JPH0744102B2 - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH0744102B2
JPH0744102B2 JP62178915A JP17891587A JPH0744102B2 JP H0744102 B2 JPH0744102 B2 JP H0744102B2 JP 62178915 A JP62178915 A JP 62178915A JP 17891587 A JP17891587 A JP 17891587A JP H0744102 B2 JPH0744102 B2 JP H0744102B2
Authority
JP
Japan
Prior art keywords
superconducting magnet
superconducting
main
sub
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62178915A
Other languages
Japanese (ja)
Other versions
JPS6423510A (en
Inventor
邦茂 黒田
秀樹 河野
剛 宮島
美樹 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62178915A priority Critical patent/JPH0744102B2/en
Publication of JPS6423510A publication Critical patent/JPS6423510A/en
Publication of JPH0744102B2 publication Critical patent/JPH0744102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気的に結合せる複数の超電導磁石からなる超
電導磁石装置に関する。
The present invention relates to a superconducting magnet device including a plurality of magnetically coupled superconducting magnets.

〔従来の技術〕[Conventional technology]

従来の装置を第2図に示し、その構成と励磁方法を説明
する。超電導磁石装置1は1個の主超電導磁石2と2個
の従超電導磁石3と3′からなり、主と従の超電導磁石
には夫々励磁電源4と4′が接続されている。従超電導
磁石3とと3′を直列に励磁する場合と、独立にもう一
台の励磁電源を使用して励磁する場合が考えられるが、
ここでは前者の方法について述べる。主超電導磁石2の
内部、または外部周辺に所望の磁界を発生するために、
従超電導磁石3と3′の助けをかりられるよう構成配置
されている。例えば、主超電導磁石2の中心部近辺で磁
界分布の均一度を向上させるためには、従超電導磁石3
と3′を、予め計算で求めた寸法,配置すべき位置、励
磁電流値に従つて設置し励磁すればよい。また、主超電
導磁石2の外周部の漏洩磁界を低減させるためには、従
超電導磁石3と3′を、主超電導磁石2の発生磁界と逆
向きの磁界を発生するよう、予め設計された通りに配置
し励磁すればよい。
A conventional device is shown in FIG. 2, and its configuration and excitation method will be described. The superconducting magnet device 1 comprises one main superconducting magnet 2 and two subsidiary superconducting magnets 3 and 3 ', and excitation power sources 4 and 4'are connected to the main and subsidiary superconducting magnets, respectively. It is possible to excite the sub-superconducting magnets 3 and 3'in series or to excite them independently by using another exciting power source.
Here, the former method will be described. In order to generate a desired magnetic field inside or outside the main superconducting magnet 2,
The auxiliary superconducting magnets 3 and 3'are constructed and arranged so that they can be assisted. For example, in order to improve the uniformity of the magnetic field distribution near the center of the main superconducting magnet 2, the sub-superconducting magnet 3
And 3'may be installed and excited according to the dimensions, positions to be arranged, and exciting current values calculated in advance. Further, in order to reduce the leakage magnetic field at the outer peripheral portion of the main superconducting magnet 2, the sub-superconducting magnets 3 and 3 ′ are designed in advance so as to generate a magnetic field in the opposite direction to the magnetic field generated by the main superconducting magnet 2. It can be placed at and excited.

特に、後者のような目的で従超電導磁石3と3′を利用
する場合には、その励磁電源4′を除外しうる。すなわ
ち、超電導の特性(零抵抗と支磁性)を利用すれば十分
その目的を達成することができる。
In particular, when the secondary superconducting magnets 3 and 3'are used for the latter purpose, the exciting power source 4'can be omitted. That is, if the characteristics of superconductivity (zero resistance and magnetic susceptibility) are used, the purpose can be sufficiently achieved.

尚、上記のような超電導磁石装置は、例えば特開昭61−
125109号公報等に開示されている。
The superconducting magnet device as described above is disclosed in, for example, Japanese Patent Laid-Open No. 61-
No. 125109 is disclosed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は従となる磁石を超電導磁石としながら
も、その特性(零抵抗と支磁性)を十分活用することな
く使用されてきた。使用目的に応じてその励磁電源を省
略しうる可能性がある。
The above-mentioned conventional technique has been used without using the characteristics (zero resistance and magnetic susceptibility) of the superconducting magnet as a subordinate magnet, while making full use of its characteristics. There is a possibility that the excitation power supply can be omitted depending on the purpose of use.

本発明の目的は、超電導磁石のもつ超電導特性を十分に
利用し、より簡単で、より経済性のある超電導磁石装置
を提供することにある。
An object of the present invention is to provide a superconducting magnet device which makes full use of the superconducting characteristics of the superconducting magnet and is simpler and more economical.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、従超電導磁石3と3′を超
電導閉回路で構成し、かつ、従超電導磁石3と3′に、
それらが超電導状態、または常電導状態に切りかえられ
るような手段を附加した。従超電導磁石3と3′が超電
導線材で巻線された場合は、その口出し線を超電導体ど
うし零抵抗になるよう接続し、また従超電導磁石3と3
が1ターンのリング状である場合は、超電導導材料でで
きた閉路状の焼結体とか鍛造体(または鋳造体)であつ
てもよい。
In order to achieve the above object, the sub-superconducting magnets 3 and 3'are composed of a superconducting closed circuit, and the sub-superconducting magnets 3 and 3'are
We added a means to switch them to superconducting state or normal conducting state. When the superconducting magnets 3 and 3'are wound with a superconducting wire, the lead wires are connected so that the superconductors have zero resistance.
In the case of a one-turn ring shape, it may be a closed-circuit sintered body made of a superconducting material or a forged body (or a cast body).

〔作用〕[Action]

従超電導磁石3と3′は主超電導磁石2と磁気的に結合
しうることが必要で、閉路状の従超電導磁石3と3′
は、主超電導磁石の磁界が印加されたとき、それらが超
電導状態のとき、その印加磁界を打ち消すように電流を
誘起し(支磁性)、常電導状態のときは印加磁界を透過
させ、その後超電導状態に戻し、主超電導磁石2の磁界
を零にすれば、透過した磁束を永久的に捕獲する(零抵
抗)。上記のような特性を利用することによつて本発明
を具現することができる。
The sub superconducting magnets 3 and 3'need to be magnetically coupled to the main superconducting magnet 2, and the closed superconducting magnets 3 and 3 '
When the magnetic field of the main superconducting magnet is applied, when they are in the superconducting state, it induces a current so as to cancel the applied magnetic field (support magnetism), and in the normal conducting state, the applied magnetic field is transmitted, and then the superconducting By returning to the state and setting the magnetic field of the main superconducting magnet 2 to zero, the transmitted magnetic flux is permanently captured (zero resistance). The present invention can be embodied by utilizing the above characteristics.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図に従つて説明する。該図
の如く、本実施例では主超電導磁石2の両側対称位置
に、予め設計された通りの閉路状(無接続か、接続個所
を有していても零抵抗になるよう接続される)の従超電
導体を設置する。主超電導磁石2にはそれを励磁するた
めの電源4が接続され、従超電導磁石3と3′には、そ
れらを超電導状態または常電導状態に切り替えられる手
段(以下、ヒータ)5と5′が附属されている。
An embodiment of the present invention will be described below with reference to FIG. As shown in the figure, in the present embodiment, the main superconducting magnet 2 is symmetrically positioned on both sides in a closed circuit shape (not connected or connected so as to have zero resistance even if there is a connection point) as previously designed. Install a secondary superconductor. A power supply 4 for exciting it is connected to the main superconducting magnet 2, and means (hereinafter, heaters) 5 and 5'for switching them to a superconducting state or a normal conducting state are connected to the subsuperconducting magnets 3 and 3 '. It is attached.

