JPS63267878A - Argon purifying method recovering argon and hydrogen in purified argon tower waste gas - Google Patents

Argon purifying method recovering argon and hydrogen in purified argon tower waste gas

Info

Publication number
JPS63267878A
JPS63267878A JP62099800A JP9980087A JPS63267878A JP S63267878 A JPS63267878 A JP S63267878A JP 62099800 A JP62099800 A JP 62099800A JP 9980087 A JP9980087 A JP 9980087A JP S63267878 A JPS63267878 A JP S63267878A
Authority
JP
Japan
Prior art keywords
argon
gas
purified
hydrogen
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099800A
Other languages
Japanese (ja)
Inventor
裕彦 中村
昭夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP62099800A priority Critical patent/JPS63267878A/en
Publication of JPS63267878A publication Critical patent/JPS63267878A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本分明は、高純度アルゴンを採取するアルゴン採取方法
に係り、特に高収率アルゴン採取に好適なアルゴン精製
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an argon extraction method for extracting high-purity argon, and particularly to an argon purification method suitable for high-yield argon extraction.

〔従来の技術〕[Conventional technology]

従来技術によるアルゴン精***を132図により説明
する。粗アルゴン塔1から採取さnた粗アルゴンガスは
導管11を経てアルゴン熱交換器2で温度回復した後、
導管校でアルゴンブロワ−3に供給される。ここで粗ア
ルゴンガスな精製アルゴン塔8へ供給するのに必要な圧
力まで昇圧さnた後、途中導管4より水素ガスを添加さ
れ、導管13よりパラクラム触媒槽4へ供給される。パ
ラジウム触媒槽4内では、徂アルゴンガス中の酸素とパ
ラジウム触媒槽4人口で添加さnた水素ガスが触ンガス
は、導管14を経てアルゴン冷却器5で冷却さn、ここ
で凝縮した水と粗アルゴンガスは導管15を経て水滴分
離器6へ供給さn、粗アルゴンと凝縮水な気液分離する
。水滴分離a6を出た水蒸気を含んだ租アルゴンガスは
、導管16を経て吸着塔7へ供給され、この吸着塔7内
にi填さnた吸7剤により、粗アルゴンガス中の水分が
吸着除去さnる。なお、吸着塔7は2基以上設置さn、
一定周期で切替使用さnる。即ち、一方の吸着塔7が吸
着に使用されている場合、他方の吸着塔7は再生加熱器
9で昇温さn、導管nを経て吸着塔7へ供給さnる窒素
ガスにより再生さnる。吸着塔7を出た粗アルゴンガス
は、導管17を経てアルゴン熱交換器2に供給され、液
化点近くまで冷却された後、導管18を経て精製アルゴ
ン塔8へ供給される。しかして、精製アルゴン塔8で気
液接触により精留分離さn、底部から導管19により精
製アルゴンが採取さnる。また、頂部からはアルゴン。
Argon spirit *** according to the prior art will be explained with reference to Fig. 132. The crude argon gas collected from the crude argon column 1 passes through the conduit 11, and after its temperature is recovered in the argon heat exchanger 2,
It is supplied to argon blower 3 at the conduit. After the crude argon gas is pressurized to the pressure necessary for supplying it to the purified argon column 8, hydrogen gas is added through the conduit 4, and the crude argon gas is supplied to the paracrum catalyst tank 4 through the conduit 13. In the palladium catalyst tank 4, the oxygen in the argon gas and the hydrogen gas added in the palladium catalyst tank 4 are in contact with each other. The crude argon gas is supplied to the water droplet separator 6 through a conduit 15, and the crude argon and condensed water are separated into gas and liquid. The fresh argon gas containing water vapor that has come out of the water droplet separation a6 is supplied to the adsorption tower 7 through the conduit 16, and the moisture in the crude argon gas is adsorbed by the absorbent packed in the adsorption tower 7. It will be removed. Note that two or more adsorption towers 7 are installed,
It is switched and used at regular intervals. That is, when one adsorption tower 7 is used for adsorption, the other adsorption tower 7 is heated by a regeneration heater 9 and regenerated by nitrogen gas supplied to the adsorption tower 7 via a conduit. Ru. The crude argon gas leaving the adsorption tower 7 is supplied to the argon heat exchanger 2 via a conduit 17, cooled to near the liquefaction point, and then supplied to the purified argon column 8 via a conduit 18. Then, purified argon is subjected to rectification separation by gas-liquid contact in the purified argon column 8, and purified argon is collected from the bottom through a conduit 19. Also, argon is released from the top.

水素の混合ガスが導管(9)より抜き出さn、アルゴン
熱交換器2でifi度回復した後、大気放出さnる。
The mixed gas of hydrogen is extracted from the conduit (9), and after being recovered to a certain degree in the argon heat exchanger 2, it is released into the atmosphere.

なお、この種の装置として関達す仝ものには1例えば特
開昭55−105177号等が挙げらnる。
Incidentally, examples of devices of this kind that have been reported include, for example, Japanese Patent Application Laid-open No. 55-105177.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、アルゴン精製itの吸着塔の再生に窒
素ガスを昇虐させて使用するため、窒素の消費量および
昇温するための蒸気消費量、又は昇温するための電力消
費型の点に配慮がされておらず、窒素ガス、蒸気、ME
力の消費量が大きいという問題があった。
The above-mentioned conventional technology uses elevated nitrogen gas to regenerate the adsorption tower of argon purification IT. Nitrogen gas, steam, ME
There was a problem that the amount of power consumed was large.

1だ、精製アルゴン塔頂部からアルゴン、水素を含んだ
混合ガスを廃ガスとして大気放出しているために、アル
ゴンの収率および水素添加量の点について考慮されてお
らず、低アルゴン収率および水素添加量の増大という問
題があ−た。
1. Because the mixed gas containing argon and hydrogen is released into the atmosphere as waste gas from the top of the purified argon column, the yield of argon and the amount of hydrogen added are not taken into account, resulting in low argon yield and There was a problem of an increase in the amount of hydrogen added.

本発明の目的は、アルゴン精製装置の低電力化。An object of the present invention is to reduce the power consumption of an argon purification device.

高アルゴン収率、水素添加僅の減少にある。High argon yield, with slight reduction in hydrogenation.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、粗アルゴンガスに水素を添加して触媒反応
により酸素弁を除去し、水分および窒素分を吸着除去し
た後冷却して精製アルゴン塔に供給し、該精製アルゴン
塔頂部からの廃ガスを曲記徂アルゴンガスに合流させる
ことにより、達成さnる。
The above purpose is to add hydrogen to crude argon gas, remove the oxygen valve through a catalytic reaction, adsorb and remove moisture and nitrogen, cool it and supply it to a purified argon column, and waste gas from the top of the purified argon column. This is achieved by merging the argon gas into the argon gas.

〔作  用〕[For production]

アルゴン精製装置の吸着塔は2基以上設置さn、一定周
期で切替使用さnる。即ち、一方の吸着塔で粗アルゴン
中の水分を吸着除去し、他方の吸着塔では減圧すること
により吸着剤を再生することができる。
Two or more adsorption towers are installed in the argon purification device, and the adsorption towers are switched at regular intervals. That is, the adsorbent can be regenerated by adsorbing and removing moisture in the crude argon in one adsorption tower and reducing the pressure in the other adsorption tower.

また、精製アルゴン塔頂部の廃ガスは、粗アルゴンガス
と合流してアルゴン精製装置へ供給さnる。
Further, the waste gas at the top of the purified argon column is combined with the crude argon gas and supplied to the argon purification device.

この場合、粗アルゴンガス中の窒素分は外部へ放出され
ないので、アルゴン精製装置内で濃縮するが、この窒素
分は上記吸着塔で吸着除去さnる。
In this case, the nitrogen content in the crude argon gas is not released to the outside, so it is concentrated in the argon purifier, but this nitrogen content is removed by adsorption in the adsorption tower.

