Kk Air refining device
JPH04219111A (en) * 1990-01-19 1992-08-10 Boc Group Inc:The Manufacture of high purity gas
JPH05146626A (en) * 1991-05-06 1993-06-15 Permea Inc Device suitable for intermittent supply of dehydrated gas and dehydrating method
JPH05200223A (en) * 1992-01-27 1993-08-10 Matsushita Electric Works Ltd Method for adsorbing and removing specific gas component
JPH06304432A (en) * 1993-04-22 1994-11-01 Nippon Sanso Kk Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
JPH107410A (en) * 1996-02-28 1998-01-13 Air Prod And Chem Inc Recovery and purification of impure argon

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895181A (en) * 1981-11-30 1983-06-06 株式会社日立製作所 Pre-treatment method for air separator
JPH0292374A (en) * 1988-09-28 1990-04-03 Tokai Kogyo Kk Reducing device for room interior carbon dioxide in structure
JPH04219111A (en) * 1990-01-19 1992-08-10 Boc Group Inc:The Manufacture of high purity gas
JPH0478414A (en) * 1990-07-20 1992-03-12 Kinki Reinetsu Kk Air refining device
JPH05146626A (en) * 1991-05-06 1993-06-15 Permea Inc Device suitable for intermittent supply of dehydrated gas and dehydrating method
JPH05200223A (en) * 1992-01-27 1993-08-10 Matsushita Electric Works Ltd Method for adsorbing and removing specific gas component
JPH06304432A (en) * 1993-04-22 1994-11-01 Nippon Sanso Kk Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
JPH107410A (en) * 1996-02-28 1998-01-13 Air Prod And Chem Inc Recovery and purification of impure argon

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079081A (en) * 2000-09-06 2002-03-19 Sumitomo Osaka Cement Co Ltd Porous powder, and method for manufacturing and using the same
JP2006014290A (en) * 2004-05-28 2006-01-12 Hitachi Kokusai Electric Inc Spread spectrum communication apparatus
JP4574440B2 (en) * 2004-05-28 2010-11-04 株式会社日立国際電気 Spread spectrum communication equipment
JP2011504136A (en) * 2007-11-12 2011-02-03 エクソンモービル アップストリーム リサーチ カンパニー Production and use of utility gas
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
EP2427255A2 (en) * 2008-04-06 2012-03-14 Innosepra Llc Carbon dioxide recovery
JP2012522627A (en) * 2008-04-06 2012-09-27 イノセプラ エルエルシー Carbon dioxide recovery
EP2427255A4 (en) * 2008-04-06 2013-01-02 Innosepra Llc Carbon dioxide recovery
US10035096B2 (en) 2008-04-30 2018-07-31 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9126138B2 (en) 2008-04-30 2015-09-08 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
JP2017063208A (en) * 2009-07-17 2017-03-30 株式会社半導体エネルギー研究所 Oxide semiconductor film manufacturing method
US10256291B2 (en) 2009-07-17 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP2015035607A (en) * 2009-07-17 2015-02-19 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2016086178A (en) * 2009-07-17 2016-05-19 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9593778B2 (en) 2011-03-01 2017-03-14 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US10016715B2 (en) 2011-03-01 2018-07-10 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US10464009B2 (en) 2014-12-10 2019-11-05 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US10512893B2 (en) 2014-12-23 2019-12-24 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10124286B2 (en) 2015-09-02 2018-11-13 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10293298B2 (en) 2015-09-02 2019-05-21 Exxonmobil Upstream Research Company Apparatus and system for combined temperature and pressure swing adsorption processes related thereto
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
US10220346B2 (en) 2015-10-27 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11642619B2 (en) 2015-11-16 2023-05-09 Georgia Tech Research Corporation Adsorbent materials and methods of adsorbing carbon dioxide
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11260339B2 (en) 2016-03-18 2022-03-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11033854B2 (en) 2016-05-31 2021-06-15 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11033852B2 (en) 2016-05-31 2021-06-15 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11110388B2 (en) 2016-08-31 2021-09-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10603626B2 (en) 2016-09-01 2020-03-31 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
JP7100223B2 (en) 2017-01-10 2022-07-13 エマージング・コンパウンズ・トリートメント・テクノロジーズ・インコーポレイテッド Systems and methods for improving the adsorption of contaminated vapors to increase the processing capacity of renewable synthetic adsorption media
JP2020505229A (en) * 2017-01-10 2020-02-20 エマージング・コンパウンズ・トリートメント・テクノロジーズ・インコーポレイテッド Systems and methods for improving the adsorption of contaminated vapors to increase the capacity of the adsorption media
JP2022037225A (en) * 2017-01-10 2022-03-08 エマージング・コンパウンズ・トリートメント・テクノロジーズ・インコーポレイテッド System and method for enhancing adsorption of contaminated vapors to increase treatment capacity of regenerable synthetic adsorptive media
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11857913B2 (en) 2018-01-24 2024-01-02 ExxonMobil Technology and Engineering Company Apparatus and system for swing adsorption processes
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO

Also Published As

Publication number Publication date
JP4519954B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP2000024445A (en) Production of highly cleaned dry air and dry air, and device therefor
US6048509A (en) Gas purifying process and gas purifying apparatus
KR0172121B1 (en) Apparatus for low temperature purification of gases
JP3277340B2 (en) Method and apparatus for producing various gases for semiconductor manufacturing plants
JP3351815B2 (en) Purification method of inert gas
KR100814230B1 (en) Purification of gases
EP1427508B1 (en) Helium recovery
CN1029779C (en) Improved membrane nitrogen process and system
CS145292A3 (en) Process for preparing extremely pure argon
CN102083512A (en) Carbon dioxide recovery
US4746332A (en) Process for producing high purity nitrogen
EP1027913A1 (en) Method and apparatus for producing highly clean dry air
JP2517389B2 (en) Nitrogen production membrane device and method
CN101941684A (en) Helium purifying method
JPH11316082A (en) Method and device for producing clean and dry air
US20030064014A1 (en) Purification of gases by pressure swing adsorption
GB2171927A (en) Method and apparatus for separating a gaseous mixture
JP4058278B2 (en) Helium purification equipment
JPS61225568A (en) Air separator
JP3639087B2 (en) Helium recovery method
KR100306428B1 (en) Isostatic Moving Bed Continuous Purifier
NZ248804A (en) Argon purification by cryogenic adsorption
JP2000024444A (en) Production of highly purified dry air and device therefor
JPH11221420A (en) Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air
JPH0579754A (en) Manufacturing method of high purity nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees