JPH0741367A - Silicon nitride sintered compact and production thereof - Google Patents

Silicon nitride sintered compact and production thereof

Info

Publication number
JPH0741367A
JPH0741367A JP5187874A JP18787493A JPH0741367A JP H0741367 A JPH0741367 A JP H0741367A JP 5187874 A JP5187874 A JP 5187874A JP 18787493 A JP18787493 A JP 18787493A JP H0741367 A JPH0741367 A JP H0741367A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
periodic table
sio
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5187874A
Other languages
Japanese (ja)
Other versions
JP3237963B2 (en
Inventor
Sentarou Yamamoto
泉太郎 山元
Koichi Tanaka
広一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18787493A priority Critical patent/JP3237963B2/en
Publication of JPH0741367A publication Critical patent/JPH0741367A/en
Application granted granted Critical
Publication of JP3237963B2 publication Critical patent/JP3237963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength by incorporating SiN as a main component and a group IIIa element in The periodic Table and holding a specific composition in a burnt molded body containing SiO2 or the like to keep fracture toughness on the polished mirror surface. CONSTITUTION:The molded body is obtained by incorporating the oxide (RE2O3) of group IIIa element in The Periodic Table or RE2O3 and SiO2 into SiN. Next, by sintering the molded body under a N2 containing atmosphere at 1600-2000 deg.C, a sintered body, (a) mainly containing SiN, (b) containing group IIIa element (RE) in The Periodic Table and oxygen and (c) satisfying I1<2.3, I2<1.9, -0.3<=I1-I2<=0.4 when the mol ratio SiO2/RE2O3 of the excess oxygen expressed in terms of SiO2 to Re expressed in terms of oxide (RE2O3) in the surface part of the sintered compact is I1 and the mol ratio in the center parts of the sintered compact is I2, is obtained. And a silicon nitride sintered compact >=5.5 MPa.m<1/2> in fracture toughness (K1c) of the mirror surface is produced by 0.06 mm-polishing the surface of the sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンなどの熱
機関用構造材料として有用な窒化珪素質焼結体およびそ
の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body useful as a structural material for a heat engine such as a gas turbine and a method for producing the same.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、高温にお
ける強度、硬度、熱的化学的安定性に優れた材料として
注目され、エンジニアリングセラミックスとして、特に
熱機関用構造材料としての応用が進められている。
2. Description of the Related Art Conventionally, a silicon nitride sintered body has attracted attention as a material excellent in strength, hardness, and thermal and chemical stability at high temperatures, and its application as engineering ceramics, particularly as a structural material for heat engines has advanced. Has been.

【0003】一般に、窒化珪素は、それ自体、難焼結性
であるために焼結助剤としてY2 3 などの周期律表第
3a族元素酸化物や、Al2 3 などを添加し、それを
成形後、窒素を含む非酸化性雰囲気中で1500〜20
00℃の温度で焼成することにより高密度の焼結体が得
られている。
Generally, since silicon nitride itself is difficult to sinter, it is necessary to add a Group 3a element oxide of the periodic table such as Y 2 O 3 or Al 2 O 3 as a sintering aid. After molding it, 1500-20 in a non-oxidizing atmosphere containing nitrogen
A high-density sintered body is obtained by firing at a temperature of 00 ° C.

【0004】[0004]

【発明が解決しようとする問題点】通常の焼結体を製品
化する場合には、その表面を研磨加工を施すが、例えば
タービンロータなどの複雑形状品を作製する場合には、
焼結体の表面すべてを研磨することができず、未研磨部
分、いわゆる焼き肌面が残存することとなる。
Problems to be Solved by the Invention When a normal sintered body is commercialized, the surface thereof is subjected to polishing. However, for example, when a complex shaped product such as a turbine rotor is manufactured,
The entire surface of the sintered body cannot be polished, and an unpolished portion, a so-called burnt surface, remains.

【0005】前述したような従来の方法で作製する場合
には、焼成中に非酸化性雰囲気中での窒化珪素と各種焼
結助剤との反応などにより分解が生じやすいため、焼き
肌面近傍では靱性や強度が低下し、複雑形状品の機械的
特性の安定化を阻害するという問題がある。
In the case of manufacturing by the conventional method as described above, decomposition is apt to occur due to reaction between silicon nitride and various sintering aids in a non-oxidizing atmosphere during firing, and therefore, near the burnt surface. However, there is a problem in that the toughness and strength are lowered, and the stabilization of the mechanical properties of the complex shaped product is hindered.

【0006】焼成時の窒化珪素と焼結助剤成分との反応
による分解を抑制する方法として、例えば、特開昭63
−190759号では、焼成中の雰囲気をSiOを含む
窒素雰囲気にすることが提案されているが、焼き肌面近
傍における強度や靱性を実用的なレベルまで高めるには
至っていないのが現状である。
As a method for suppressing the decomposition due to the reaction between the silicon nitride and the sintering aid component at the time of firing, for example, JP-A-63 / 1988
No. 190759 proposes to use a nitrogen atmosphere containing SiO as the atmosphere during firing, but it is the current situation that the strength and toughness in the vicinity of the burnt surface have not been increased to a practical level.

【0007】[0007]

【発明が解決しようとする問題点】本発明者らは、焼き
肌面近傍における強度や靱性の劣化の原因について詳細
に検討を行ったところ、焼結体表面における酸素量が分
解により低下することに起因して焼結体表面の組成、具
体的にはSiO2 /RE2 3 (RE:周期律表第3a
族元素)の比が内部の比より低下しているためであるこ
とを突き止めた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The inventors of the present invention have made detailed investigations on the cause of the deterioration of strength and toughness in the vicinity of the burnt surface. Due to the composition of the surface of the sintered body, specifically SiO 2 / RE 2 O 3 (RE: Periodic Table 3a
It has been found that this is because the ratio of group elements) is lower than the internal ratio.

【0008】そこで、本発明によれば、成形体における
表面の組成に対して焼結後の焼結体表面の組成の変動幅
を特定の範囲内となるように焼成雰囲気を制御すること
により焼結体の焼き肌面近傍の靱性および強度を実用的
なレベルにまで高めることができることを見出し本発明
に至った。
Therefore, according to the present invention, firing is performed by controlling the firing atmosphere so that the fluctuation range of the composition of the surface of the sintered body after sintering with respect to the composition of the surface of the molded body is within a specific range. The inventors have found that the toughness and strength in the vicinity of the burnt surface of a bonded body can be increased to a practical level, and the present invention has been completed.

【0009】即ち、本発明の窒化珪素質焼結体は、窒化
珪素を主成分とし、周期律表第3a族元素(RE)およ
び過剰酸素を含有し、焼結体表面部の前記周期律表第3
a族元素の酸化物換算量(RE2 3 )と過剰酸素のS
iO2 換算量のSiO2 /RE2 3 で表されるモル比
をI1 、焼結体中心部の前記モル比をI2 とした時、I
1 <2.3、I2 <1.9、−0.3≦I1 −I2
0.4を満足するとともに、焼結体表面を0.05mm
研磨した鏡面における破壊靱性(K1c)が5.5MPa
・m1/2 以上であることを特徴とするものである。ま
た、本発明の窒化珪素質焼結体の製造方法は、窒化珪素
に対して、周期律表第3a族元素酸化物(RE
2 3 )、あるいは周期律表第3a族元素酸化物(RE
2 3 )およびSiO2 を含有する成形体を窒素含有雰
囲気中で1600〜2000℃の温度で焼成するに当た
り、前記成形体におけるSiO2 /RE2 3 で表され
るモル比をI3、最終焼結体の表面部における前記モル
比をI1 とした時、I3 <1.9、I3−I1 ≦0.6
を満足するようにSiOを含む雰囲気中で焼成すること
を特徴とするものである。
That is, the silicon nitride-based sintered body of the present invention contains silicon nitride as a main component, contains a Group 3a element (RE) of the periodic table and excess oxygen, and has the above-mentioned periodic table on the surface of the sintered body. Third
Oxide equivalent of group a element (RE 2 O 3 ) and S of excess oxygen
When I 1 is the molar ratio represented by SiO 2 / RE 2 O 3 in terms of iO 2 and I 2 is the molar ratio in the center of the sintered body, I
1 <2.3, I 2 <1.9, -0.3 ≦ I 1 −I 2
0.4 is satisfied and the surface of the sintered body is 0.05 mm
Fracture toughness (K 1 c) on polished mirror surface is 5.5 MPa
-It is characterized in that it is at least m 1/2 . Further, the method for producing a silicon nitride sintered body of the present invention is based on periodic table 3a element oxide (RE
2 O 3 ) or oxide of Group 3a element of the periodic table (RE
2 O 3 ) and SiO 2 are fired at a temperature of 1600 to 2000 ° C. in a nitrogen-containing atmosphere, the molar ratio of SiO 2 / RE 2 O 3 in the above-mentioned compact is I 3 , I 3 <1.9, I 3 −I 1 ≦ 0.6, where I 1 is the molar ratio in the surface portion of the final sintered body.
The firing is performed in an atmosphere containing SiO so as to satisfy the above condition.

【0010】以下、本発明を詳述する。本発明における
窒化珪素質焼結体は、組成上、窒化珪素を主成分とし、
望ましくは70〜99モル%の割合で含まれるものであ
り、他の成分として周期律表第3a族元素(RE)およ
び過剰酸素を含有するものである。ここで、過剰酸素と
は、焼結体中に含まれる全酸素量から周期律表第3a族
元素酸化物として化学量論量で混入した酸素を除いた残
りの酸素量であり、実際には窒化珪素原料中の不純物酸
素あるいはSiO2 として添加された酸素から構成され
るものである。
The present invention will be described in detail below. The silicon nitride-based sintered body in the present invention has silicon nitride as a main component in terms of composition,
Desirably, it is contained in a proportion of 70 to 99 mol%, and contains the Group 3a element (RE) of the Periodic Table and excess oxygen as other components. Here, the excess oxygen is the total amount of oxygen contained in the sintered body, and is the amount of oxygen remaining after removing oxygen mixed in stoichiometrically as a Group 3a element oxide of the periodic table. It is composed of impurity oxygen in the silicon nitride raw material or oxygen added as SiO 2 .

【0011】本発明によれば、焼結体中に含まれる周期
律表第3a族元素の酸化物(RE23 )換算量と、過
剰酸素をSiO2 として換算した時の焼結体表面部のS
iO2 /RE2 3 で表されるモル比をI1 、焼結体中
心部の前記モル比をI2 とした時、I1 <2.3、I2
<1.9、−0.3≦I1 −I2 ≦0.4を満足するこ
とが重要である。
According to the present invention, the oxide (RE 2 O 3 ) conversion amount of the Group 3a element of the periodic table contained in the sintered body and the surface of the sintered body when the excess oxygen is converted into SiO 2 Part of S
Assuming that the molar ratio represented by iO 2 / RE 2 O 3 is I 1 and the molar ratio at the center of the sintered body is I 2 , I 1 <2.3, I 2
It is important to satisfy <1.9, -0.3 ≦ I 1 −I 2 ≦ 0.4.

【0012】本発明において、I1 およびI2 を上記の
範囲に限定したのは、I1 が2.3より大きかったり、
2 が1.9より大きいと1400℃の高温強度が十分
でなく、またI1 −I2 が−0.3より小さいと焼結体
表面の特に焼き肌面の靱性および強度の向上がなく、
0.4を越えると、焼結体の内部の高温強度が低下する
ためであり、またI1 −I2 の値が上記範囲を逸脱する
と内外差での組成差が大きいことに起因して内部応力が
発生しクラックなどが生じる場合もある。
In the present invention, I 1 and I 2 are limited to the above range because I 1 is larger than 2.3,
If I 2 is larger than 1.9, the high temperature strength at 1400 ° C. is not sufficient, and if I 1 -I 2 is smaller than -0.3, the toughness and strength of the surface of the sintered body, especially the burnt surface, are not improved. ,
When it exceeds 0.4, the high temperature strength inside the sintered body is lowered, and when the value of I 1 -I 2 deviates from the above range, the internal difference becomes large and the internal difference causes a large composition difference. In some cases, stress may occur and cracks may occur.

【0013】さらに、本発明の焼結体は、その焼結体表
面、例えば焼成後の焼き肌面を0.05mm研磨した鏡
面における破壊靱性(K1c)が5.5MPa・m1/2
上であることも重要である。これは、少なくとも焼き肌
面の機械的強度を高める上で重要な要素であり、上記破
壊靱性値が5.5MPa・m1/2 より低いと、焼き肌面
に不可避的に存在するボイドなどの欠陥によって容易に
破壊に至り、焼き肌面の高強度化を達成できないためで
ある。
Further, the sintered body of the present invention has a fracture toughness (K 1 c) of 5.5 MPa · m 1/2 on the surface of the sintered body, for example, a mirror surface obtained by polishing the burnt surface after firing by 0.05 mm. The above is also important. This is an important factor at least for increasing the mechanical strength of the burnt surface, and when the fracture toughness value is lower than 5.5 MPa · m 1/2, voids and the like which are unavoidably present on the burnt surface. This is because the defects easily lead to destruction and the strength of the burnt surface cannot be increased.

【0014】本発明における上記I1 、I2 の望ましい
範囲は、I1 ≦1.8、I2 ≦1.8、0≦I1 −I2
≦0.3である。
[0014] the desired range of the I 1, I 2 in the present invention, I 1 ≦ 1.8, I 2 ≦ 1.8,0 ≦ I 1 -I 2
≦ 0.3.

【0015】次に、本発明における窒化珪素質焼結体の
製造方法について説明すると、まず出発原料として、窒
化珪素粉末を主成分とし、添加成分として周期律表第3
a族元素酸化物粉末、場合により酸化珪素粉末を用い
る。なお、上記粉末の他に周期律表第3a族元素酸化物
と酸化珪素との複合化合物粉末や、窒化珪素−周期律表
第3a族元素酸化物−酸化珪素の複合化合物粉末の形態
で添加することもできる。用いる窒化珪素粉末は、α
型、β型のいずれでもよく、それらの平均粒子径は0.
4〜1.2μmが適当である。
Next, the method for producing a silicon nitride sintered body according to the present invention will be described. First, silicon nitride powder is the main component as a starting material, and the third component is a periodic table as an additional component.
An a-group element oxide powder, and optionally a silicon oxide powder is used. In addition to the above powders, it is added in the form of a complex compound powder of a Group 3a element oxide of the periodic table and silicon oxide, or a complex compound powder of silicon nitride-group 3a element oxide of the periodic table-silicon oxide. You can also The silicon nitride powder used is α
Type and β type may be used, and their average particle diameter is 0.
4 to 1.2 μm is suitable.

【0016】その後、これらの粉末を用いて所定の割合
で混合する。混合する割合としては窒化珪素成分を70
〜99モル%、周期律表第3a族元素酸化物および酸化
珪素などの添加成分を1〜30モル%の割合となるよう
に調製する。そして、この混合粉末を所望の成形手段、
例えば、金型プレス,冷間静水圧プレス,押出し成形等
により任意の形状に成形する。
After that, these powders are mixed at a predetermined ratio. The mixing ratio is 70% silicon nitride component.
˜99 mol%, and an additive component such as an oxide of a Group 3a element of the periodic table and silicon oxide is adjusted to a ratio of 1 to 30 mol%. Then, this mixed powder is formed into a desired molding means,
For example, a die press, a cold isostatic press, an extrusion molding, or the like is used to form an arbitrary shape.

【0017】その後、かかる成形体を窒素を含む非酸化
性雰囲気中で焼成する。焼成方法としては、普通焼成、
ホットプレス法の他、1気圧を越える、望ましくは5気
圧以上の窒素ガス加圧雰囲気中で焼成する方法、あるい
は前記焼成方法で得た焼結体を不活性ガス500〜20
00気圧下で焼成する熱間静水圧焼成法などが採用でき
る。
After that, the molded body is fired in a non-oxidizing atmosphere containing nitrogen. The firing method is normal firing,
In addition to the hot pressing method, a method of firing in a nitrogen gas pressurized atmosphere of more than 1 atm, preferably 5 atm or more, or the sintered body obtained by the above-mentioned firing method is an inert gas 500 to 20.
For example, a hot isostatic firing method of firing under 00 atm can be adopted.

【0018】本発明によれば、上記焼結過程において、
成形体における周期律表第3a族元素の酸化物換算量
(RE2 3 )と過剰酸素のSiO2 換算量とのSiO
2 /RE2 3 で表される比率をI3 、最終焼結体の表
面部における前記モル比をI1とした時、I3 <1.
9、I3 −I1 ≦0.6を満足するように焼成すること
が重要である。特に望ましくは、I3 ≦1.8、I3
1 ≦0である。
According to the present invention, in the above-mentioned sintering process,
SiO in the formed body in terms of oxide (RE 2 O 3 ) of Group 3a element of the periodic table and SiO 2 of excess oxygen.
Assuming that the ratio represented by 2 / RE 2 O 3 is I 3 , and the molar ratio in the surface portion of the final sintered body is I 1 , I 3 <1.
9, it is important to fire so as to satisfy I 3 −I 1 ≦ 0.6. Particularly preferably, I 3 ≦ 1.8, I 3
I 1 ≦ 0.

【0019】成形体および焼結体表面部のSiO2 /R
2 3 比I1 、I3 を上記の範囲に限定したのは、I
3 が1.9以上では、焼結過程では最終焼結体のSiO
2 /RE2 3 比I1 が2.3を越えてしまう場合があ
り、高強度の焼結体を安定して作製することができない
ためであり、I3 −I1 が0.6を越えると、焼結過程
での分解揮散が激しいことを意味し、SiO2 /RE2
3 比の変動幅が大きくなり焼結体表面近傍の靱性が低
下し焼結体の高温強度の向上が見られないためである。
SiO 2 / R on the surface of the molded body and the sintered body
The reason why the E 2 O 3 ratios I 1 and I 3 are limited to the above range is that I
When 3 is 1.9 or more, the final sintered body is made of SiO during the sintering process.
This is because the 2 / RE 2 O 3 ratio I 1 may exceed 2.3, and a high-strength sintered body cannot be produced stably, and I 3 -I 1 is 0.6. When it exceeds, it means that decomposition and volatilization during the sintering process is severe, and SiO 2 / RE 2
This is because the fluctuation range of the O 3 ratio becomes large, the toughness in the vicinity of the surface of the sintered body decreases, and the high temperature strength of the sintered body is not improved.

