JPS6138166Y2 - - Google Patents

Info

Publication number
JPS6138166Y2
JPS6138166Y2 JP1978165438U JP16543878U JPS6138166Y2 JP S6138166 Y2 JPS6138166 Y2 JP S6138166Y2 JP 1978165438 U JP1978165438 U JP 1978165438U JP 16543878 U JP16543878 U JP 16543878U JP S6138166 Y2 JPS6138166 Y2 JP S6138166Y2
Authority
JP
Japan
Prior art keywords
permanent magnet
coil
fixed receiver
movable
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978165438U
Other languages
Japanese (ja)
Other versions
JPS5581913U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978165438U priority Critical patent/JPS6138166Y2/ja
Publication of JPS5581913U publication Critical patent/JPS5581913U/ja
Application granted granted Critical
Publication of JPS6138166Y2 publication Critical patent/JPS6138166Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

【考案の詳細な説明】 この考案は保持電流を供給することなくプラン
ジヤ動作位置を保持可能な自己保持ソレノイドに
関するものである。
[Detailed Description of the Invention] This invention relates to a self-holding solenoid capable of holding a plunger operating position without supplying a holding current.

第1図は従来使用されているこの種の自己保持
ソレノイドの構成を示すもので、円筒状形の磁気
ヨーク11の一端が一体の閉塞板11aで閉塞さ
れた構造となつている。閉塞板11aの内面中心
部に円柱状の固定受12が軸心方向に突出形成さ
れている。この固定受12の遊端面に固定受12
と同一径の円柱状の永久磁石13が貼付されてい
る。
FIG. 1 shows the structure of a conventionally used self-holding solenoid of this kind, in which one end of a cylindrical magnetic yoke 11 is closed by an integral closing plate 11a. A cylindrical fixed receiver 12 is formed at the center of the inner surface of the closing plate 11a to protrude in the axial direction. A fixed receiver 12 is attached to the free end surface of this fixed receiver 12.
A cylindrical permanent magnet 13 having the same diameter is attached.

この固定受12の外径より僅かに大きい内径を
有する例えば鋼製の円筒体14が固定受12上に
嵌挿されている。この円筒体14は磁気ヨーク1
1の開放面の近くまで延長配設されるに充分な長
さを有している。円筒体14内に固定受12とほ
ぼ同径の円柱状可動鉄心15が磁気ヨーク11の
軸心に沿つて摺動自在に挿入されている。
A cylindrical body 14 made of, for example, steel and having an inner diameter slightly larger than the outer diameter of the fixed receiver 12 is fitted onto the fixed receiver 12. This cylindrical body 14 is the magnetic yoke 1
It has a sufficient length to be extended close to the open surface of No. 1. A cylindrical movable core 15 having approximately the same diameter as the fixed receiver 12 is inserted into the cylindrical body 14 so as to be slidable along the axis of the magnetic yoke 11 .

円筒体14上にコイル16が巻装されている。
磁気ヨーク11の開放端部内には外径が磁気ヨー
ク11の内径に等しく内径が円筒体14の外径に
等しい円環状の磁性材の蓋体17が挿嵌固定され
ている。可動鉄心15は図には示していないが、
例えば復帰ばねにより磁気ヨークから抜き出され
る方向に偏位されると共にストツパにより受け止
められた構成を有し可動鉄心15と永久磁石13
との間に間隙gが形成されている。
A coil 16 is wound on the cylindrical body 14.
A cover 17 made of an annular magnetic material and having an outer diameter equal to the inner diameter of the magnetic yoke 11 and an inner diameter equal to the outer diameter of the cylindrical body 14 is inserted and fixed into the open end of the magnetic yoke 11 . Although the movable iron core 15 is not shown in the figure,
For example, the movable iron core 15 and the permanent magnet 13 have a configuration in which the movable iron core 15 and the permanent magnet 13 are deflected in a direction to be pulled out from the magnetic yoke by a return spring and are received by a stopper.
A gap g is formed between them.

