JP2600195B2 - Method of flowing permanent current to superconducting coil and superconducting magnet device - Google Patents

Method of flowing permanent current to superconducting coil and superconducting magnet device

Info

Publication number
JP2600195B2
JP2600195B2 JP62240189A JP24018987A JP2600195B2 JP 2600195 B2 JP2600195 B2 JP 2600195B2 JP 62240189 A JP62240189 A JP 62240189A JP 24018987 A JP24018987 A JP 24018987A JP 2600195 B2 JP2600195 B2 JP 2600195B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
coil
magnetic flux
magnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62240189A
Other languages
Japanese (ja)
Other versions
JPS6481304A (en
Inventor
晟 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62240189A priority Critical patent/JP2600195B2/en
Publication of JPS6481304A publication Critical patent/JPS6481304A/en
Application granted granted Critical
Publication of JP2600195B2 publication Critical patent/JP2600195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、超電導コイルに永久電流を流す方法、およ
び超電導コイルを用いた磁石装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method for applying a permanent current to a superconducting coil, and a magnet device using the superconducting coil.

<従来の技術> 超電導コイルに永久電流を流して得られる磁界を利用
した磁石、いわゆる超電導磁石は、従来、例えばMRI装
置への応用例をはじめとして、主として空芯型で、か
つ、細線を多数巻とした強磁界発生用に実用化されてい
る。
<Conventional technology> Magnets utilizing a magnetic field obtained by passing a permanent current through a superconducting coil, so-called superconducting magnets, have been conventionally used mainly in MRI apparatuses, and are mainly air-core type and have many thin wires. It has been put to practical use for generating a wound strong magnetic field.

このような用途に、近年常温超電導体の実現に向けて
着目されているセラミックス超電導体を用いる場合、細
線化が難しいため、小巻数として大電流を流すことが必
要となるが、臨界電流が現状では小さいため、実用化に
は到っていない。
When using ceramic superconductors, which have recently attracted attention for realizing room-temperature superconductors, for such applications, it is difficult to make them thinner, so it is necessary to pass a large current as a small number of turns. Then, because of its small size, it has not been put to practical use.

ところで、電磁力平衡型の電子天びんにおける電磁力
発生装置等の、精密測定の用途に使用する磁石は、あま
り大きな磁界は必要でなく、むしろ超電導磁石の作る磁
界の対温度安定性の方が重要である。従って、セラミッ
クス超電導体を単にリング状に形成し、その臨界電流未
満の永久電流を流し、ヨーク等の磁気回路を併用するこ
とによって数千ガウス程度の磁界が得られれば、この用
途に直ちに適用して有効な結果が得られるものと期待さ
れる。
By the way, a magnet used for precision measurement, such as an electromagnetic force generator for an electromagnetic force balance type electronic balance, does not require a very large magnetic field, but rather the stability of the magnetic field created by a superconducting magnet against temperature is more important. It is. Therefore, if a ceramic superconductor is simply formed in a ring shape, a permanent current less than its critical current is passed, and a magnetic field of about several thousand gauss is obtained by using a magnetic circuit such as a yoke, it is immediately applicable to this application. It is expected that effective results will be obtained.

