JPH0530141B2 - - Google Patents

Info

Publication number
JPH0530141B2
JPH0530141B2 JP1748984A JP1748984A JPH0530141B2 JP H0530141 B2 JPH0530141 B2 JP H0530141B2 JP 1748984 A JP1748984 A JP 1748984A JP 1748984 A JP1748984 A JP 1748984A JP H0530141 B2 JPH0530141 B2 JP H0530141B2
Authority
JP
Japan
Prior art keywords
yoke
magnet
magnetic flux
magnetizing
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1748984A
Other languages
Japanese (ja)
Other versions
JPS60162458A (en
Inventor
Toshio Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1748984A priority Critical patent/JPS60162458A/en
Publication of JPS60162458A publication Critical patent/JPS60162458A/en
Publication of JPH0530141B2 publication Critical patent/JPH0530141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高エネルギー磁石を利用しようとする
発電機、電動機に用いられる永久磁石式回転電機
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a permanent magnet type rotating electric machine used in a generator or electric motor that uses high-energy magnets.

〔従来の技術〕[Conventional technology]

従来のものは第1図に示すように、着磁コア4
に磁束9を流す着磁コイル5が巻かれ、この着磁
コイル5にはスイツチ7を介して着磁電源6が接
続されており、これらにより着磁装置が構成され
ている。一方、ヨーク2の内周に円弧状の2個の
磁石1,1が固着され、これら磁石1,1の間に
電機子巻線3aを巻いた電機子3を挿入すること
によりモータ8が構成されている。
As shown in Fig. 1, the conventional type has a magnetized core 4.
A magnetizing coil 5 for passing a magnetic flux 9 is wound around the magnetizing coil 5, and a magnetizing power source 6 is connected to the magnetizing coil 5 via a switch 7, thereby forming a magnetizing device. On the other hand, two arc-shaped magnets 1, 1 are fixed to the inner circumference of the yoke 2, and a motor 8 is constructed by inserting an armature 3 with an armature winding 3a wound between these magnets 1, 1. has been done.

そして、このモータ8を上記着磁コア4内に挿
入してからスイツチ7を介して着磁電源6から着
磁コイル5に電流を供給することで磁石1,1を
着磁する。
After this motor 8 is inserted into the magnetizing core 4, current is supplied from the magnetizing power supply 6 to the magnetizing coil 5 via the switch 7, thereby magnetizing the magnets 1,1.

ところが、上述した従来のものにおいて、回転
電機の出力向上を図るため、磁石1,1として従
来通常に使用されている例えばフエライト磁石の
代わりに小型、軽量でかつ強力な磁力を発生でき
る高エネルギー磁石を用いると、高エネルギー磁
石の磁力が強いため、モータとして作動させた
時、第1図図示の厚さの小さいヨーク2では磁束
通路の磁気飽和が生じてしまう。すなわち、第1
図図示のモータ8が作動する時、磁石1,1の発
生する磁束は電機子3およびヨーク2を通して流
れる。この磁束の流れをより具体的に述べると、
第1図において、上下の磁石1,1は、着磁コア
4のN極、S極により、それぞれの上側面がS極
に、そして下側面がN極に着磁されているので、
第1図上側の磁石1から出た磁束は電機子3→下
側の磁石1→ヨーク2を経て上側磁石1に戻る。
下側磁石1の磁束はヨーク2→上側磁石1→電機
子3を経て下側磁石1に戻る。このように磁石
1,1の磁束がヨーク2を通して流れるので、ヨ
ーク2の厚さが小さいと磁気飽和が生じて磁石
1,1の持つ磁力を十分有効活用できないという
問題が生ずる。
However, in the above-mentioned conventional devices, in order to improve the output of the rotating electric machine, a high-energy magnet that is small, lightweight, and can generate a strong magnetic force is used instead of, for example, a ferrite magnet that has been conventionally used as the magnets 1, 1. When using a yoke 2 having a small thickness as shown in FIG. 1, magnetic saturation of the magnetic flux path occurs when the yoke 2 shown in FIG. 1 is operated as a motor because the magnetic force of the high-energy magnet is strong. That is, the first
When the illustrated motor 8 operates, the magnetic flux generated by the magnets 1, 1 flows through the armature 3 and the yoke 2. To describe the flow of this magnetic flux more specifically,
In FIG. 1, the upper and lower magnets 1, 1 are magnetized by the north and south poles of the magnetized core 4, with their upper surfaces magnetized to the south pole and their lower surfaces magnetized to the north pole, so that
The magnetic flux emitted from the upper magnet 1 in FIG. 1 returns to the upper magnet 1 via the armature 3 → the lower magnet 1 → the yoke 2.
The magnetic flux of the lower magnet 1 returns to the lower magnet 1 via the yoke 2 → the upper magnet 1 → the armature 3. Since the magnetic flux of the magnets 1, 1 flows through the yoke 2 in this way, if the thickness of the yoke 2 is small, magnetic saturation occurs, resulting in a problem that the magnetic force of the magnets 1, 1 cannot be used effectively.

上記の磁気飽和を回避するためには、第3図に
示すようにヨーク2aの厚さAを従来よりも厚く
して磁束通路を拡大する必要がある。一方、第2
図B−H曲線図に示すように、従来のフエライト
磁石の着磁状態を示す曲線13におけるフエライ
ト磁石を100%着磁する着磁磁界よりも、高エネ
ルギー磁石の着磁状態を示す曲線14における高
エネルギー磁石を100%着磁する着磁磁界の方を
強くする必要が生じるが、磁石1a,1aを着磁
しようとする際に、第3図に示すように着磁電源
6をスイツチ7を介して着磁コイル5に接続する
と、磁束9が着磁コア4内を流れ、モータ8内で
はヨーク2aを流れる磁束通路11と、磁石1
a、電機子3および磁石1aを流れる磁束通路1
0とに分流して流れるが、ヨーク2aの厚さAが
大きくなつたため、磁束通路11に流れる洩れ磁
束が比較的多くなり、磁石1a,1aを含む磁束
通路10に磁束が流れにくくなるので、磁石1
a,1aを十分に着磁しようとするときわめて容
量の大きい着磁装置が必要になるという欠点があ
る。また、前述したように高エネルギー磁石を使
用した場合の磁気飽和を回避するため、充分な磁
路断面積を持つた厚さAの大きいヨーク2aを使
用すると、ヨーク2aの重量が大となり、モータ
8の軽量化が困難となる。
In order to avoid the above-mentioned magnetic saturation, it is necessary to enlarge the magnetic flux path by making the thickness A of the yoke 2a thicker than before, as shown in FIG. On the other hand, the second
As shown in the curve diagram B-H, the magnetizing magnetic field in curve 14, which shows the magnetization state of a high-energy magnet, is stronger than the magnetization field that magnetizes the ferrite magnet 100% in curve 13, which shows the magnetization state of a conventional ferrite magnet. It is necessary to make the magnetizing magnetic field stronger to 100% magnetize the high-energy magnets, but when trying to magnetize the magnets 1a, 1a, the magnetizing power source 6 is turned on by the switch 7 as shown in FIG. When connected to the magnetizing coil 5 through
a, magnetic flux path 1 flowing through armature 3 and magnet 1a
However, since the thickness A of the yoke 2a has increased, the leakage magnetic flux flowing into the magnetic flux path 11 becomes relatively large, and it becomes difficult for the magnetic flux to flow into the magnetic flux path 10 including the magnets 1a, 1a. magnet 1
There is a drawback that in order to sufficiently magnetize a and 1a, a magnetizing device with an extremely large capacity is required. In addition, as mentioned above, in order to avoid magnetic saturation when using a high-energy magnet, if a yoke 2a with a large thickness A and a sufficient magnetic path cross-sectional area is used, the weight of the yoke 2a becomes large and the motor 8 becomes difficult to reduce in weight.

〔発明の目的〕[Purpose of the invention]

本発明は、上記に鑑みてなされたもので、高エ
ネルギー磁石を使用しても着磁装置の大容量化を
図ることなく容易に着磁することができ、かつ軽
量化が可能な永久磁石式回転電機の製造方法を提
供することを目的とする。
The present invention has been made in view of the above, and is a permanent magnet type that can be easily magnetized without increasing the capacity of the magnetizing device even when using a high-energy magnet, and is lightweight. The purpose is to provide a method for manufacturing a rotating electric machine.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するため、高エネルギ
ー磁石と、この高エネルギー磁石を内周に装着し
た第1のヨークと、前記高エネルギー磁石の内側
に配置した電機子とを一体として、着磁装置の着
磁コアの開口端の間に挿入し、 次に、前記着磁コアに巻かれた着磁コイルに通
電して前記着磁コアに磁束を発生し、この磁束を
前記第1のヨーク、前記高エネルギー磁石および
前記電機子を通る磁束通路に流すことにより、前
記高エネルギー磁石を磁化させ、 次に、前記高エネルギー磁石、前記第1のヨー
クおよび前記電機子を前記着磁コアの開口端の間
から取出し、 次に前記第1のヨークの外周上で、前記高エネ
ルギー磁石に重なる位置に、前記高エネルギー磁
石の軸方向長さと略同等の軸方向長さを持つ第2
のヨークを装着するという製造方法を採用する。
In order to achieve the above object, the present invention integrates a high energy magnet, a first yoke equipped with the high energy magnet on its inner periphery, and an armature disposed inside the high energy magnet into a magnetizing device. Next, a magnetizing coil wound around the magnetizing core is energized to generate a magnetic flux in the magnetizing core, and this magnetic flux is transferred to the first yoke. The high energy magnet is magnetized by flowing a magnetic flux path through the high energy magnet and the armature, and then the high energy magnet, the first yoke, and the armature are connected to the open end of the magnetized core. Next, on the outer periphery of the first yoke, a second yoke having an axial length approximately equal to the axial length of the high-energy magnet is placed at a position overlapping the high-energy magnet.
A manufacturing method is adopted in which a yoke is attached.

〔実施例〕〔Example〕

以下本発明を図に示す実施例について説明す
る。第4図において、コの字型の着磁コア4に磁
束9を流す着磁コイル5が巻かれ、この着磁コイ
ル5には開閉スイツチ7を介して着磁電源6が接
続されることにより着磁装置が構成される。そし
て、この着磁装置の着磁コア4の開口端の間に、
以下の構成からなるモータ8を挿入する。すなわ
ち、このモータ8は、第1のヨークである円筒状
のヨーク2bの内周に高エネルギー磁石からなる
2つの円弧状の磁石1a,1aを装着し、これら
2つの磁石1a,1aの間の空間に電機子巻線3
aを巻いた電機子3を回転自在に配置した構成と
なつており、このモータを着磁コア4の開口端の
間に挿入する。ここで、上記ヨーク2bの厚さB
は、第4図の如く磁石1aを着磁しているとき
と、着磁を終了して着磁コア4からモータ8を抜
き出したときでパーミアンス係数が極端に減少し
ないことを考慮の上で、すなわち、着磁コア4か
らモータ8を抜き出したときに減磁される量を考
慮の上でヨーク2bの厚さBを必要最小限の値に
設定している。但し、実際には、ヨーク2bはモ
ータ8の構造上電機子3を回転保持するエンドフ
レームを役割を兼ねているので磁気回路上の必要
より、エンドフレームとして必要な強度を満足す
る寸法に設定してある。
The present invention will be described below with reference to embodiments shown in the drawings. In FIG. 4, a magnetizing coil 5 that flows a magnetic flux 9 is wound around a U-shaped magnetizing core 4, and a magnetizing power source 6 is connected to this magnetizing coil 5 via an on/off switch 7. A magnetizing device is configured. And between the open ends of the magnetizing core 4 of this magnetizing device,
A motor 8 having the following configuration is inserted. That is, this motor 8 has two arc-shaped magnets 1a, 1a made of high-energy magnets attached to the inner circumference of a cylindrical yoke 2b, which is a first yoke, and Armature winding 3 in space
The motor is configured such that an armature 3 wound with a wire a is rotatably arranged, and this motor is inserted between the open ends of the magnetized core 4. Here, the thickness B of the yoke 2b is
Taking into consideration that the permeance coefficient does not decrease significantly when the magnet 1a is magnetized as shown in FIG. 4 and when the motor 8 is removed from the magnetized core 4 after magnetization is completed, That is, the thickness B of the yoke 2b is set to the minimum necessary value in consideration of the amount of demagnetization when the motor 8 is extracted from the magnetized core 4. However, in reality, the yoke 2b also serves as an end frame for rotating the armature 3 due to the structure of the motor 8, so it is set to a size that satisfies the strength required as an end frame due to the needs of the magnetic circuit. There is.

次に上記状態において開閉スイツチ7を閉じて
着磁電源6から着磁コイル5に電流を供給する
と、着磁コア4に磁束9が流れ、この磁束9はモ
ータ8内ではヨーク2bを流れる磁束通路11
と、磁石1a、電機子3および磁石1aを流れる
磁束通路10とに分流して流れる。そして、ヨー
ク2bの厚さBを必要最小限の値に設定している
ため、ヨーク2bを流れる磁束通路11ではすぐ
に磁気飽和してしまい、磁束9はほとんど通路1
0側を流れるので、磁石1a,1aの着磁を確実
に充分に行なうことができる。ここで、磁石1
a,1aは、第4図において、それぞれの上側面
がS極、下側面がN極となるように着磁される。
Next, in the above state, when the on-off switch 7 is closed and current is supplied from the magnetizing power source 6 to the magnetizing coil 5, magnetic flux 9 flows through the magnetizing core 4, and this magnetic flux 9 flows through the magnetic flux path in the motor 8 through the yoke 2b. 11
and a magnetic flux path 10 flowing through the magnet 1a, the armature 3, and the magnet 1a. Since the thickness B of the yoke 2b is set to the minimum necessary value, the magnetic flux path 11 flowing through the yoke 2b quickly becomes magnetically saturated, and most of the magnetic flux 9 flows through the path 1.
Since the current flows on the 0 side, the magnets 1a, 1a can be reliably and sufficiently magnetized. Here, magnet 1
In FIG. 4, magnets a and 1a are magnetized such that their upper surfaces are S poles and their lower surfaces are N poles.

そして、磁石1a,1aを着磁した後に、磁石
1a,1aを内周に固着してあるヨーク2bを電
機子3と一緒に着磁コア4から取り出す。次に、
第5図、第6図に示すように第1のヨークである
ヨーク2bの外周に、円弧状磁石1aの軸方向長
さとほぼ同じ軸方向長さを持つ円筒状の第2のヨ
ーク15を磁石1a,1aに重なるように嵌合
し、固定している。ここで、モータとして作用さ
せたとき、磁石1a,1aの磁束は第6図におい
て次のごとく流れる。上側の磁石1aから出た磁
束は、電機子3→下側の磁石1a→ヨーク2b及
びヨーク15の経路で上側の磁石1aに戻る。下
側の磁石1aの磁束は、ヨーク2b及びヨーク1
5→上側の磁石1a→電機子3を経て下側の磁石
1aに戻る。また、第2のヨーク15の半径方向
の厚さCつまり磁路の幅を変化させることによ
り、モータとして働くときの磁束の量を調整して
モータの出力特性を変更することができる。しか
も、磁石1a,1aの軸方向長さとほぼ同じ軸方
向長さを持つヨーク15を磁石1a,1aと重な
るように嵌合し、固定しているため、この第2の
ヨーク15は第1のヨーク2bよりも小さく構成
でき、第1のヨーク2bを単に厚くするものに比
して、モータ8の軽量化が達成できる。
After the magnets 1a, 1a are magnetized, the yoke 2b, to which the magnets 1a, 1a are fixed to the inner periphery, is taken out from the magnetized core 4 together with the armature 3. next,
As shown in FIGS. 5 and 6, a cylindrical second yoke 15 having an axial length that is approximately the same as the axial length of the arc-shaped magnet 1a is attached to the outer periphery of the first yoke 2b. 1a and 1a so that they overlap and are fixed. Here, when operated as a motor, the magnetic fluxes of the magnets 1a, 1a flow as follows in FIG. The magnetic flux emitted from the upper magnet 1a returns to the upper magnet 1a through a path of armature 3→lower magnet 1a→yoke 2b and yoke 15. The magnetic flux of the lower magnet 1a is the same as that of the yoke 2b and the yoke 1.
5 → Upper magnet 1a → Return to lower magnet 1a via armature 3. Further, by changing the radial thickness C of the second yoke 15, that is, the width of the magnetic path, it is possible to adjust the amount of magnetic flux when working as a motor and change the output characteristics of the motor. Furthermore, since the yoke 15 having an axial length that is almost the same as the axial length of the magnets 1a, 1a is fitted and fixed so as to overlap the magnets 1a, 1a, this second yoke 15 is different from the first yoke 15. It can be configured to be smaller than the yoke 2b, and the weight of the motor 8 can be reduced compared to a structure in which the first yoke 2b is simply made thicker.

また、第8図の磁石の特性図において、MAは
高エネルギー磁石、MBはフエライト磁石のそれ
ぞれの減磁特性曲線を示している。これから判明
することは、高エネルギー磁石(例えば住友特殊
金属(株)の商品名「NEOMAX−35」等の希土類磁
石)は残留磁束密度−Bが大きいばかりではなく
抗磁力−Hがきわめて大きい。
Further, in the magnet characteristic diagram of FIG. 8, MA indicates the demagnetization characteristic curve of the high energy magnet, and MB indicates the demagnetization characteristic curve of the ferrite magnet. What is clear from this is that high-energy magnets (for example, rare earth magnets such as the product name "NEOMAX-35" manufactured by Sumitomo Special Metals Co., Ltd.) not only have a large residual magnetic flux density -B but also an extremely large coercive force -H.

従つて、第4図の如く第1のヨーク2bのまま
で着磁した後に、このモータ8を着磁コア4から
取り出した時に、磁石1aから見たときの磁路の
パーミンアンス係数が減少しても極端に残留磁束
密度Bが低下(減磁)することがない。
Therefore, when the motor 8 is taken out from the magnetizing core 4 after being magnetized with the first yoke 2b as shown in FIG. 4, the perminance coefficient of the magnetic path as seen from the magnet 1a decreases. Also, the residual magnetic flux density B will not be extremely reduced (demagnetized).

〔その他の実施例〕[Other Examples]

上述した一実施例のものでは、第2のヨークで
あるヨーク15を円筒状としているが、第7図に
示すように円弧状磁石1a,1aに対応した形状
の円弧状の第2のヨーク15aと15bを製作し
て、これを第9図に示すように第1のヨーク2b
の外周上で、磁石1a,1aに重なる位置に取付
け、バンドや接着剤等を利用してヨーク2bの外
周に固着してもよい。
In the embodiment described above, the yoke 15 which is the second yoke is cylindrical, but as shown in FIG. and 15b, and connect it to the first yoke 2b as shown in FIG.
It may be attached on the outer periphery of the yoke 2b at a position overlapping the magnets 1a, 1a, and fixed to the outer periphery of the yoke 2b using a band, adhesive, or the like.

この第7図、第9図の実施例においても、モー
タとして作動させたとき、上下の磁石1a,1a
の磁束は、前述の実施例と同様の経路で流れる。
Also in the embodiments shown in FIGS. 7 and 9, when operated as a motor, the upper and lower magnets 1a, 1a
The magnetic flux flows along the same path as in the previous embodiment.

すなわち、第9図に図示するように、2つの円
弧状の第2のヨーク15a,15bが第1のヨー
ク2bの外周上で、磁石1a,1aに重なる位置
に取付けられており、かつ第1のヨーク2bの厚
さBは前述の実施例と同様に必要最小限の値に設
定してあるので、上側の磁石1aから出た磁束
は、第9図において電機子3→下側の磁石1a→
第1のヨーク2bおよび第2のヨーク15a,1
5bの経路で上側の磁石1aに戻る。一方、下側
の磁石1aの磁束は、第1のヨーク2bおよび第
2のヨーク15a,15b→上側の磁石1a→電
機子3を経て、下側の磁石1aに戻る。
That is, as shown in FIG. 9, two arc-shaped second yokes 15a, 15b are attached to the outer periphery of the first yoke 2b at positions overlapping the magnets 1a, 1a, and Since the thickness B of the yoke 2b is set to the minimum necessary value as in the previous embodiment, the magnetic flux emitted from the upper magnet 1a is transferred from the armature 3 to the lower magnet 1a in FIG. →
First yoke 2b and second yoke 15a, 1
It returns to the upper magnet 1a along the route 5b. On the other hand, the magnetic flux of the lower magnet 1a returns to the lower magnet 1a via the first yoke 2b and the second yokes 15a, 15b, the upper magnet 1a, and the armature 3.

なお、本発明でいう高エネルギー磁石とは残留
磁束密度と保持力の大きい例えば希土類を使用し
た磁石をいう。特に、希土類磁石のうちでも減磁
曲線が第8図のMAの如く略一直線状になるもの
が適する。
Note that the term "high energy magnet" as used in the present invention refers to a magnet using, for example, a rare earth element, which has a large residual magnetic flux density and a large coercive force. In particular, among rare earth magnets, those whose demagnetization curve is approximately linear like MA in FIG. 8 are suitable.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明では、高エネルギー磁
石と、この高エネルギー磁石を内周に装着した第
1のヨークと、前記高エネルギー磁石の内側に配
置した電機子とを一体として、着磁装置の着磁コ
アの開口端の間に挿入し、 次に、前記着磁コアに巻かれた着磁コイルに通
電して前記着磁コアに磁束を発生し、この磁束
を、前記第1のヨーク、前記高エネルギー磁石お
よび前記電機子を通る磁束通路に流すことによ
り、前記高エネルギー磁石を磁化させ、 次に、前記高エネルギー磁石、前記第1のヨー
クおよび前記電機子を前記着磁コアの開口端の間
から取出し、 次に前記第1のヨークの外周上で、前記高エネ
ルギー磁石に重なる位置に、前記高エネルギー磁
石の軸方向長さと略同等の軸方向長さを持つ第2
のヨークを装着するという製造方法を採用してい
るから、次に述べる優れた効果が得られる。
As described above, in the present invention, a high-energy magnet, a first yoke equipped with the high-energy magnet on its inner periphery, and an armature disposed inside the high-energy magnet are integrated into a magnetizing device. The magnetizing core is inserted between the open ends of the magnetizing core, and then the magnetizing coil wound around the magnetizing core is energized to generate a magnetic flux in the magnetizing core, and this magnetic flux is transferred to the first yoke, The high energy magnet is magnetized by flowing a magnetic flux path through the high energy magnet and the armature, and then the high energy magnet, the first yoke, and the armature are connected to the open end of the magnetized core. Next, on the outer periphery of the first yoke, a second yoke having an axial length approximately equal to the axial length of the high-energy magnet is placed at a position overlapping the high-energy magnet.
Since the manufacturing method of attaching a yoke is adopted, the following excellent effects can be obtained.

(1) 高エネルギー磁石の着磁の際には、第1のヨ
ークのみが着磁用磁束の磁束通路に介在し、一
方回転電機として作動させる時には第1のヨー
クおよび第2のヨークの両方を高エネルギー磁
石の磁束通路を介在させることにより、回転電
機作動時におけるヨークでの磁気飽和を解消し
て、高エネルギー磁石の磁力を回転電機の出力
アツプのために有効利用できる。
(1) When magnetizing a high-energy magnet, only the first yoke is interposed in the magnetic flux path of the magnetizing magnetic flux, whereas when operating as a rotating electric machine, both the first yoke and the second yoke are By interposing the magnetic flux path of the high-energy magnet, magnetic saturation in the yoke during operation of the rotating electrical machine can be eliminated, and the magnetic force of the high-energy magnet can be effectively used to increase the output of the rotating electrical machine.

(2) 上記のように第1のヨークに対してさらに第
2のヨークを追加することにより、回転電機作
動時の高エネルギー磁石の磁気飽和を解消でき
るので、第1のヨークの厚さは十分小さくで
き、これにより第1のヨークに着磁の際の磁束
が洩れることを十分低減できる。従つて、小容
量の着磁装置でも高エネルギー磁石を十分着磁
できる。
(2) By adding the second yoke to the first yoke as described above, the magnetic saturation of the high-energy magnet during operation of the rotating electric machine can be eliminated, so the thickness of the first yoke is sufficient. It can be made small, thereby sufficiently reducing leakage of magnetic flux to the first yoke during magnetization. Therefore, even a small-capacity magnetizing device can sufficiently magnetize a high-energy magnet.

(3) 第2のヨークは、高エネルギー磁石の軸方向
寸法と略同等の軸方向寸法を有するものである
から、第1のヨークより寸法的に小さいもので
あり、従つて第1のヨークの厚さを単に大きく
するものに比して、回転電機の軽量化を図るこ
とができる。
(3) Since the second yoke has an axial dimension that is approximately the same as the axial dimension of the high-energy magnet, it is dimensionally smaller than the first yoke. The weight of the rotating electric machine can be reduced compared to the case where the thickness is simply increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁石を用いた回転電機と着磁装
置の正面図、第2図はフエライト磁石および高エ
ネルギー磁石の磁界の強さに対する磁束密度の特
性図、第3図は高エネルギー磁石を用いた従来の
回転電機と着磁装置の磁束の流れを示す正面模式
図、第4図は本発明の一実施例に係わる高エネル
ギー磁石を用いた回転電機と着磁装置および磁束
の流れを示す正面模式図、第5図は本発明の一実
施例における回転電機の第1のヨークに第2のヨ
ークを嵌合する時の分解斜視図、第6図は本発明
の一実施例における高エネルギー磁石を用いた回
転電機の完成後の正面から見た断面図、第7図は
本発明の他の実施例における第2のヨークを示す
斜視図、第8図はフエライト磁石および高エネル
ギー磁石の逆磁界に対する磁束密度の特性図であ
る。第9図は第7図に示す他の実施例における第
2のヨークを用いた回転電機の完成後の正面から
見た断面図である。 1a……高エネルギー磁石、2b……第1のヨ
ーク、3……電機子、4……着磁コア、5……着
磁コイル、15,15a,15b……第2のヨー
ク。
Figure 1 is a front view of a rotating electric machine and magnetizing device using conventional magnets, Figure 2 is a characteristic diagram of magnetic flux density versus magnetic field strength for ferrite magnets and high-energy magnets, and Figure 3 is a diagram of magnetic flux density with respect to magnetic field strength for ferrite magnets and high-energy magnets. FIG. 4 is a schematic front view showing the flow of magnetic flux in the conventional rotating electrical machine and magnetizing device used; FIG. A schematic front view, FIG. 5 is an exploded perspective view when the second yoke is fitted to the first yoke of a rotating electric machine according to an embodiment of the present invention, and FIG. 6 is a high energy diagram according to an embodiment of the present invention. 7 is a perspective view showing a second yoke in another embodiment of the present invention, and FIG. 8 is a reverse view of a ferrite magnet and a high-energy magnet. It is a characteristic diagram of magnetic flux density with respect to a magnetic field. FIG. 9 is a sectional view of a completed rotating electrical machine using the second yoke in another embodiment shown in FIG. 7, as seen from the front. 1a... High energy magnet, 2b... First yoke, 3... Armature, 4... Magnetized core, 5... Magnetized coil, 15, 15a, 15b... Second yoke.

Claims (1)

【特許請求の範囲】 1 円弧条に形成した高エネルギー磁石と、この
高エネルギー磁石を内周に装着した円筒状の第1
のヨークと、前記高エネルギー磁石の内側に配置
した電機子とを一体として、着磁装置の着磁コア
の開口端の間に挿入し、 次に、前記着磁コアに巻かれた着磁コイルに通
電して前記着磁コアに磁束を発生し、この磁束
を、前記第1のヨーク、前記高エネルギー磁石お
よび前記電機子を通る磁束通路に流すことによ
り、前記高エネルギー磁石を磁化させ、 次に、前記高エネルギー磁石、前記第1のヨー
クおよび前記電機子を前記着磁コアの開口端の間
から取出し、 次に前記第1のヨークの外周上で、前記高エネ
ルギー磁石に重なる位置に、前記高エネルギー磁
石の軸方向長さと略同等の軸方向長さを持つ円筒
状もしくは円弧状の第2のヨークを装着すること
を特徴とする永久磁石式回転電機の製造方法。
[Claims] 1. A high-energy magnet formed in an arcuate shape, and a cylindrical first magnet with this high-energy magnet attached to the inner periphery.
The yoke and the armature placed inside the high-energy magnet are inserted as one body between the open ends of the magnetizing core of the magnetizing device, and then the magnetizing coil wound around the magnetizing core is inserted. energizes to generate magnetic flux in the magnetized core, and causes this magnetic flux to flow through a magnetic flux path passing through the first yoke, the high-energy magnet, and the armature, thereby magnetizing the high-energy magnet, and then The high-energy magnet, the first yoke, and the armature are taken out from between the open ends of the magnetized core, and then placed on the outer periphery of the first yoke at a position overlapping the high-energy magnet, A method for manufacturing a permanent magnet rotating electrical machine, comprising: installing a cylindrical or arcuate second yoke having an axial length substantially equal to the axial length of the high-energy magnet.
JP1748984A 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof Granted JPS60162458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1748984A JPS60162458A (en) 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1748984A JPS60162458A (en) 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60162458A JPS60162458A (en) 1985-08-24
JPH0530141B2 true JPH0530141B2 (en) 1993-05-07

Family

ID=11945413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1748984A Granted JPS60162458A (en) 1984-01-31 1984-01-31 Permanent magnet type rotary electric machine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60162458A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906022B2 (en) * 2000-10-24 2007-04-18 株式会社東芝 Electric motor rotor and method of manufacturing the same
JP4044778B2 (en) * 2002-03-28 2008-02-06 株式会社ミツバ Motor assembly method
JP2017135967A (en) * 2016-01-21 2017-08-03 アスモ株式会社 Stator and manufacturing method of stator

Also Published As

Publication number Publication date
JPS60162458A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
JPH0134326Y2 (en)
CA2164745C (en) Power-generating electric motor
JPH08340651A (en) Permanent magnet, and permanent magnet rotating machine
TW200711192A (en) Super-conducting device and axial gap type super-conducting motor
US4727273A (en) Permanent magnet type electric motor
JP2940048B2 (en) Permanent magnet magnetization method
JPH0530141B2 (en)
JPH0789730B2 (en) Permanent magnet type DC machine with auxiliary pole
JP2002083724A (en) Magnetic core and magnetic element
JPS6138166Y2 (en)
JPH08103059A (en) Permanent magnet starter device
JP3024288B2 (en) Permanent magnet magnetization method
JPS6329811B2 (en)
JPH01300696A (en) Magnetic circuit using permanent magnet
JPH03117358U (en)
JPH0246707A (en) Electromagnet
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
KR100252831B1 (en) Method for magnetization of permanent magnet
JPS592555A (en) Permanent magnet field dc machine
JP3077280B2 (en) Magnetizing apparatus and method of magnetizing permanent magnet using the same
JPS642539Y2 (en)
JPS6237421Y2 (en)
JPS61239533A (en) Magnetic release type magnet unit
JPS60219951A (en) Magnet type motor
JPS6311893Y2 (en)