このような構造の従来の自己保持ソレノイドに
おいては、作動時にコイル16に所定方向の動作
電流を図示していない手段により供給する。この
動作電流によつて円筒体14内にはその軸心にほ
ぼ平行な磁界H1が形成される。このため磁気ヨ
ーク11、固定受12、永久磁石13、可動鉄心
15よりなる閉塞路が形成され、この閉塞路内の
磁気エネルギーにより可動部に力が作用するため
可動鉄心15が移動して永久磁石13に当接する
ことになる。
In a conventional self-holding solenoid having such a structure, an operating current in a predetermined direction is supplied to the coil 16 by a means (not shown) during operation. Due to this operating current, a magnetic field H 1 approximately parallel to the axis of the cylindrical body 14 is formed within the cylindrical body 14 . For this reason, a closed path consisting of the magnetic yoke 11, fixed receiver 12, permanent magnet 13, and movable core 15 is formed, and the magnetic energy in this closed path exerts force on the movable part, causing the movable core 15 to move and become a permanent magnet. 13.

この当接した状態でコイル16に対する動作電
流が遮断されても永久磁石13による磁気的吸引
力により可動鉄心15はその位置が保持される。
次いで可動鉄心15を永久磁石13から離脱させ
るにはコイル16に動作電流より小さくこれと逆
方向に復帰電流を供給する。この復帰電流によつ
て円筒体14内には軸心にほぼ平行なH1及び永
久磁石13の磁界と逆向きの磁界H2が形成され
る。この磁界H2により永久磁石13の磁界が打
消され永久磁石13による可動鉄心15に対する
吸引力が減少し、もしくは零になつて図示してい
ない復帰ばねにより永久磁石13から可動鉄心1
5が離脱して原位置に復帰することになる。
Even if the operating current to the coil 16 is cut off in this abutting state, the movable iron core 15 is maintained in its position by the magnetic attraction force of the permanent magnet 13.
Next, in order to separate the movable iron core 15 from the permanent magnet 13, a return current smaller than the operating current and in the opposite direction is supplied to the coil 16. Due to this return current, a magnetic field H 1 substantially parallel to the axis and a magnetic field H 2 opposite to the magnetic field of the permanent magnet 13 are formed in the cylindrical body 14 . This magnetic field H2 cancels the magnetic field of the permanent magnet 13, and the attractive force of the permanent magnet 13 to the movable core 15 decreases, or becomes zero, and a return spring (not shown) causes the permanent magnet 13 to move the movable core 1.
5 will leave and return to its original position.

しかしこの従来の自己保持ソレノイドでは、可
動鉄心15が永久磁石13に直接当接するため永
久磁石13が破損し易い。又間隙gが或る程度大
きくなると吸引力が急激に低下し、又充分な吸引
力を発生させることができないのと電圧変動や温
度変化によりコイル16の起磁力が変動し、吸引
復帰特性が大きく変化することがあり実用的でな
い。
However, in this conventional self-holding solenoid, since the movable iron core 15 directly contacts the permanent magnet 13, the permanent magnet 13 is easily damaged. Furthermore, when the gap g becomes large to a certain extent, the attraction force decreases rapidly, and sufficient attraction force cannot be generated, and the magnetomotive force of the coil 16 fluctuates due to voltage fluctuations and temperature changes, and the attraction return characteristic becomes large. Subject to change and impractical.

この難点を補うために磁力の大きい例えば酸化
物磁石を使用し磁気回路を工夫した手段など考え
られているが永久磁石13の形状が大きくなり当
然製造費も高くなる。又一般にこの種のソレノイ
ドに使用されている例えば酸化物磁石などでは抗
磁力が大きく、その消磁が困難であるためコイル
16に対する復帰電流を遮断した時、永久磁石1
3の着磁状態はそのまま残存する。従つて復帰状
態にある可動鉄心15が機械的振動などで磁石1
3方向に移動すると容易に永久磁石13の吸引力
により可動鉄心15が吸着されるおそれがある。
In order to compensate for this difficulty, measures have been considered such as using oxide magnets with a large magnetic force and devising a magnetic circuit, but this increases the size of the permanent magnet 13 and naturally increases the manufacturing cost. In addition, the coercive force of oxide magnets, etc., which are generally used in this type of solenoid is large, and it is difficult to demagnetize them. Therefore, when the return current to the coil 16 is cut off, the permanent magnet 1
The magnetized state No. 3 remains as it is. Therefore, the movable iron core 15, which is in the restored state, is damaged by the magnet 1 due to mechanical vibration, etc.
If it moves in three directions, there is a risk that the movable iron core 15 will be easily attracted by the attractive force of the permanent magnet 13.

このために従来のものでは復帰ばねのばね力を
比較的強くしておく必要がある。当然作動時には
復帰ばねの力に抗して可動鉄心15を移動させね
ばならず動作電流を大きくすると共にコイル16
の巻数を増加することが必要であり、復帰位置で
の保持手段と共に増々その大型化が増長すること
になり望ましくない。
For this reason, in the conventional type, it is necessary to keep the spring force of the return spring relatively strong. Naturally, during operation, the movable iron core 15 must be moved against the force of the return spring, which increases the operating current and causes the coil 16 to move.
It is necessary to increase the number of windings, and this increases the size of the holding means at the return position, which is undesirable.

この考案は従来のものにおける上述の諸難点を
解決し小型化された簡単な構造でありながら確実
な動作が実現可能でその製作費も低減できる自己
保持ソレノイドを提供するものである。
This invention solves the above-mentioned problems of the conventional solenoid and provides a self-retaining solenoid that is compact and has a simple structure, yet can operate reliably and reduce manufacturing costs.

以下この考案の自己保持ソレノイドをその実施
例に基づき図面を使用して詳細に説明する。
Hereinafter, the self-holding solenoid of this invention will be explained in detail based on an embodiment thereof using the drawings.

第2図はこの考案の自己保持ソレノイドの実施
例の構成を示し、第1図に対応する部分には同一
符号を付してある。固定受12の閉塞板11aへ
の取付けは第1図で特に述べなかつたが、例えば
次のようにして行われる。閉塞板11aの中心に
小孔23が設けられ、一方固定受12の閉塞板1
1a側の中心位置より支持管20が一体に突出さ
れた構造を有している。支持管20が小孔23に
挿通されその支持管20の突出部分が周囲に押し
拡げられて固定受12が閉塞板11aに可締め付
けられている。なお固定受12を貫通するように
その軸心に沿つて小孔23が延長形成された可動
鉄心15の移動時に間隙g内の空気の出入が容易
に行われるようにしてある。
FIG. 2 shows the structure of an embodiment of the self-holding solenoid of this invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. Although not specifically described in FIG. 1, attachment of the fixed receiver 12 to the closing plate 11a is carried out, for example, as follows. A small hole 23 is provided in the center of the closing plate 11a, while the closing plate 1 of the fixed receiver 12
It has a structure in which the support tube 20 is integrally projected from the center position on the side 1a. The support tube 20 is inserted into the small hole 23, and the protruding portion of the support tube 20 is pushed out to the surroundings, so that the fixed receiver 12 is reliably tightened to the closing plate 11a. Note that a small hole 23 is formed to extend along the axis of the fixed receiver 12 so that air can easily enter and exit the gap g when the movable core 15 is moved.

又この実施例では可動鉄心15が磁気ヨーク1
1の軸心とほぼ直角な面で分割され、その2分さ
れた2個の可動鉄心部分により永久磁石13が両
側から挾設されている。この永久磁石13はアル
ニコ系磁石であつて、所定の磁界によつて着磁
し、これと反対方向の磁界によつて消磁可能な特
性のものを使用している。
Further, in this embodiment, the movable iron core 15 is connected to the magnetic yoke 1.
The permanent magnet 13 is interposed between the two movable iron core parts on both sides. The permanent magnet 13 is an alnico magnet having a characteristic that it can be magnetized by a predetermined magnetic field and demagnetized by a magnetic field in the opposite direction.

この可動鉄心15の固定受12と対向する面に
はその軸心を含む断面がV字型となる凸面22が
設けられている。又このV字型凸面22と対向す
る固定受12の端面には上述の凸面22が嵌合す
ることができるV字型凹面21が設けられてい
る。このような構造にすることにより可動鉄心1
5と固定受12との対向面積が大きくなり可動鉄
心15の吸引力を大きくすることが可能能とな
る。
A convex surface 22 having a V-shaped cross section including its axis is provided on the surface of the movable core 15 facing the fixed receiver 12. Further, a V-shaped concave surface 21 into which the above-mentioned convex surface 22 can be fitted is provided on the end surface of the fixed receiver 12 that faces this V-shaped convex surface 22. With this structure, the movable core 1
5 and the fixed receiver 12 becomes larger, and it becomes possible to increase the suction force of the movable iron core 15.

又実施例では円筒体14上に動作用コイル18
が巻装され、さらにこの上に復帰用コイル19が
巻回されている。この動作用コイル18及び復帰
用コイル19は例えば第3図のように電源に接続
されている。即ち両コイル18,19の一端は互
に接続されて電源Eの一端に接続され、又その各
他端はスイツチSW1,SW2をそれぞれ通じて電源
Eの他端に接続されている。
Further, in the embodiment, an operating coil 18 is provided on the cylindrical body 14.
is wound thereon, and a return coil 19 is further wound thereon. The operation coil 18 and the return coil 19 are connected to a power source, for example, as shown in FIG. 3. That is, one ends of both coils 18 and 19 are connected to each other and connected to one end of the power source E, and each other end is connected to the other end of the power source E through the switches SW 1 and SW 2 , respectively.

さらにスイツチSW1,SW2を“ON”にした時
に磁界の方向が逆向きになるようにコイル18,
19の巻き方向が選定されている。第3図の例で
は同一方向に巻かれ電流が逆向きにされている。
ソレノイドの動作時においては、第3図に示すス
イツチSW1を投入するとスイツチSW1を通じて動
作用コイル18に動作電流が流れる。この動作電
流により円筒体14内に軸心にほぼ平行な磁界
H1が形成される。この磁界H1は磁気ヨーク1
1、固定受12、可動鉄心15を通る閉磁路を形
成しこの閉磁路の磁気エネルギーによつて可動鉄
心15が固定受12側に移動しこれに当接する。
又この磁界H1によつて永久磁石13が着磁しこ
の状態で動作電流を遮断しても永久磁石13には
第4図に示す永久磁石13のB−H特性曲線に従
い残留磁気B1が残ることになる。従つて永久磁
石13の磁気力により可動鉄心15は固定受12
側に吸引され固定受12に保持される。
Furthermore , the coil 18,
19 winding directions are selected. In the example shown in FIG. 3, the wires are wound in the same direction and the current flows in opposite directions.
When the solenoid is in operation, when the switch SW 1 shown in FIG. 3 is turned on, an operating current flows through the switch SW 1 to the operating coil 18. This operating current creates a magnetic field approximately parallel to the axis within the cylindrical body 14.
H 1 is formed. This magnetic field H 1 is the magnetic yoke 1
1. A closed magnetic path is formed through the fixed receiver 12 and the movable core 15, and the magnetic energy of this closed magnetic path causes the movable core 15 to move toward the fixed receiver 12 and come into contact with it.
Also, the permanent magnet 13 is magnetized by this magnetic field H 1 , and even if the operating current is cut off in this state, the permanent magnet 13 retains residual magnetism B 1 according to the B-H characteristic curve of the permanent magnet 13 shown in FIG. It will remain. Therefore, due to the magnetic force of the permanent magnet 13, the movable iron core 15 is moved to the fixed receiver 12.
It is attracted to the side and held by the fixed receiver 12.

次に復帰動作を行わせるには第3図のスイツチ
SW2を投入する。スイツチSW2を通じて復帰用コ
イル19に復帰電流が流れ、この電流によつて円
筒体14内には軸心にほぼ平行でH1と逆向きの
磁界H2が形成される。この磁界H2によつて永久
磁石13の残留磁気は消磁される。従つてごく弱
い復帰ばねでも可動鉄心15は固定受12から離
脱し原位置に復帰する。この場合可動鉄心15の
突出方向を下向きにしてソレノイドを使用すれば
可動鉄心15の自重で復帰するので復帰用ばねは
不要となる。
Next, to perform the return operation, press the switch shown in Figure 3.
Insert SW 2 . A return current flows through the switch SW 2 to the return coil 19, and this current creates a magnetic field H 2 in the cylindrical body 14 that is substantially parallel to the axis and in the opposite direction to H 1 . The residual magnetism of the permanent magnet 13 is demagnetized by this magnetic field H2 . Therefore, even with a very weak return spring, the movable core 15 can be detached from the fixed receiver 12 and returned to its original position. In this case, if a solenoid is used with the protruding direction of the movable core 15 facing downward, the movable core 15 will return by its own weight, so a return spring will not be necessary.

この際第4図に示すように温度変化や電圧変動
などの影響によつて磁界H2の値が多少変動する
ことがある。例えば磁界がH3(|H3|<|H2
|)の場合には残留磁束密度B2が残存すること
になるが、これによる吸引力は弱いためこれに打
勝つ程度の弱い復帰力を与えてやれば容易に原位
置に復帰することになる。又磁界がH4(|H2
<|H4|)の場合には残留磁束密度B3が残存す
ることになるが、磁界H4による着磁極性がこれ
と逆方向になり反転段階で残留磁束密度が零点を
通過するのでこの通過点で原位置に復帰する。
At this time, as shown in FIG. 4, the value of the magnetic field H 2 may vary somewhat due to the influence of temperature changes, voltage fluctuations, etc. For example, if the magnetic field is H 3 (|H 3 |<|H 2
In the case of |), a residual magnetic flux density B 2 will remain, but the attraction force due to this is weak, so if a weak return force is applied to overcome this, it will easily return to its original position. . Also, the magnetic field is H 4 (|H 2
<|H 4 |), the residual magnetic flux density B 3 will remain, but the magnetization polarity due to the magnetic field H 4 will be in the opposite direction and the residual magnetic flux density will pass through the zero point at the reversal stage, so this It returns to its original position at the passing point.

実際にはソレノイドの磁気回路の構成部分によ
る磁気抵抗が存在するため、第5図にB″1,B′2
B′3として示すように、B1,B2,B3はそれぞれ少
ない値となる。ソレノイドの磁気回路の抵抗をR
とすると、パーミアンス係数をPは1/Rとな
り、コイルの起磁力による磁界をH、鉄心部分の
磁束をBとすると、P=1/R=B/Hなる関係がある
In reality, there is magnetic resistance due to the components of the magnetic circuit of the solenoid, so B″ 1 , B′ 2 ,
As shown as B′ 3 , B 1 , B 2 , and B 3 each have small values. The resistance of the magnetic circuit of the solenoid is R
Then, if the permeance coefficient P is 1/R, the magnetic field due to the magnetomotive force of the coil is H, and the magnetic flux of the iron core is B, then there is a relationship of P=1/R=B/H.

復帰時に必要な起磁力は作動時に必要な起磁力
の1/4程度でよいので、例えば復帰用コイル19の 巻数は動作用コイル18より少なくてもよい。こ
の考案の自己保持ソレノイドにおいては永久磁石
13として常温で着磁され、且つ消磁し易いアル
ニコ系磁石が使用されている。アルニコの抗磁力
は第1図に示した従来のものに使用される永久磁
石例えば酸化物磁石の抗磁力の値の1/3〜1/4程度
であ り、小さい復帰電流でも消磁することができる。
Since the magnetomotive force required at the time of return may be about 1/4 of the magnetomotive force required at the time of operation, the number of turns of the return coil 19 may be smaller than that of the operating coil 18, for example. In the self-holding solenoid of this invention, an alnico magnet is used as the permanent magnet 13, which is magnetized at room temperature and is easily demagnetized. The coercive force of alnico is about 1/3 to 1/4 of the coercive force of the permanent magnets used in the conventional magnets shown in Figure 1, such as oxide magnets, and it can be demagnetized even with a small return current. .

従来の酸化磁石などではその消磁が極めて困難
であつてキユーリー温度(450℃)以上の高温で
の加熱が必要である。しかしこの考案に使用する
永久磁石は常温で動作用コイル及び復帰用コイル
への動作電流及び復帰電流の供給によつて容易に
着磁及び消磁を繰返すことが可能である。又第4
図で点線の曲線H′2,B′1にに示すように一般に永
久磁石では保磁力H′2の大きいものが望まれてい
るが、この考案では保磁力H2は小さく残留磁束
密度B1が大きく、またソレノイドの磁気回路の
抵抗をできるだけ小さくしたものが望ましいこと
も明らかである。
Demagnetizing conventional oxidized magnets is extremely difficult and requires heating at temperatures above the Curie temperature (450°C). However, the permanent magnet used in this invention can be easily magnetized and demagnetized repeatedly at room temperature by supplying operating current and return current to the operating coil and return coil. Also the fourth
As shown in the dotted curves H′ 2 and B′ 1 in the figure, it is generally desired that permanent magnets have a large coercive force H′ 2 , but in this design, the coercive force H 2 is small and the residual magnetic flux density B 1 It is also clear that it is desirable that the resistance of the magnetic circuit of the solenoid be as small as possible.

このようにこの考案の第2図に示す実施例のも
のでは動作電流及び復帰電流の供給で永久磁石1
3が容易に着磁及び消磁を繰返すことが可能であ
り、可動鉄心15は固定受12とその対向面積を
大に設定されたV字型凸面22とV字型凹面21
とで強い吸引力が得られその起磁力により着磁さ
れた永久磁石13により自己保持され、しかも永
久磁石13はアルニコ系であるから残留磁束Br
が大きく、全体として大きな保持力が得られる。
又可動鉄心15内に軸心に直角な面内に挿入配設
される永久磁石13を第2図に示すように可動鉄
心15が固定受から難れた状態において、、磁気
ヨーク11の軸心方向の長さhの中心位置で可動
鉄心15に挿入すると最も効果的である。永久磁
石13はアルニコ系であるため機械的強度が大
で、可動鉄心15の吸引時の衝撃により破損する
おそれがない。
In this way, in the embodiment shown in FIG. 2 of this invention, the permanent magnet 1 is supplied with the operating current and the return current.
3 can easily repeat magnetization and demagnetization, and the movable iron core 15 has a fixed receiver 12, a V-shaped convex surface 22 and a V-shaped concave surface 21 with a large opposing area.
A strong attractive force is obtained and the permanent magnet 13 is self-retained by the magnetomotive force, and since the permanent magnet 13 is made of alnico, the residual magnetic flux Br
is large, and a large holding force can be obtained as a whole.
In addition, when the permanent magnet 13 inserted into the movable core 15 in a plane perpendicular to the axis is inserted into the movable core 15 in a plane perpendicular to the axis, as shown in FIG. It is most effective to insert it into the movable core 15 at the center position of the length h in the direction. Since the permanent magnet 13 is made of alnico, it has high mechanical strength, and there is no risk of damage due to impact when the movable iron core 15 is attracted.

磁気ヨークは従来のこの種のソレノイドと同様
に可動鉄心及び固定受を含む閉磁路を構成するも
のであればよく、他の形状とすることもできる。
The magnetic yoke may be of any shape as long as it constitutes a closed magnetic path including a movable iron core and a fixed receiver, similar to conventional solenoids of this type, and may have other shapes.

以上詳細に説明したようにこの考案の自己保持
ソレノイドは可動鉄心15に軸心に直角な面内で
アルニコ系永久磁石13が挿装された構成となつ
ている。又この永久磁石はアルニコ系であるため
残留磁気Brが大きく、抗磁力Hcが小さく、か
つ、さらに可動鉄心15と固定受12にV字型の
対向面が作成されているため作動時には極めて強
い吸引力が得られ、かつ大きな力で自己保持が行
われ、離脱時には僅かの復帰電流で円滑に復帰す
る。
As described above in detail, the self-holding solenoid of this invention has a structure in which the alnico permanent magnet 13 is inserted into the movable iron core 15 in a plane perpendicular to the axis. In addition, since this permanent magnet is made of alnico, it has a large residual magnetism Br and a small coercive force Hc.Furthermore, since the movable iron core 15 and the fixed receiver 12 have V-shaped opposing surfaces, they have an extremely strong attraction during operation. Power is obtained and self-retention is performed with a large force, and when released, it returns smoothly with a small return current.

従つてこの考案によれば装置も小型化されて堅
固であり復帰位置での保持手段も簡単で誤動作の
ない確実な動作が実現可能な自己保持ソレノイド
を提供することができる。
Therefore, according to this invention, it is possible to provide a self-holding solenoid which is compact and strong, has a simple holding means at the return position, and can realize reliable operation without malfunction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来使用されている自己保持ソレノイ
ドの構成を示す図、第2図はこの考案の自己保持
ソレノイドの実施例の構成を示す図、第3図は第
2図の実施例における動作用コイル及び復帰用コ
イルの電気結線を示す図、第4図はこの考案の自
己保持ソレノイドに使用される永久磁石の特性を
示す図、第5図は磁気回路の磁気抵抗を考慮した
第4図と対応した図である。 11:磁気ヨーク、12:固定受、13:永久
磁石、15:可動鉄心、18:動作用コイル、1
9:復帰用コイル。
Fig. 1 is a diagram showing the configuration of a conventionally used self-holding solenoid, Fig. 2 is a diagram showing the configuration of an embodiment of the self-holding solenoid of this invention, and Fig. 3 is a diagram showing the operation of the embodiment of Fig. 2. A diagram showing the electrical connection of the coil and the return coil, Figure 4 is a diagram showing the characteristics of the permanent magnet used in the self-holding solenoid of this invention, and Figure 5 is a diagram showing the characteristics of the permanent magnet used in the self-holding solenoid of this invention. This is a corresponding diagram. 11: Magnetic yoke, 12: Fixed receiver, 13: Permanent magnet, 15: Movable iron core, 18: Operating coil, 1
9: Return coil.

Claims (1)

【実用新案登録請求の範囲】 コイル内に可動鉄心が軸心にそつて移動自在に
配され、その可動鉄心は上記コイルの一端より外
部に突出し、上記コイルの他端部に上記可動鉄心
が吸込まれた時にこれを受止める固定受が設けら
れ、その固定受に磁気ヨークの一端が連結され、
磁気ヨークの他端は上記可動鉄心のコイルより突
出した部分の側面と近接する位置に延長配設され
た自己保持ソレノイドにおいて、 上記コイルは同一直線を軸心とする動作用コイ
ル及び復帰用コイルよりなり、 上記可動鉄心の固定受との対向面にV字状凸部
が一体に形成され、 固定受の可動鉄心との対向面にその凸部が嵌合
されて上記凸部と全面で対接可能なV字状凹部が
形成され、 上記可動鉄心に、これを上記直線方向において
2分するようにアルニコ系永久磁石が挿入され、 上記可動鉄心が外部に突出した状態で上記磁気
ヨークの軸心方向の長さのほゞ2分の1付近に上
記永久磁石は位置され、その永久磁石により2分
された両側部分を互に連結し、 上記動作用コイルに供給される動作電流により
生じる動作磁界により上記永久磁石が着磁され、
上記復帰用コイルに供給される復帰電流により生
じる復帰磁界により上記永久磁石がほゞ消磁さ
れ、 上記固定受には上記V字状凹部の底面より外部
に通じる小孔が貫通形成されていることを特徴と
する自己保持ソレノイド。
[Scope of Claim for Utility Model Registration] A movable iron core is disposed within the coil so as to be movable along the axis, the movable iron core protrudes outward from one end of the coil, and the movable iron core is sucked into the other end of the coil. A fixed receiver is provided to catch the magnetic yoke when the magnet is rotated, and one end of the magnetic yoke is connected to the fixed receiver.
The other end of the magnetic yoke is a self-holding solenoid that is extended to a position close to the side surface of the part of the movable core that protrudes from the coil. A V-shaped convex portion is integrally formed on the surface of the movable core facing the fixed receiver, and the convex portion is fitted onto the surface of the fixed receiver facing the movable core so that the entire surface faces the convex portion. A V-shaped recess is formed, and an alnico permanent magnet is inserted into the movable core so as to bisect it in the linear direction, and with the movable core protruding outward, the axis of the magnetic yoke is The permanent magnet is located approximately half the length in the direction, and the two halves of the permanent magnet are connected to each other, and the operating magnetic field generated by the operating current supplied to the operating coil is The above permanent magnet is magnetized by
The permanent magnet is almost demagnetized by the restoring magnetic field generated by the restoring current supplied to the restoring coil, and the fixed receiver has a small hole extending from the bottom of the V-shaped recess to the outside. Features a self-holding solenoid.
JP1978165438U 1978-11-30 1978-11-30 Expired JPS6138166Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978165438U JPS6138166Y2 (en) 1978-11-30 1978-11-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978165438U JPS6138166Y2 (en) 1978-11-30 1978-11-30

Publications (2)

Publication Number Publication Date
JPS5581913U JPS5581913U (en) 1980-06-05
JPS6138166Y2 true JPS6138166Y2 (en) 1986-11-05

Family

ID=29163828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978165438U Expired JPS6138166Y2 (en) 1978-11-30 1978-11-30

Country Status (1)

Country Link
JP (1) JPS6138166Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183834A (en) * 1985-02-08 1986-08-16 三菱電機株式会社 Electromagnetic switch
US6722628B1 (en) * 2003-02-06 2004-04-20 Sturman Industries, Inc. Miniature poppet valve assembly
JP5163318B2 (en) * 2008-06-30 2013-03-13 オムロン株式会社 Electromagnet device
JP7320470B2 (en) * 2020-03-23 2023-08-03 株式会社神戸製鋼所 Linear solenoid and electromagnetic proportional valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4431363Y1 (en) * 1968-08-14 1969-12-24
JPS5245867U (en) * 1975-09-27 1977-03-31
JPS5323939A (en) * 1976-08-18 1978-03-06 Mitsui Petrochem Ind Ltd Preparation of divalent phenols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4431363Y1 (en) * 1968-08-14 1969-12-24
JPS5245867U (en) * 1975-09-27 1977-03-31
JPS5323939A (en) * 1976-08-18 1978-03-06 Mitsui Petrochem Ind Ltd Preparation of divalent phenols

Also Published As

Publication number Publication date
JPS5581913U (en) 1980-06-05

Similar Documents

Publication Publication Date Title
JPH0134326Y2 (en)
US4306207A (en) Self-sustaining solenoid
US3950718A (en) Electromagnetic device
DE3361039D1 (en) Monostably functioning electromagnet having a permanent magnet armature
JPS6138166Y2 (en)
JPS6350819Y2 (en)
JPS59739Y2 (en) polarized electromagnetic device
JP2771780B2 (en) electromagnet
JPH0117077Y2 (en)
JP2003031088A (en) Magnetic drive mechanism for switch device
JPH04271103A (en) Electromagnetic device equipped with permanent magnet
JPH0260020A (en) Polar electromagnet device
JPH0117797Y2 (en)
JPH041698Y2 (en)
JPS6216487B2 (en)
JPS5812409Y2 (en) release type electromagnet device
JPS5934966Y2 (en) solenoid
JPS6127139Y2 (en)
JPH0322837Y2 (en)
JPH0325372Y2 (en)
JPS63133605A (en) Polarized electromagnet device
JPS6355771B2 (en)
JPH0427129Y2 (en)
JPH082968Y2 (en) Bistable solenoid
JPH0117799Y2 (en)