【0020】また、上記のように、成形体から焼結体に
なる過程においてSiO2 /RE23 比の変動を上記
範囲に抑制する方法としては、雰囲気を細かく制御する
ことが必要である。具体的には、雰囲気中にSi3 4
の分解を抑制するためにSi3 4 の分解平衡圧以上の
窒素ガスを導入するとともに、添加成分の分解を抑制す
るために、焼成炉内に、窒化珪素粉末、周期律表第3a
族元素酸化物粉末やSiO2 粉末、Si粉末とSiO2
粉末の混合粉末など、あるいはAl2 3 などの不可避
的に成形体中に含まれ低融点物質として揮散されやすい
ため、これら不純物成分も焼成炉内に配置することも有
効である。
Further, as described above, in order to suppress the variation of the SiO 2 / RE 2 O 3 ratio within the above range in the process of changing the compact into the sintered body, it is necessary to finely control the atmosphere. . Specifically, in the atmosphere, Si 3 N 4
Nitrogen gas at a decomposition equilibrium pressure of Si 3 N 4 or higher is introduced to suppress the decomposition of Si 3 N 4 , and silicon nitride powder and periodic table 3a
Group element oxide powder, SiO 2 powder, Si powder and SiO 2
It is also effective to arrange these impurity components in the firing furnace because they are mixed powders of powders or Al 2 O 3 and are unavoidably contained in the compact and easily volatilized as a low melting point substance.

【0021】[0021]

【作用】通常、焼成後の焼結体の表面には、焼結体成分
の分解や揮散などに起因して表面の荒れが生じており、
研磨面に比較して機械的特性が低下するという現象があ
る。単純な形状品においては、表面を研磨加工すること
により焼成時の荒れによる特性の劣化を防止することが
できるが、複雑形状品では研磨することができない箇所
が不可避的に存在するため、焼き肌面の機械的特性は避
けられないものであった。このように焼き肌面の機械的
特性が劣化する原因について検討したところ、焼結過程
でSiO2 成分が主として分解し焼結体表面の組成、具
体的にはSiO2 /RE2 3 (RE:周期律表第3a
族元素)の比が内部組成より低下していることによるこ
とを突き止めた。
[Function] Usually, the surface of the sintered body after firing is roughened due to decomposition and volatilization of the components of the sintered body.
There is a phenomenon that mechanical properties are deteriorated as compared with a polished surface. In the case of simple shaped products, polishing the surface can prevent deterioration of properties due to roughness during firing, but in the case of complicated shaped products, there are inevitably places that cannot be polished, so the burnt surface The mechanical properties of the surface were unavoidable. When the cause of the deterioration of the mechanical properties of the burnt surface was examined in this way, the SiO 2 component was mainly decomposed during the sintering process, and specifically the composition of the surface of the sintered body, specifically SiO 2 / RE 2 O 3 (RE : Periodic Table 3a
It was found that the ratio of group elements) was lower than the internal composition.

【0022】さらに、本発明によれば、この焼き肌面の
強度を高めることのできる要因について検討したとこ
ろ、焼き肌面近傍の靱性が高いと、焼き肌面を通じて発
生したクラックが焼き肌面直下の高靱性領域でその進展
を抑制し、焼結体の破壊を食い止める作用をなすことが
わかった。このことは、図1の焼き肌面近傍の靱性値と
高温強度との関係から明らかである。図1から明らかな
ように焼き肌面の強度が600MPa以上を達成するた
めには、焼き肌面近傍の靱性を5.5MPa・m1/2
上とすることが必要であることがわかる。
Further, according to the present invention, the factors that can enhance the strength of the burnt skin surface were examined. When the toughness in the vicinity of the burnt skin surface was high, cracks generated through the burnt skin surface were directly under the burnt skin surface. It was found that in the high toughness region of, the progress was suppressed and the fracture of the sintered body was suppressed. This is clear from the relationship between the toughness value near the burnt surface and the high temperature strength in FIG. As is clear from FIG. 1, in order to achieve a strength of 600 MPa or more on the burnt surface, it is necessary to set the toughness in the vicinity of the burnt surface to 5.5 MPa · m 1/2 or more.

【0023】本発明によれば、焼成過程において、成形
体のSiO2 /RE2 3 比を変動が小さくなるように
して焼成すると、焼結体内部と焼き肌面におけるSiO
2 /RE2 3 比の差も小さくなり、それと同時に焼き
肌面近傍の靱性の低下がなく、靱性が向上し、結果とし
て焼き肌面を有する焼結体の機械的特性を高めることが
できる。
According to the present invention, in the firing process, when the SiO 2 / RE 2 O 3 ratio of the molded body is reduced so that the variation is small, the SiO in the sintered body and the burnt surface are reduced.
The difference in the 2 / RE 2 O 3 ratio is also small, and at the same time, the toughness in the vicinity of the burnt surface is not reduced, the toughness is improved, and as a result, the mechanical properties of the sintered body having the burnt surface can be enhanced. .