〔実 施 例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。粗ア
ルゴン塔1から採取さnた粗アルゴンガスは、導管11
を経てアルゴン熱交換器2で温度回復した後導管認で1
ルゴンブロワ−3に供給される。ここで、粗アルゴンガ
スな精製アルゴン塔8へ供給するのに必要な圧力まで昇
圧された後、途中導管はより水素ガスを添加さn、導管
13よりパラジウム触媒槽4へ供給さnる。パラジウム
触媒槽4内では、粗アルゴンガス中の酸素とパラジウム
触媒槽4人口で添加さnた水素ガスが触媒反応して水に
変化し、また1反応熱により温度が上昇する。高温とな
り水蒸気を含んだ粗アルゴンガスは、導管14を経てア
ルゴン冷却器5で冷却さn、ここで凝縮した水と粗アル
ゴンガスは導管15を経て水滴分離器6へ供給され、粗
アルゴンガスと凝7へ供給され、この吸着塔7内に充填
さnた吸着剤により、粗アルゴンガス中の水分、窒素分
が吸着除去さnる。なお、吸着塔7は2基以上設置され
、一定周期で切替使用さnる。即ち、一方の吸着塔7が
吸着に便用さnている場合、他方吸着塔7は真空ポンプ
lOで導管nを経て減圧再生さnる。
An embodiment of the present invention will be described below with reference to FIG. The crude argon gas collected from the crude argon column 1 is passed through the conduit 11.
After the temperature was recovered in argon heat exchanger 2, the pipe was confirmed as 1.
It is supplied to Rougon blower 3. Here, after the crude argon gas is pressurized to the pressure necessary for supplying it to the purified argon column 8, hydrogen gas is added to the intermediate conduit, and the crude argon gas is supplied to the palladium catalyst tank 4 through the conduit 13. In the palladium catalyst tank 4, the oxygen in the crude argon gas and the hydrogen gas added to the palladium catalyst tank 4 undergo a catalytic reaction and change to water, and the temperature rises due to the heat of reaction. The crude argon gas, which has become high in temperature and contains water vapor, passes through a conduit 14 and is cooled by an argon cooler 5.The water condensed here and the crude argon gas are supplied to a water droplet separator 6 via a conduit 15, where they are separated into crude argon gas. The moisture and nitrogen in the crude argon gas are adsorbed and removed by the adsorbent that is supplied to the coagulation column 7 and filled in the adsorption tower 7. Note that two or more adsorption towers 7 are installed, and are switched and used at regular intervals. That is, when one adsorption tower 7 is used for adsorption, the other adsorption tower 7 is regenerated under reduced pressure by means of a vacuum pump IO via a conduit n.

吸着塔7を出た粗アルゴンガスは、導管17を経てアル
ゴン熱交換器2に供給さn、液化点近くまで冷却さnた
後、導管18を経て精製アルゴン塔8へ供給さnる。し
かして、精製アルゴン塔8で気液接触により精留分離さ
れ、底部から導管19により精製アルゴンが採取される
。また、頂部からはアルゴン、水素の混合ガスが導管茄
より抜き出さn、アルゴン熱交換器2で温度回復した後
、導管冴を経て導管11からの粗アルゴンガスに合流す
る。
The crude argon gas leaving the adsorption tower 7 is supplied to the argon heat exchanger 2 via a conduit 17, cooled to near the liquefaction point, and then supplied to the purified argon column 8 via a conduit 18. Then, it is rectified and separated by gas-liquid contact in the purified argon column 8, and purified argon is collected from the bottom through a conduit 19. Further, from the top, a mixed gas of argon and hydrogen is extracted from a conduit, and after its temperature is recovered in the argon heat exchanger 2, it joins the crude argon gas from the conduit 11 through the conduit.

従って本実施例によnば、精製アルゴン塔8頂部からの
アルゴンを含む混合ガスを回収することができるため、
製品アルゴン量の増加および水素添加量の減少の効果が
ある。
Therefore, according to this embodiment, the mixed gas containing argon from the top of the purified argon column 8 can be recovered.
This has the effect of increasing the amount of argon in the product and reducing the amount of hydrogen added.

〔発明の効果〕〔Effect of the invention〕

本発明によnば、つぎのたうな効果がある。 The present invention has the following effects.

(1)精製アルゴン塔のブローガス中のアルゴン、水素
を有効に回収できるため、製品アルゴン量の増加、水素
添加量の節約の効果がある。
(1) Since argon and hydrogen in the blow gas of the purified argon column can be effectively recovered, the amount of argon product can be increased and the amount of hydrogen added can be reduced.

例えば、粗アルゴン塔から供給さnる粗アルゴンの量お
よび純度を1105ON’/H,97チAr、2チ02
1 1%Nz、精製アルゴン塔へ供給さnる脱酸素アル
ゴンガス中の水素濃度を1チ、精製アルゴン塔下部から
の製品液体アルゴン量を100ONrrI/Hとすると
、精製アルゴン塔頂部から放出さnる鷹ガスは4oNr
rl/Hで約50%Ar、  25 %H2,25%N
2(D(D組成となる。従って、この廃ガス中のアルゴ
ンおよび水素が回収できるため、アルゴン量で2ONr
r//H増加、水素添加量でl0NJ/H節約できるこ
とになる。
For example, if the amount and purity of crude argon supplied from the crude argon column is 1105ON'/H, 97mm Ar, 2mm
1 1% Nz, the hydrogen concentration in the deoxygenated argon gas supplied to the purified argon column is 1.0%, and the amount of product liquid argon from the bottom of the purified argon column is 100ONrrI/H, then the amount of hydrogen released from the top of the purified argon column is The hawk gas is 4oNr
Approximately 50% Ar, 25% H2, 25% N at rl/H
2(D(D composition). Therefore, since argon and hydrogen in this waste gas can be recovered, the amount of argon is 2ONr
By increasing r//H and adding hydrogen, 10NJ/H can be saved.

(2)従来吸着塔の再生は窒素ガスを再生加熱器で昇温
しており、これを真空ポンプで減圧再生することにより
、動力費の低減および窒素ガスの不要という効果がある
(2) Conventionally, adsorption towers are regenerated by raising the temperature of nitrogen gas with a regeneration heater, and by regenerating it under reduced pressure with a vacuum pump, it is effective to reduce power costs and eliminate the need for nitrogen gas.

例えば、液体アルゴン量1100ON’/Hのgt置の
場合、温度再生で吸着塔の切替周期を1日とすると、再
生加熱器容量90に冒、再生加熱器使用時間6Hrとな
るので。
For example, in the case of a gt system with a liquid argon amount of 1100 ON'/H, if the adsorption tower switching cycle is set to 1 day for temperature regeneration, the regeneration heater capacity will be 90 and the regeneration heater usage time will be 6 hours.

90X6−540にWH/day となる。90X6-540 WH/day becomes.

一方、減圧再生で吸着塔の切替周期を同じ(1日とする
と、真空ポンプ容量15にWl真空ポンプ稼働時間24
Hrとなるので、 15X24=360KWH/day となる。
On the other hand, in vacuum regeneration, if the adsorption tower switching period is the same (one day), the vacuum pump capacity is 15 and the Wl vacuum pump operating time is 24.
Hr, so 15X24=360KWH/day.

従って、  540−360=180KWH/dayの
電力量低減となる。
Therefore, the power consumption is reduced by 540-360=180KWH/day.

また、温度再生に必要な望素ガス100ONd/Hが、
減圧再生の場合不要となる。
In addition, the desired gas 100ONd/H required for temperature regeneration is
Not required for reduced pressure regeneration.

【図面の簡単な説明】[Brief explanation of the drawing]

if図は本発明の一実施例を示すアルゴン精製装置の系
統図、第2図は従来のアルゴン精製装置の系統図である
。 1・・・・・・粗アルゴン塔、2・・・・・・アルゴン
熱交換器。 3・・・・・・アルゴンブロワ−14・・・・・・パラ
ジウム触媒槽、5・・・・・・アルゴン冷却器、6・・
・・・・水滴分離器、7・・・・・・吸着塔、8・・・
・・・精製アルゴン塔、9・・・・・・再生加熱器、1
0・・・・・・真空ポンプ、11〜24・・・・・・導
管41図 第2rA
IF diagram is a system diagram of an argon purification apparatus showing an embodiment of the present invention, and FIG. 2 is a system diagram of a conventional argon purification apparatus. 1... Crude argon column, 2... Argon heat exchanger. 3... Argon blower 14... Palladium catalyst tank, 5... Argon cooler, 6...
... Water droplet separator, 7 ... Adsorption tower, 8 ...
... Purification argon column, 9 ... Regeneration heater, 1
0...Vacuum pump, 11-24...Conduit 41 Figure 2rA

Claims (1)

【特許請求の範囲】 1、粗アルゴンガスに水素を添加して触媒反応により酸
素分を除去し、水分および窒素分を吸着除去した後冷却
して精製アルゴン塔に供給し、該精製アルゴン塔頂部か
らの廃ガスを前記粗アルゴンガスに合流させることを特
徴とする精製アルゴン塔廃ガス中のアルゴン・水素を回
収するアルゴン精製方法。 2、減圧再生式吸着塔により水分および窒素分を吸着除
去する特許請求の範囲第1項記載の精製アルゴン塔廃ガ
ス中のアルゴン・水素を回収するアルゴン精製方法。
[Claims] 1. Hydrogen is added to crude argon gas, oxygen is removed by a catalytic reaction, moisture and nitrogen are adsorbed and removed, and then cooled and supplied to a purified argon column, and the top of the purified argon column is An argon purification method for recovering argon and hydrogen in purified argon tower waste gas, characterized in that waste gas from a purified argon tower is combined with the crude argon gas. 2. An argon purification method for recovering argon and hydrogen from purified argon tower waste gas as set forth in claim 1, wherein moisture and nitrogen are adsorbed and removed by a vacuum regeneration type adsorption tower.
JP62099800A 1987-04-24 1987-04-24 Argon purifying method recovering argon and hydrogen in purified argon tower waste gas Pending JPS63267878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099800A JPS63267878A (en) 1987-04-24 1987-04-24 Argon purifying method recovering argon and hydrogen in purified argon tower waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099800A JPS63267878A (en) 1987-04-24 1987-04-24 Argon purifying method recovering argon and hydrogen in purified argon tower waste gas

Publications (1)

Publication Number Publication Date
JPS63267878A true JPS63267878A (en) 1988-11-04

Family

ID=14256968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099800A Pending JPS63267878A (en) 1987-04-24 1987-04-24 Argon purifying method recovering argon and hydrogen in purified argon tower waste gas

Country Status (1)

Country Link
JP (1) JPS63267878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318492U (en) * 1989-06-27 1991-02-22
FR2675567A1 (en) * 1991-04-16 1992-10-23 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF ARGON.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384891A (en) * 1976-12-30 1978-07-26 Nippon Oxygen Co Ltd Method of recovering argon
JPS5461092A (en) * 1977-10-24 1979-05-17 Hokusan Kk Argon purification method
JPS55105177A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Method of controlling argon refining equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384891A (en) * 1976-12-30 1978-07-26 Nippon Oxygen Co Ltd Method of recovering argon
JPS5461092A (en) * 1977-10-24 1979-05-17 Hokusan Kk Argon purification method
JPS55105177A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Method of controlling argon refining equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318492U (en) * 1989-06-27 1991-02-22
FR2675567A1 (en) * 1991-04-16 1992-10-23 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF ARGON.

Similar Documents

Publication Publication Date Title
JP4519954B2 (en) Highly clean dry air and method and apparatus for producing dry air
KR960002190B1 (en) Process for the purification of the inert gases
JP3279585B2 (en) Method for producing purified air
TW453974B (en) Method and apparatus for purification of argon
CN105749699A (en) Full-temperature-range pressure swing adsorption gas separation, refinement and purification method
CN107789949A (en) A kind of gas separating method of negative pressure pressure-variable adsorption
JP2011021017A (en) Method for removal of solvent contained in acetylene and apparatus for carrying out the method
JPH0578108A (en) Process and apparatus for purifying argon
US5783162A (en) Argon purification process
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH06234511A (en) Method and apparatus for purification using compression heat
JP3815445B2 (en) Hydrogen gas purification apparatus and purification method
KR20010070022A (en) Nitrogen system for regenerating chemical solvent
CN211513994U (en) Carbon dioxide acid gas purification system containing impurities
JPS63267878A (en) Argon purifying method recovering argon and hydrogen in purified argon tower waste gas
TW565468B (en) Method and device for recovering hydrocarbon vapor
CN100384512C (en) System unit for desorbing carbon dioxide from methanol
KR940009650A (en) Method and apparatus for producing ultra high purity nitrogen under pressure
JPH0463993B2 (en)
JP3325805B2 (en) Air separation method and air separation device
JP3111530B2 (en) Carbon dioxide conversion method
JPH05262506A (en) Production of argon and its apparatus
JPH11221420A (en) Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JPS6129768B2 (en)