ここで、超電導コイルに永久電流を流す方法、換言す
れば超電導磁石の着磁方法として、従来、第3図に示す
ような回路および方法が採用されている。すなわち、超
電導コイル31と超電導スイッチ32を備えた超電導体回路
部33に、直流電源34をスイッチ35および電流制限抵抗36
を介して接続する。また、必要に応じて抵抗37を並列に
挿入しておく。このような回路において、超電導スイッ
チ32を開いた状態でスイッチ35を閉じると、直流電源34
から電流制限抵抗36を通って超電導コイル31に電流が流
れる。その状態で超電導スイッチ32を閉じると、超電導
コイル31と超電導スイッチ32を含む閉じた超電導体回路
部33に永久電流が流れる。なお、抵抗37は万一超電導ス
イッチ32が開いたり、超電導状態が破れて磁気エネルギ
が放出されたときに高電圧が発生し、絶縁破壊や、焦損
の生じることを防止するためのもので、小容量のもので
は省略できる。また、超電導スイッチ32としては、機械
的に密着・離反させる方式や、磁界や温度によって超電
導状態と常電導状態とを選択することによって、ON・OF
Fする方式等が利用されている。
Here, a circuit and a method as shown in FIG. 3 have conventionally been adopted as a method of passing a permanent current to the superconducting coil, in other words, as a method of magnetizing the superconducting magnet. That is, a DC power supply 34 is connected to a superconductor circuit section 33 having a superconducting coil 31 and a superconducting switch 32 by a switch 35 and a current limiting resistor 36.
Connect through. Also, a resistor 37 is inserted in parallel as needed. In such a circuit, when the switch 35 is closed while the superconducting switch 32 is open, the DC power supply 34
, A current flows to the superconducting coil 31 through the current limiting resistor 36. When the superconducting switch 32 is closed in this state, a permanent current flows through the closed superconducting circuit section 33 including the superconducting coil 31 and the superconducting switch 32. The resistor 37 is used to prevent a high voltage from being generated when the superconducting switch 32 is opened or the superconducting state is broken and magnetic energy is released, thereby preventing dielectric breakdown and focal loss. It can be omitted for small capacity devices. The superconducting switch 32 can be turned ON / OFF by selecting a superconducting state and a normal conducting state by a method of mechanically contacting and separating from each other, and by selecting a superconducting state and a normal conducting state by a magnetic field and temperature.
The F method is used.

なお、実際の超電導磁石としては、開放された磁場空
間が必要な場合には、第4図に示すように複数個の超電
導コイル31a,31bをシリースに接続して共通の永久電流
iを流すこともある。
When an open magnetic field space is required as an actual superconducting magnet, a plurality of superconducting coils 31a and 31b are connected to a series as shown in FIG. There is also.

<発明が解決しようとする問題点> 前述したように、超電導セラミックス等を用いた超電
導磁石は、精密測定の分野において実現の可能性が高
く、かつ、極めて有効となり得るが、永久電流を流す方
法として上述した従来の方法を採用すると、超電導スイ
ッチと比較的大きな直流電源が必要となる。そのため、
超電導磁石としてユーザーに納めたものが、周囲温度の
上昇等によって一旦常電導状態になってしまい磁石とし
ての機能を失った場合、再び磁石の機能を持たせるこ
と、つまり再着磁が面倒であると同時に大きな費用を要
する欠点が予想される。
<Problems to be Solved by the Invention> As described above, a superconducting magnet using superconducting ceramics or the like is highly likely to be realized in the field of precision measurement and can be extremely effective. When the conventional method described above is adopted, a superconducting switch and a relatively large DC power supply are required. for that reason,
When a superconducting magnet is delivered to the user and once loses its function as a magnet due to a normal conduction state due to an increase in ambient temperature, etc., it is necessary to provide the function of the magnet again, that is, re-magnetization is troublesome. At the same time, disadvantages requiring large costs are expected.

本発明の目的は、超電導スイッチや大電流源等を必要
とすることなく、容易に超電導コイルに永久電流を流す
方法と、その方法を用いて容易に着磁・再着磁を行い得
る、電子天びん等に用いるに適した超電導磁石装置を提
供することにある。
An object of the present invention is to provide a method for easily passing a permanent current to a superconducting coil without the need for a superconducting switch or a large current source, and to easily magnetize and re-magnetize using the method. An object of the present invention is to provide a superconducting magnet device suitable for use in a balance or the like.

<問題点を解決するための手段> 第1の発明は超電導コイルに永久電流を流す方法の発
明であって、その構成を実施例に対応する第1図または
第2図を参照しつつ説明すると、超電導コイル1を加熱
し、もしくは磁界を加えることによって常電導状態にし
た後、この超電導コイル1の内方にその中心軸に沿う所
定の向きの磁束Bを形成し、その状態で超電導コイル1
を超電導状態に戻し、次に、上記の磁束Bを取り去るこ
とによって、特徴づけられる。
<Means for Solving the Problems> The first invention is an invention of a method of flowing a permanent current to a superconducting coil, and its configuration will be described with reference to FIG. 1 or FIG. 2 corresponding to the embodiment. After the superconducting coil 1 is brought into a normal conducting state by heating or applying a magnetic field, a magnetic flux B in a predetermined direction along the central axis is formed inside the superconducting coil 1, and the superconducting coil 1
Is returned to the superconducting state, and then the above-mentioned magnetic flux B is removed.

第2の発明は第1の発明の実施に直接使用する超電導
磁石装置であって、実施例に対応する第1図に示すよう
に、超電導コイル1と、その超電導コイル1に近接して
配設され、給電により超電導コイル1を加熱してその少
くとも一部を常電導状態にし得るビーム4と、超電導コ
イル1の内方にその中心軸に沿って配設された強磁性材
料製のポールピース2および超電導コイル1の外方を囲
むよう配設されたヨーク3からなる磁気回路と、超電導
コイル1と同軸上に巻回され、給電により上記の磁気回
路内に所定の向きの磁束を形成し得るコイル5を備えた
ことによって、特徴づけられる。
The second invention is a superconducting magnet device used directly for carrying out the first invention. As shown in FIG. 1 corresponding to the embodiment, a superconducting coil 1 and a superconducting coil 1 are arranged close to the superconducting coil 1. A beam 4 capable of heating the superconducting coil 1 by power supply to at least partially bring the superconducting coil 1 into a normal conducting state, and a pole piece made of a ferromagnetic material disposed inside the superconducting coil 1 along a central axis thereof. 2 and a magnetic circuit comprising a yoke 3 disposed so as to surround the outside of the superconducting coil 1, and wound coaxially with the superconducting coil 1 to form a magnetic flux in a predetermined direction in the magnetic circuit by power supply. It is characterized by having the coil 5 obtained.

<作用> ヒータ4への給電による加熱等により超電導コイル1
の少くとも一部を常電導状態として、コイル5に電流を
流すことにより、あるいは外部から着磁用磁石6a,6bで
超電導コイル1を挟み込むことにより、常電導状態にあ
る超電導コイル1の内方にその中心軸方向への磁束Bを
形成できる。次にヒータ4への給電を防止する等によっ
て超電導コイル1を超電導状態に戻し、磁束Bを取り去
ると、電磁誘導によって超電導コイル1に永久電流が流
れる。
<Operation> The superconducting coil 1 is heated by power supply to the heater 4 or the like.
At least a part of the superconducting coil 1 is in the normal conducting state by passing a current through the coil 5 or sandwiching the superconducting coil 1 from outside with the magnetizing magnets 6a and 6b. A magnetic flux B can be formed in the direction of the central axis. Next, when the superconducting coil 1 is returned to the superconducting state by preventing power supply to the heater 4 and the magnetic flux B is removed, a permanent current flows through the superconducting coil 1 by electromagnetic induction.

<実施例> 本発明の実施例を、以下、図面に基づいて説明する。<Example> An example of the present invention will be described below with reference to the drawings.

第1図は本発明実施例の構成を示す図で、(a)は中
央縦断面図、(b)はその超電導コイル1の平面図であ
る。
FIG. 1 is a view showing the configuration of an embodiment of the present invention, in which (a) is a longitudinal sectional view at the center and (b) is a plan view of the superconducting coil 1.

セラミックス等の超電導材料をリング状に焼成してな
る超電導コイル1の内方には、その中心部に強磁性材料
製のポールピース2が配設されており、これらは同じく
強磁性材料をカップ状に形成したヨーク3内に収容され
ている。ポールピース2の軸方向長さは超電導コイル1
の軸方向長さ(リング幅)よりも長く、超電導コイル1
よりも上方に突出しており、その突出部分には大径部2a
が形成されている。
Inside a superconducting coil 1 formed by firing a superconducting material such as ceramics in a ring shape, a pole piece 2 made of a ferromagnetic material is disposed at the center thereof. The yoke 3 is housed in the yoke 3. The axial length of the pole piece 2 is the superconducting coil 1
Longer than the axial length (ring width) of the superconducting coil 1
Larger than the large diameter portion 2a.
Are formed.

ヨーク3の内部には、超電導コイル1と同軸上に巻回
された常電導材料のコイル5が、超電導コイル1の内周
面とポールピース2の外周面との間に配設されてたい
る。また、第1図(b)に示すように、超電導コイル1
にはその一部にヒータ4が巻き付けられている。そし
て、このヒータ4とコイル5の両端は、それぞれ装置外
部に導出されており、それぞれ直流電源E1とスイッチ
S1,または直流電源E2とスイッチS2に接続することがで
きる。
Inside the yoke 3, a coil 5 of a normal conducting material wound coaxially with the superconducting coil 1 is disposed between the inner peripheral surface of the superconducting coil 1 and the outer peripheral surface of the pole piece 2. . In addition, as shown in FIG.
Has a heater 4 wound therearound. Both ends of the heater 4 and the coil 5 are respectively led out of the apparatus, and are connected to a DC power source E 1 and a switch, respectively.
S 1 , or DC power supply E 2 and switch S 2 .

以上の構成において、超電導コイル1には次の手順に
よって永久電流を流すことができる。
In the above configuration, a permanent current can flow through the superconducting coil 1 in the following procedure.

第1図(a),(b)に示すように、ヒータ4とコイ
ル5にはそれぞれスイッチS1またはS2を介して直流電源
E1またはE2を接続する。
1 (a), (b), the direct current through the heater 4 and the switches S 1 or S 2 in the coil 5 Power
Connecting E 1 or E 2.

まず、スイッチS1を閉じてヒータ4に電流を流して加
熱し、超電導コイル1の少くとも一部を通常の使用状態
より昇温させて常電導状態とする。次に、その状態でス
イッチS2を閉じ、コイル5に電流を流す。この電流は磁
界を形成し、ポールピース2とヨーク3で作られた磁気
回路を通る磁束が形成される。なお、このとき、超電導
コイル1の一部だけでも常電導状態となっておれば、超
電導コイル1の内方に磁束Bが入り得る。
First, heated by applying a current to the heater 4 by closing the switch S 1, at least a portion of the superconducting coil 1 was allowed to warm from normal use and normal conducting state. Then, closing the switch S 2 in this state, an electric current is applied to the coil 5. This current forms a magnetic field, which forms a magnetic flux through a magnetic circuit formed by the pole piece 2 and the yoke 3. At this time, if only a part of the superconducting coil 1 is in the normal conducting state, the magnetic flux B can enter the inside of the superconducting coil 1.

磁束Bが形成されている状態でスイッチS1を開いてヒ
ータ4への給電を停止し、超電導コイル1を通常の使用
温度に戻すことによって、この超電導コイル1を超電導
状態に戻す。
To stop power supply to the heater 4 to open the switch S 1 in a state in which the magnetic flux B is formed, by returning the superconducting coil 1 to the normal operating temperature, return the superconducting coil 1 in the superconducting state.

次にスイッチS2を開き、磁束Bを取り去る。ここで、
磁束Bが減少すると、電磁誘導により超電導コイル1に
はその減少を妨げる方向に起電力が発生するが、超電導
状態にある超電導コイル1は抵抗0であるから、結局、
スイッチS2を開く前に形成されていた磁束Bと同一の磁
束を発生するのに必要な電流が超電導コイル1に流れる
ことになる。すなわち、超電導コイル1に永久電流が流
れ、以後、この超電導コイル1に流れる永久電流による
磁束が、ポールピース2とヨーク3によって構成された
磁気回路内を磁路として形成されることになる。この磁
界強さは、永久電流の大きさによって決定され、温度依
存性の極めて少ない磁石が得られ、電子天びん等の精密
測定用途に適した磁石となる。
Then open the switch S 2, remove the magnetic flux B. here,
When the magnetic flux B decreases, an electromotive force is generated in the superconducting coil 1 by electromagnetic induction in a direction that hinders the decrease. However, since the superconducting coil 1 in the superconducting state has no resistance, eventually,
Current required to generate the same magnetic flux and the magnetic flux B which had been formed before opening the switch S 2 flows to the superconducting coil 1. That is, a permanent current flows through the superconducting coil 1, and thereafter, a magnetic flux due to the permanent current flowing through the superconducting coil 1 is formed as a magnetic path in a magnetic circuit formed by the pole piece 2 and the yoke 3. The strength of this magnetic field is determined by the magnitude of the permanent current, and a magnet with extremely low temperature dependence can be obtained, making it a magnet suitable for precision measurement applications such as electronic balances.

ここで、コイル5は銅線等の材料でよいから、細線を
多数巻くことができ、従って比較的小さな電流を流すこ
とによって大きな磁界を形成でき、超電導コイル1には
その磁界と等しい磁界を形成する永久電流が流れるか
ら、磁気回路の存在と相俟って直流電源E2は小規模のも
のでよい。
Here, since the coil 5 may be made of a material such as a copper wire, a large number of fine wires can be wound. Therefore, a large magnetic field can be formed by flowing a relatively small current, and a magnetic field equal to the magnetic field is formed in the superconducting coil 1. since the permanent current flows, the DC power source E 2 I present coupled with the magnetic circuit may be of small scale.

なお、磁束Bを形成するときに、ヨーク3の上方開口
部を強磁性体のショート片等で覆えば、磁気抵抗がより
減少して着磁電流をより小さくできる。
When the magnetic flux B is formed, if the upper opening of the yoke 3 is covered with a ferromagnetic short piece or the like, the magnetic resistance is further reduced and the magnetizing current can be further reduced.

第2図は第1の発明の他の実施例の説明図である。こ
の例では、先の例が磁束Bをコイル5に電流を流すこと
によって形成しているのに対し、外部から別途着磁用磁
石6a,6bで超電導コイル1を挟み込むことによって磁束
を形成する点で相違している。すなわち、超電導コイル
1の少くとも一部を常電導状態とした後、着磁用磁石6
a,6bを互いに反対の磁極側が対向するように超電導コイ
ル1を挟み込むことによって、磁束Bを形成する。な
お、他の手順は同様で、磁束Bを取り去るには磁石6a,6
bを除去すればよい。
FIG. 2 is an explanatory view of another embodiment of the first invention. In this example, the magnetic flux B is formed by applying a current to the coil 5 in the previous example, whereas the magnetic flux B is formed by sandwiching the superconducting coil 1 between the magnetizing magnets 6a and 6b separately from the outside. Is different. That is, after at least part of the superconducting coil 1 is brought into a normal conducting state, the magnetizing magnet 6
A magnetic flux B is formed by sandwiching the superconducting coil 1 so that the magnetic poles a and 6b face each other. The other procedure is the same. To remove the magnetic flux B, the magnets 6a, 6
b may be removed.

なお、第1の発明において超電導コイル1の少なくと
も一部を常電導状態にする方法として、加熱により臨界
温度を超えさせる以外に、臨界点以上の磁界を加える方
法を採用することもできる。
In the first invention, as a method of bringing at least a part of the superconducting coil 1 into a normal conducting state, a method of applying a magnetic field at a critical point or higher may be adopted in addition to a method of exceeding a critical temperature by heating.

また、第2の発明の超電導磁石装置を電子天びん等の
電磁力発生装置に適用するには、例えば第1図(a)に
おいて、ポールピース2の大径部2aの外周面とヨーク3
の内周面で形成されたリング状の静磁場空間内に、皿等
に係合して可動で、かつ、サーボ機構等によって制御電
流が流されるフォースコイルを配設し、皿等に作用する
荷重とつり合う電磁力を発生するに要したフォースコイ
ル電流から、荷重を測定するよう構成すればよい。ただ
し、磁気回路の形状は第1図(a)に示すものに限定さ
れることなく、永久磁石を用いた公知の電磁力発生装置
に用いられているような種々の応用例を適用し得ること
は云うまでもない。
In order to apply the superconducting magnet device of the second invention to an electromagnetic force generator such as an electronic balance, for example, in FIG. 1 (a), the outer peripheral surface of the large diameter portion 2a of the pole piece 2 and the yoke 3
A force coil, which is movable in engagement with a plate or the like and in which a control current is passed by a servo mechanism or the like, is disposed in a ring-shaped static magnetic field space formed on the inner peripheral surface of the plate, and acts on the plate or the like. What is necessary is just to comprise so that a load may be measured from the force coil electric current required to generate | occur | produce the electromagnetic force balanced with the load. However, the shape of the magnetic circuit is not limited to that shown in FIG. 1 (a), and various applications such as those used in known electromagnetic force generators using permanent magnets can be applied. Needless to say.

更に、超電導磁石装置を構成する超電導コイル1の材
料としては、セラミックス等の焼成体のほか、任意のも
のを使用することができるが、電子天びん等の精密測定
用としては1巻きでも充分に必要とする磁界が得られる
ことから、特にセラミックス超電導体を用いるのに適し
ている。
Further, as the material of the superconducting coil 1 constituting the superconducting magnet device, any material can be used in addition to a fired body of ceramics or the like, but one winding is sufficient for precision measurement of an electronic balance or the like. Therefore, it is particularly suitable for using a ceramic superconductor.

<発明の効果> 以上説明したように、本発明によれば、超電導コイル
に、電流源から直接電流を流すことなく永久電流を流す
ことができるので、従来のように超電導スイッチや大電
流源を用意することなく、容易に超電導磁石が得られ
る。また、本発明の超電導磁石装置によると、ヒータ4
の加熱用の電源E1と、コイル5に電流を流すための小さ
な直流電源E2を用意するだけで随時に着磁できるので、
特に常温超電導材料を用いた場合に予想される、アクシ
デントによる消磁時に対し容易かつ安価に再着磁が可能
となり、実用化に対してその効果は大きい。この超電導
磁石装置を電子天びん等の精密測定の用途に用いると
き、磁界強さの温度依存性が極少で、かつ、ポールピー
スとヨークの存在による磁気洩れの少なさから、極めて
高精度の測定結果が得られる。
<Effects of the Invention> As described above, according to the present invention, a permanent current can flow through a superconducting coil without a current flowing directly from a current source. A superconducting magnet can be easily obtained without preparing. Further, according to the superconducting magnet device of the present invention, the heater 4
A power supply E 1 for heating, it is possible magnetized at any time by simply providing a small DC power source E 2 for supplying a current to the coil 5,
In particular, remagnetization can be easily and inexpensively performed at the time of demagnetization due to an accident, which is expected when a room-temperature superconducting material is used, and the effect is large for practical use. When this superconducting magnet device is used for precision measurement applications such as electronic balances, extremely high-precision measurement results are obtained because the temperature dependence of the magnetic field strength is minimal and the magnetic leakage due to the presence of the pole piece and yoke is small. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例の構成図、 第2図は本発明方法の他の実施例の説明図、 第3図は従来の超電導コイルに永久電流を流す方法の説
明図、 第4図は従来の超電導磁石の例を示す図である。 1……超電導コイル 2……ポールピース 3……ヨーク 4……ヒータ 5……コイル
FIG. 1 is a structural diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of another embodiment of the method of the present invention, FIG. 3 is an explanatory diagram of a conventional method of passing a permanent current to a superconducting coil, and FIG. It is a figure showing the example of the conventional superconducting magnet. 1 ... superconducting coil 2 ... pole piece 3 ... yoke 4 ... heater 5 ... coil

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導コイルを加熱し、もしくは磁界を加
えることにより、その少くとも一部を常電導状態にした
後、上記超電導コイルの内方にその中心軸に沿う所定の
向きの磁束を形成し、その状態で上記超電導コイルを超
電導状態に戻し、次に上記磁束を取り去ることを特徴と
する、超電導コイルに永久電流を流す方法。
A superconducting coil is heated or a magnetic field is applied so that at least a part of the superconducting coil is in a normal conducting state, and a magnetic flux in a predetermined direction along a central axis is formed inside the superconducting coil. And returning the superconducting coil to the superconducting state in that state, and then removing the magnetic flux.
【請求項2】超電導コイルと、その超電導コイルに近接
して配設され、給電により上記超電導コイルを加熱して
その少くとも一部を常電導状態にし得るヒータと、上記
超電導コイルの内方にその中心軸に沿って配設された強
磁性材料製のポールピースおよび上記超電導コイルの外
方を囲むよう配設された強磁性材料製のヨークとからな
る磁気回路と、上記超電導コイルと同軸上に巻回され、
給電により上記磁気回路内に所定の向きの磁束を形成し
得るコイルを備えてなる、超電導磁石装置。
2. A superconducting coil, a heater disposed in close proximity to the superconducting coil, and capable of heating the superconducting coil by power supply to at least partially attain a normal conducting state; A magnetic circuit composed of a ferromagnetic material pole piece disposed along the center axis thereof and a ferromagnetic material yoke disposed so as to surround the outside of the superconducting coil; Wound around
A superconducting magnet device comprising a coil capable of forming a magnetic flux in a predetermined direction in the magnetic circuit by feeding power.
【請求項3】上記超電導コイルが常温超電導材料で形成
されていることを特徴とする、特許請求の範囲第2項記
載の超電導磁石装置。
3. The superconducting magnet device according to claim 2, wherein said superconducting coil is formed of a normal temperature superconducting material.
【請求項4】上記超電導コイルがリング状の焼成体であ
ることを特徴とする、特許請求の範囲第2項または第3
項記載の超電導磁石装置。
4. The superconducting coil according to claim 2, wherein said superconducting coil is a ring-shaped fired body.
The superconducting magnet device according to the paragraph.
JP62240189A 1987-09-24 1987-09-24 Method of flowing permanent current to superconducting coil and superconducting magnet device Expired - Lifetime JP2600195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62240189A JP2600195B2 (en) 1987-09-24 1987-09-24 Method of flowing permanent current to superconducting coil and superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62240189A JP2600195B2 (en) 1987-09-24 1987-09-24 Method of flowing permanent current to superconducting coil and superconducting magnet device

Publications (2)

Publication Number Publication Date
JPS6481304A JPS6481304A (en) 1989-03-27
JP2600195B2 true JP2600195B2 (en) 1997-04-16

Family

ID=17055787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62240189A Expired - Lifetime JP2600195B2 (en) 1987-09-24 1987-09-24 Method of flowing permanent current to superconducting coil and superconducting magnet device

Country Status (1)

Country Link
JP (1) JP2600195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705861B2 (en) * 1996-03-21 2005-10-12 株式会社日立メディコ Superconducting magnet device and method for adjusting magnetization thereof
US5675305A (en) * 1996-07-17 1997-10-07 Picker International, Inc. Multiple driven C magnet

Also Published As

Publication number Publication date
JPS6481304A (en) 1989-03-27

Similar Documents

Publication Publication Date Title
KR20090018914A (en) Electricity generating apparatus utilizing a single magnetic flux path
CA2109700A1 (en) Electromagnetic actuator
GB2299216A (en) Polyphase ring core transformer and electrical power converter arrangement
JPS60240111A (en) Transformer
GB1073960A (en) Improvements in or relating to the inducing of current flow in superconducting circuits
JP2600195B2 (en) Method of flowing permanent current to superconducting coil and superconducting magnet device
US3359394A (en) Persistent current switch
GB1131507A (en) Electromagnetic device
CA2424472A1 (en) Transformer probe
US5710531A (en) Static field converter
Schneider et al. A classroom jumping ring
US3109985A (en) Magnetoresistive elements and devices
JP2522323B2 (en) Electromagnetic force generator
US10629367B2 (en) Permanent magnet induction generator (PMIG)
JPS61108110A (en) Electromagnetic device
US10547218B2 (en) Variable magnetic monopole field electro-magnet and inductor
JPS6322598Y2 (en)
JPS6058562B2 (en) Method for adjusting magnetic field distribution of superconducting magnets
JPS61285704A (en) Transformer
JPS6195502A (en) Superconducting magnet
RU2070765C1 (en) Method and device for electrical potential generation
JPH11186072A (en) Transformation ratio continuous variable type transformer
SU811506A1 (en) V.e.perov,s resistive electric heater for radioengineering measuring devices
KR0124979Y1 (en) Working coil of induction heating cooker
JPS5813339Y2 (en) Electromagnet for permanent magnet testing