【0024】また、実用的な強度を得るためには、Si
2 /RE2 3 比は特定の範囲に制御される必要があ
り、焼結体表面部の比I1 <2.3、焼結体内部の比I
2 <1.9、−0.3≦I1 −I2 ≦0.4、成形体に
おける比I3 <1.9、I3−I1 ≦0.6とすること
により1400℃における抗折強度600kg/mm2
以上が達成される。さらに、上記構成によれば、140
0℃における耐酸化性も向上し、後述する実施例から明
らかなように0.15mg/cm2 以下が達成できる。
Further, in order to obtain practical strength, Si
The O 2 / RE 2 O 3 ratio needs to be controlled within a specific range. The ratio of the surface of the sintered body is I 1 <2.3 and the ratio of the inside of the sintered body is I 1.
By setting 2 <1.9, -0.3 ≤ I 1 -I 2 ≤ 0.4, and the ratio I 3 <1.9, I 3 -I 1 ≤ 0.6 in the molded body, bending at 1400 ° C Strength 600 kg / mm 2
The above is achieved. Further, according to the above configuration, 140
Oxidation resistance at 0 ° C. is also improved, and 0.15 mg / cm 2 or less can be achieved as will be apparent from Examples described later.

【0025】なお、本発明における周期律表第3a族元
素とは、Y、Yb、Er、Lu、Ho、Dyなどが適当
である。
The elements of Group 3a of the periodic table in the present invention are preferably Y, Yb, Er, Lu, Ho, Dy and the like.

【0026】また、本発明の窒化珪素質焼結体によれ
ば、不純物としてAl、Mg、Ca、Feなどが含まれ
る場合があるが、これらの成分は低融点物質を生成しや
すいために、高温強度を高める上では、これらの成分量
を0.5重量%以下、特に0.1重量%以下に制御する
ことが望ましい。
According to the silicon nitride sintered body of the present invention, Al, Mg, Ca, Fe, etc. may be contained as impurities. However, since these components easily form a low melting point substance, In order to increase the high temperature strength, it is desirable to control the amount of these components to 0.5% by weight or less, particularly 0.1% by weight or less.

【0027】さらに、本発明の窒化珪素質焼結体は上記
組成以外に、W、Ti、Nb、V、Moなどの金属の炭
化物、窒化物、炭窒化物、硼化物などを10重量%以下
の割合で含んでいてもよい。
Further, in addition to the above composition, the silicon nitride sintered body of the present invention contains 10% by weight or less of carbides, nitrides, carbonitrides, borides and the like of metals such as W, Ti, Nb, V and Mo. May be included in the ratio.

【0028】[0028]

【実施例】出発原料として、窒化珪素粉末(平均粒径
0.5μm、不純物酸素量1重量%、純度99%)と、
純度95%以上の周期律表第3a族元素酸化物粉末、お
よび酸化珪素粉末を準備し、これらを表1の組成になる
ように秤量混合した。なお、表1中の調合組成における
SiO2 量は添加したSiO2 量と窒化珪素粉末中の不
純物酸素をSiO2 換算した量の合計量である。そし
て、この混合粉末をプレス成形した。得られた成形体に
対してICP分析により組成を分析したところ、調合組
成とほとんどかわらないものであった。
EXAMPLE As a starting material, silicon nitride powder (average particle size 0.5 μm, impurity oxygen amount 1% by weight, purity 99%),
An oxide powder of a Group 3a element of the periodic table having a purity of 95% or more and a silicon oxide powder were prepared, and these were weighed and mixed so as to have the composition shown in Table 1. The amount of SiO 2 in the formulation in Table 1 is the total amount of added SiO 2 and the amount of impurity oxygen in the silicon nitride powder converted to SiO 2 . Then, this mixed powder was press-molded. When the composition of the obtained molded body was analyzed by ICP analysis, it was almost the same as the blended composition.

【0029】次に、この成形体をカーボンヒータを配置
した焼成炉内で炭化珪素質の匣鉢内に入れ、成形体と一
緒にSi粉末とSiO2 粉末とを1:1.5の重量比で
混合した混合粉末および窒化珪素粉末を表1に示すよう
な量で配合し、1800℃、窒素ガス圧力10気圧の雰
囲気で5時間焼成した。
Next, this compact was placed in a silicon carbide jar in a firing furnace equipped with a carbon heater, and Si powder and SiO 2 powder together with the compact were mixed at a weight ratio of 1: 1.5. The mixed powder and the silicon nitride powder mixed in 1. were blended in the amounts shown in Table 1 and fired in an atmosphere of 1800 ° C. and a nitrogen gas pressure of 10 atm for 5 hours.

【0030】得られた焼結体に対して、厚さ10mmの
平板を焼結体内部および焼き肌面を含む表面から切り出
し、その試験についてSiO2 /RE2 3 比、抗折強
度、酸化重量増、破壊靱性を測定した。
A flat plate having a thickness of 10 mm was cut out from the obtained sintered body from the inside of the sintered body and the surface including the burnt surface, and the test was conducted on SiO 2 / RE 2 O 3 ratio, flexural strength and oxidation. Weight increase and fracture toughness were measured.