上記構成において、従超電導磁石3と3′をヒータ5と
5′で加熱し、常電導状態に保持したまま、主超電導磁
石2を所定の磁界を達するまで励磁する。ひきつづきヒ
ータ5と5′を切つて従超電導磁石3と3′を超電導状
態に戻し、しかる後主超電導磁石2を減磁し、電源4を
断にする。このとき従超電導磁石3と3′には主超電導
磁石2の漏洩磁界が捕獲されたままになつている。この
状態で電源4の極性を反転し、主超電導磁石2を所定の
磁界に達するまで励磁すれば、従超電導磁石3と3′に
は反磁性電流が誘起され、既に捕獲した磁界は更に強め
られる。この時、主超電導磁石2と従超電導磁石3と
3′からなる超電導磁石装置1全体の作る磁界分布は設
計値通り一義的に再現され、主超電導磁石2の外周部の
磁界は従超電導磁石3と3′の支磁界によつて弱めら
れ、目的である漏洩磁界を低減することができる。
In the above structure, the sub-superconducting magnets 3 and 3'are heated by the heaters 5 and 5 ', and the main superconducting magnet 2 is excited until a predetermined magnetic field is reached while maintaining the normal conducting state. Subsequently, the heaters 5 and 5'are turned off to return the sub-superconducting magnets 3 and 3'to the superconducting state, after which the main superconducting magnet 2 is demagnetized and the power supply 4 is turned off. At this time, the leakage magnetic field of the main superconducting magnet 2 is still trapped in the subsuperconducting magnets 3 and 3 '. If the polarity of the power source 4 is reversed in this state and the main superconducting magnet 2 is excited until it reaches a predetermined magnetic field, a diamagnetic current is induced in the subsuperconducting magnets 3 and 3 ', and the already captured magnetic field is further strengthened. . At this time, the magnetic field distribution created by the entire superconducting magnet device 1 including the main superconducting magnet 2 and the subsuperconducting magnets 3 and 3'is uniquely reproduced according to the design value, and the magnetic field in the outer peripheral portion of the main superconducting magnet 2 is reproduced. And the magnetic field of 3'are weakened and the target leakage magnetic field can be reduced.

本実施例では、対称性のよい超電導磁石装置を例にとつ
たが、当然目的に応じて、非対称配置であつてもよい
し、従超電導磁石3と3′の巻線、形状,寸法などが異
なつていてもよい。超電導状態と常電導状態の切り替え
手段もヒータに限定する必要はない。また主超電導磁石
と従超電導磁石を特定する必要もなく、第1図において
互いに名称を逆にしてもよいことはいうまでもない。更
に従超電導磁石を直列に接続することも当然同業者が容
易に着想しうるものである。
In the present embodiment, the superconducting magnet device having good symmetry is taken as an example, but naturally, depending on the purpose, the superconducting magnet device may have an asymmetrical arrangement, and the windings, shapes, dimensions, etc. of the sub-superconducting magnets 3 and 3'may be different. It may be different. The means for switching between the superconducting state and the normal conducting state need not be limited to the heater. Needless to say, it is not necessary to specify the main superconducting magnet and the subsuperconducting magnet, and the names may be reversed in FIG. Further, it is naturally conceivable for those skilled in the art to connect the secondary superconducting magnets in series.

〔発明の効果〕〔The invention's effect〕

本発明によれば、超電導の特性を十分に活用し、少なく
とも従超電導磁石の励磁電源とパワリード(図示せず、
電流フイダー)が不要となり、超電導磁石装置の簡単化
に寄与するとともに、コスト低減にも効果がある。特
に、現在注目を浴びている超電導MRI(核磁気共鳴画像
診断)装置に本発明を適用すれば、励磁電源が不要な、
自動的に磁気遮蔽可能なアクテイブ・シールドコイルを
提供することができる。更に、従超電導磁石を、最近発
見されつつある高温超電導体(焼結体)で作製するな
ら、接続の問題が解消されるばかりでなく、使用冷媒も
従来の高価な液体ヘリウムから安価な液体窒素に置換が
可能であり、使用量,消費量とも低減され、製作コスト
と運転コストも消減され、安価で、構成の簡単化,操作
性の良い装置とすることができ、2次的効果も期待され
る。
According to the present invention, the characteristics of superconductivity are fully utilized, and at least the excitation power source and power lead of the sub-superconducting magnet (not shown,
This eliminates the need for a current feeder, contributes to simplification of the superconducting magnet device, and is effective in cost reduction. In particular, when the present invention is applied to a superconducting MRI (Nuclear Magnetic Resonance Imaging) device which is currently attracting attention, an exciting power supply is unnecessary.
It is possible to provide an active shield coil capable of automatically magnetically shielding. Furthermore, if a sub-superconducting magnet is made of a recently discovered high-temperature superconductor (sintered body), not only the connection problem will be solved, but also the refrigerant used will change from conventional expensive liquid helium to inexpensive liquid nitrogen. Can be replaced, and the amount of use and consumption can be reduced, the manufacturing cost and the operating cost can be reduced, and the device can be inexpensive, have a simple structure, and have good operability, and secondary effects are expected. To be done.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の超電導磁石装置の一実施例を示す基本
構成図、第2図は従来例の構成を示す図である。 1……超電導磁石装置、2……主超電導磁石、3,3′…
…従超電導磁石、4……主超電導磁石2の励磁電源、
4′……従超電導磁石3と3′の励磁電源、5,5′……
ヒーター。
FIG. 1 is a basic configuration diagram showing an embodiment of the superconducting magnet device of the present invention, and FIG. 2 is a diagram showing the configuration of a conventional example. 1 ... Superconducting magnet device, 2 ... Main superconducting magnet, 3, 3 '...
… Sub-superconducting magnet, 4 …… Excitation power supply for main superconducting magnet 2,
4 '... excitation power source for the secondary superconducting magnets 3 and 3', 5, 5 '...
heater.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁界発生を目的とした主超電導磁石と磁気
的に結合した従超電導磁石からなる超電導磁石装置にお
いて、前記従超電導磁石は永久電流を流しうるような閉
路状をなし、かつ、超電導状態、または常電導状態を保
持できるような手段を有し、前記主超電導磁石との磁気
的結合によつて励磁されることを特徴とする超電導磁石
装置。
1. A superconducting magnet device comprising a sub-superconducting magnet magnetically coupled to a main superconducting magnet for the purpose of generating a magnetic field, wherein the sub-superconducting magnet has a closed circuit shape through which a permanent current can flow. A superconducting magnet device having means capable of maintaining a state or a normal conducting state and being excited by magnetic coupling with the main superconducting magnet.
【請求項2】特許請求の範囲第1項記載の超電導磁石装
置において、従超電導磁石を常電導状態に保つたまま主
超電導磁石を励磁し、従超電導磁石を超電導状態に戻
し、主超電導磁石を減磁し、ひきつづき主超電導磁石を
以前と逆極性の方向に励磁して、従超電導磁石に所望の
磁界を補獲させるようにしたことを特徴とする超電導磁
石装置。
2. The superconducting magnet device according to claim 1, wherein the main superconducting magnet is excited while keeping the sub-superconducting magnet in the normal conducting state, and the sub-superconducting magnet is returned to the superconducting state. A superconducting magnet device, characterized in that it is demagnetized and, subsequently, the main superconducting magnet is excited in the direction of the opposite polarity to that of the former so that the slave superconducting magnet can catch a desired magnetic field.
JP62178915A 1987-07-20 1987-07-20 Superconducting magnet device Expired - Lifetime JPH0744102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62178915A JPH0744102B2 (en) 1987-07-20 1987-07-20 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62178915A JPH0744102B2 (en) 1987-07-20 1987-07-20 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPS6423510A JPS6423510A (en) 1989-01-26
JPH0744102B2 true JPH0744102B2 (en) 1995-05-15

Family

ID=16056883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62178915A Expired - Lifetime JPH0744102B2 (en) 1987-07-20 1987-07-20 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH0744102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623317Y2 (en) * 1989-05-17 1994-06-22 英明 村井 Baseball glove inner core bag and baseball glove

Also Published As

Publication number Publication date
JPS6423510A (en) 1989-01-26

Similar Documents

Publication Publication Date Title
EP0964263A3 (en) Open supercondutive magnet having shielding
JP2907012B2 (en) Superconducting magnet device
JPH1057342A (en) Magnetic resonance device and method
JPS63284805A (en) Superconducting magnet device
EP0860707A3 (en) Improvements in or relating to MRI magnets
US5825187A (en) Magnetic circuit system with opposite permanent magnets
JPH0744102B2 (en) Superconducting magnet device
JPH04105307A (en) Superconducting magnet apparatus
JPS61159950A (en) Magnet for mri
JPH10146326A (en) Magnetic field generator for mri
JP3150507B2 (en) Superconducting magnet device
JP2557905B2 (en) Magnetic field generator
JPH0738333B2 (en) Magnetic field generator
JP3598237B2 (en) Superconducting magnet device and method of magnetizing superconductor
JP2600195B2 (en) Method of flowing permanent current to superconducting coil and superconducting magnet device
JP2504083B2 (en) Highly uniform magnetic field generator
JPH07211546A (en) Apparatus and method for magnetizing and demagnetizing high-temperature superconductive bulk magnet
JPS6050442A (en) Magnetic-field generator for nuclear-magnetic- resonance imaging apparatus
JPH01246805A (en) Superconducting magnet apparatus
JP2003022919A (en) Magnetic element
JPH0510335Y2 (en)
JPS6149403A (en) Superconductive magnet
JPH0530141B2 (en)
JPH04277606A (en) Superconductive magnet
JPS592555A (en) Permanent magnet field dc machine