【0031】SiO2 /RE2 3 比I1 、I2 は、上
記の試験片を用いて、ICP分析および窒素酸素同時分
析を行い、SiO2 量は、全酸素量からICP分析によ
り定量した周期律表第3a族元素量に対して酸化物とし
て結合する量の酸素量を差し引いた残りの酸素量をSi
2 換算したものである。
The SiO 2 / RE 2 O 3 ratios I 1 and I 2 were subjected to ICP analysis and nitrogen-oxygen simultaneous analysis using the above test pieces, and the amount of SiO 2 was quantified by ICP analysis from the total oxygen amount. The remaining oxygen amount obtained by subtracting the amount of oxygen bonded to the oxide from the amount of Group 3a element of the periodic table is Si.
It is converted to O 2 .

【0032】抗折強度はJISR1601に基づき、上
記試験片よりJISによる試験片を切り出し(表面の試
験片では焼き肌面を含む)、室温での抗折強度を測定し
た。
The bending strength was measured based on JISR1601 by cutting a JIS test piece from the above-mentioned test piece (the surface test piece includes the burnt surface) and measuring the bending strength at room temperature.

【0033】また、内部試験片については1400℃の
高温における抗折強度も測定した。
The bending strength of the internal test piece at a high temperature of 1400 ° C. was also measured.

【0034】また、焼き肌面を含む試験片による強度測
定後、その試験片を用いて焼き肌面を0.01〜0.0
5mm研磨して鏡面出しを行い、IM法により破壊靱性
1cを測定した。さらに、酸化重量増は、大気中で1
400℃で24時間の酸化処理をして重量変化から算出
した。結果は、表1に示した。
After measuring the strength of the test piece including the burnt surface, the test piece is used to measure the burnt surface 0.01 to 0.0.
The surface was polished for 5 mm and mirror-finished, and the fracture toughness K 1 c was measured by the IM method. Furthermore, the increase in oxidized weight is 1 in the atmosphere.
It was calculated from the weight change after oxidation treatment at 400 ° C. for 24 hours. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、最終焼結体にお
ける表面部のSiO2 /RE2 3比I1 が2.3以
上、あるいは内部における比I2 が1.9以上の試料N
o.7,8,9,17はいずれも1400℃における強度
が低く、またI1 −I2 が−0.3より小さい試料No.
1では焼き肌面近傍の靱性および強度が低く、I1 −I
2 が0.4を越える試料No.8,10では、焼結体の内
部の高温強度が低下した。なお、試料No.1〜9,12
について、焼き肌面近傍の靱性と焼き肌面強度とを図1
にプロットした。この図1から明らかなように焼き肌面
近傍の靱性が高いほど焼き肌面強度が高いことがわか
る。
As is clear from Table 1, the sample N in which the SiO 2 / RE 2 O 3 ratio I 1 of the surface portion of the final sintered body is 2.3 or more, or the internal ratio I 2 is 1.9 or more.
Nos. 7, 8, 9, and 17 have low strength at 1400 ° C., and I 1 -I 2 is less than -0.3.
In No. 1, the toughness and strength in the vicinity of the burnt surface are low, and I 1 -I
In Sample Nos. 8 and 10 in which 2 exceeded 0.4, the high temperature strength inside the sintered body decreased. Sample Nos. 1 to 9 and 12
FIG. 1 shows the toughness in the vicinity of the burnt surface and the burnt surface strength.
Plotted on. As is clear from FIG. 1, the higher the toughness near the burnt surface, the higher the burnt surface strength.

【0037】また、成形体のSiO2 /RE2 3 比I
3 が1.9以上では、試料No.17のように焼結過程で
最終焼結体のI1 が2.3を越えてしまい高温強度が低
くかったり、試料No.18のように所望の特性が発揮さ
れなかった。I3 −I1 が0.6を越える試料No.1,
2,11,18では、焼結体表面近傍の靱性が低下し焼
結体の高温強度の向上が見られなかった。
In addition, the SiO 2 / RE 2 O 3 ratio I of the molded body
When 3 is 1.9 or more, I 1 of the final sintered body exceeds 2.3 in the sintering process as in sample No. 17, and the high temperature strength is low. The characteristics were not exhibited. Sample No. 1, in which I 3 -I 1 exceeds 0.6
In Nos. 2, 11 and 18, the toughness in the vicinity of the surface of the sintered body was lowered and no improvement in the high temperature strength of the sintered body was observed.

【0038】これらの比較例に対して、本発明の試料
は、いずれも焼き肌面靱性が5.5MPa・m1/2 以上
で、焼結体の焼き肌面の室温強度600MPa以上、内
部650MPa以上、1400℃の内部強度600MP
a以上が達成された。
In contrast to these comparative examples, the samples of the present invention all have a burnt surface toughness of 5.5 MPa · m 1/2 or more, a room temperature strength of the burned surface of the sintered body of 600 MPa or more, and an internal temperature of 650 MPa. Above, 1400 ℃ internal strength 600MP
A or more was achieved.

【0039】[0039]

【発明の効果】以上、詳述したように、本発明によれ
ば、成形体の焼結過程および得られた焼結体におけるS
iO2 /RE2 3 比を特定の条件を満足するように制
御するとともに焼結体の表面近傍の靱性を高めることに
より、焼き肌面における強度を高めることができる。こ
れにより、複雑形状品で表面研磨ができないような製品
においても高い強度を付与することができ、信頼性の高
い製品を提供することができる。
As described above in detail, according to the present invention, the sintering process of the molded body and the S in the obtained sintered body are performed.
By controlling the iO 2 / RE 2 O 3 ratio to satisfy a specific condition and increasing the toughness in the vicinity of the surface of the sintered body, the strength on the burnt surface can be increased. As a result, high strength can be imparted even to a product having a complicated shape that cannot be surface-polished, and a highly reliable product can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼き肌面近傍の靱性と焼き肌面強度との関係を
示した図である。
FIG. 1 is a diagram showing a relationship between toughness near a burnt surface and burnt surface strength.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主成分とし、周期律表第3a族
元素(RE)および過剰酸素を含有し、焼結体表面部の
前記周期律表第3a族元素の酸化物換算量(RE
2 3 )と過剰酸素のSiO2 換算量のSiO2 /RE
2 3 で表されるモル比をI1 、焼結体中心部の前記モ
ル比をI2 とした時、I1 <2.3、I2 <1.9、−
0.3≦I1 −I2 ≦0.4を満足するとともに、焼結
体表面を0.05mm研磨した鏡面における破壊靱性
(K1c)が5.5MPa・m1/2 以上であることを特徴
とする窒化珪素質焼結体。
1. An oxide conversion amount (RE) of a group 3a element of the periodic table on a surface portion of a sintered body containing silicon nitride as a main component, containing a group 3a element (RE) of the periodic table and excess oxygen.
2 O 3) and the excess oxygen in SiO 2 equivalent amount SiO 2 / RE
When I 1 is the molar ratio represented by 2 O 3 and I 2 is the molar ratio of the center of the sintered body, I 1 <2.3, I 2 <1.9, −
0.3 ≦ I 1 −I 2 ≦ 0.4 is satisfied, and the fracture toughness (K 1 c) on the mirror surface obtained by polishing the surface of the sintered body by 0.05 mm is 5.5 MPa · m 1/2 or more. A silicon nitride-based sintered body characterized by:
【請求項2】窒化珪素に対して、周期律表第3a族元素
酸化物(RE2 3 )、あるいは周期律表第3a族元素
酸化物(RE2 3 )およびSiO2 を含有する成形体
を窒素含有雰囲気中で1600〜2000℃の温度で焼
成するに当たり、前記成形体におけるSiO2 /RE2
3 で表されるモル比をI3 、最終焼結体の表面部にお
ける前記モル比をI1 とした時、I3 <1.9、I3
1 ≦0.6を満足するように焼成することを特徴とす
る窒化珪素質焼結体の製法。
2. A molding containing silicon nitride containing a group 3a element oxide of the periodic table (RE 2 O 3 ) or a group 3a element oxide of the periodic table (RE 2 O 3 ) and SiO 2. When the body is fired at a temperature of 1600 to 2000 ° C. in a nitrogen-containing atmosphere, SiO 2 / RE 2 in the formed body is used.
When I 3 is the molar ratio represented by O 3 and I 1 is the molar ratio in the surface portion of the final sintered body, I 3 <1.9, I 3
A method for producing a silicon nitride sintered body, which comprises firing so as to satisfy I 1 ≦ 0.6.
JP18787493A 1993-07-29 1993-07-29 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP3237963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18787493A JP3237963B2 (en) 1993-07-29 1993-07-29 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18787493A JP3237963B2 (en) 1993-07-29 1993-07-29 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0741367A true JPH0741367A (en) 1995-02-10
JP3237963B2 JP3237963B2 (en) 2001-12-10

Family

ID=16213726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18787493A Expired - Fee Related JP3237963B2 (en) 1993-07-29 1993-07-29 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3237963B2 (en)

Also Published As

Publication number Publication date
JP3237963B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
JPH0680470A (en) Production of silicon nitride sintered compact
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP4651144B2 (en) Silicon nitride sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH0741367A (en) Silicon nitride sintered compact and production thereof
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH1081568A (en) Silicon nitride-silicon carbide composite sintered product and its production
JP2742619B2 (en) Silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH03164472A (en) Production of silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JP2783711B2 (en) Silicon nitride sintered body
JPH05238829A (en) Sintered silicone nitride ceramic
JPH01282154A (en) Production of fiber-reinforced silicon oxynitride sintered compact
JPH03141163A (en) Production of sintered silicon nitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees