JPH0740890B2 - Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil - Google Patents

Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil

Info

Publication number
JPH0740890B2
JPH0740890B2 JP4258007A JP25800792A JPH0740890B2 JP H0740890 B2 JPH0740890 B2 JP H0740890B2 JP 4258007 A JP4258007 A JP 4258007A JP 25800792 A JP25800792 A JP 25800792A JP H0740890 B2 JPH0740890 B2 JP H0740890B2
Authority
JP
Japan
Prior art keywords
dha
feed
chrysecodinium
acid
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4258007A
Other languages
Japanese (ja)
Other versions
JPH06105659A (en
Inventor
功 丸山
洋太郎 安藤
恒夫 松林
澄子 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chlorella Industry Co Ltd
Original Assignee
Chlorella Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorella Industry Co Ltd filed Critical Chlorella Industry Co Ltd
Priority to JP4258007A priority Critical patent/JPH0740890B2/en
Publication of JPH06105659A publication Critical patent/JPH06105659A/en
Publication of JPH0740890B2 publication Critical patent/JPH0740890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Feed For Specific Animals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ドコサヘキサエン酸
含量の高い動物性プランクトン用飼料、この飼料に好適
に利用し得るドコサヘキサエン酸含量の高い微生物の培
養方法、並びにドコサヘキサエン酸高含有オイルの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feed for zooplankton having a high content of docosahexaenoic acid, a method for culturing a microorganism having a high content of docosahexaenoic acid which can be suitably used for this feed, and a method for producing an oil having a high content of docosahexaenoic acid. .

【0002】[0002]

【従来の技術】ドコサヘキサエン酸(以下、DHAと記
述する)は、乳幼児の脳の発育促進や老化に伴う学習機
能の低下抑制作用が注目され、近年医薬品や健康食品の
素材として需要が拡大している脂肪酸である。このDH
Aは、現在はマグロ等の魚類から抽出されているが、魚
類に含まれる総脂肪酸中に占める割合が15%と低く、さ
らに夾雑物も多いことから効率よく抽出することが困難
であるという問題がある。また、供給源を天然資源に頼
るため、安定した供給が困難であり、さらに資源量の減
少や海洋汚染の影響も問題となっている。
2. Description of the Related Art Docosahexaenoic acid (hereinafter referred to as "DHA") has attracted attention because of its ability to suppress the growth of infants' brains and the deterioration of their learning function associated with aging. It is a fatty acid. This DH
Although A is currently extracted from fish such as tuna, the ratio of total fatty acid contained in fish is as low as 15%, and it is difficult to extract A efficiently because it contains many impurities. There is. In addition, since the source of supply depends on natural resources, stable supply is difficult, and the reduction of resources and the effects of marine pollution are also problems.

【0003】ところで、海産性魚類の養殖にはDHAや
イコサペンタエン酸(EPA)のような高度不飽和脂肪
酸が必要であり、これらを強化した飼料を与えることに
よって成長や活力の増進、生存率の向上、奇形魚の減少
等がみられることが明らかとなっている。特に、DHA
を強化した場合にはその効果が顕著に表われる。EFA
-free 、EPA強化、DHA強化およびEPA+DHA
(1:1)強化の飼料をそれぞれ用いた場合のシマアジ
稚魚の魚体重の変化を図4に、また生存率の変化を図5
にそれぞれ示す。
By the way, for the cultivation of marine fish, polyunsaturated fatty acids such as DHA and icosapentaenoic acid (EPA) are necessary, and growth and vitality are enhanced and survival rate is improved by feeding a feed enriched with these. It has become clear that the number of malformed fish is decreasing. In particular, DHA
When strengthened, the effect is remarkable. EFA
-free, EPA strengthening, DHA strengthening and EPA + DHA
Fig. 4 shows changes in fish weight of juvenile striped horse mackerel and Fig. 5 shows changes in survival rate when using (1: 1) fortified feeds.
Are shown respectively.

【0004】[0004]

【発明が解決しようとする課題】ところが、現在、これ
ら魚類の飼料として用いられているワムシ、アルテミ
ア、貝・エビ・カニ類幼生等の動物性プランクトンに含
まれるDHAの量はごくわずかである。これは、動物性
プランクトンの飼料となるナンノクロロプシス、珪藻
類、テトラセルミス、クロレラ等の微細藻類やパン酵母
などがその脂質成分中にDHAをほとんど含まないため
である。上述のように、従来DHAそれ自体を抽出する
ことには困難が伴っている。そこで、現在では、これを
補うために乳化した魚油等を飼料と共に投与する方法が
とられている。しかしながら、この方法は、飼育水が汚
れる上に効率が悪く、加えて魚油を大量に投与するため
に脂質過剰の魚体が生産されてしまうという欠点があっ
た。したがって、この発明は、DHAが強化された動物
性プランクトン用飼料を提供することを目的とする。ま
た、この発明は、DHA強化動物性プランクトン用飼料
に好適に用いることができるDHA含量の高い微生物の
培養方法を提供することを目的とする。さらに、この発
明は、DHA含量が高いオイルの製造方法を提供するこ
とを目的とする。
However, the amount of DHA contained in zooplankton such as rotifer, artemia, shellfish, shrimp, and crab larvae which are currently used as feed for these fish is very small. This is because microalgae such as Nannochloropsis, diatoms, tetracelmis, chlorella, and baker's yeast, which are feeds for zooplankton, do not contain DHA in their lipid components. As described above, it has been difficult to extract the DHA itself in the related art. Therefore, at present, a method of administering emulsified fish oil or the like together with the feed is used to supplement this. However, this method has a drawback that the breeding water is dirty and inefficient, and in addition, a large amount of fish oil is administered, which results in the production of lipid-rich fish bodies. Therefore, an object of the present invention is to provide a feed for zooplankton in which DHA is enhanced. Another object of the present invention is to provide a method for culturing a microorganism having a high DHA content, which can be suitably used as a feed for DHA-enriched zooplankton. Further, the present invention aims to provide a method for producing an oil having a high DHA content.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記事情
に鑑み、DHAの含有量が高く、かつ動物性プランクト
ンに対して飼料価値が高い生物飼料に関して鋭意検討を
重ねた結果、鞭毛藻類クリセコディニウムを利用するこ
とにより上記課題を解決し得ることを見出しこの発明を
完成するに至った。すなわち、この発明は、鞭毛藻類ク
リセコディニウム藻体を動物性プランクトン用飼料とし
て利用することを特徴とする。
[Means for Solving the Problems] In view of the above circumstances, the present inventors have made earnest studies on a biological feed having a high DHA content and a high feed value with respect to zooplankton. The inventors have found that the above-mentioned problems can be solved by using chrysecodinium, and have completed the present invention. That is, the present invention is characterized by using the flagellated chryseocodinium alga as a feed for zooplankton.

【0006】クリセコディニウムは、渦鞭毛藻類に分類
され、細胞の大きさが 8〜20μmの単細胞藻類であっ
て、海洋に生息し、容易に採集することができるプラン
クトンである。
Chrysecodinium is a unicellular alga with a cell size of 8 to 20 μm, which is classified into dinoflagellates and is a plankton that lives in the ocean and can be easily collected.

【0007】クリセコディニウムの純粋培養は、フラス
コやジャ−ファメンタ−等を用い、通気もしくは撹拌を
行ないながら25−30℃以下で行なうことが好ましい。こ
の際用いられる培地には、例えば、塩分が 3−30%の海
水または人工海水に炭素源および窒素源を添加したもの
を使用することができる。培地に添加される炭素源とし
ては、例えば、グルコ−ス、グリセロ−ル、エタノ−ル
および酢酸ナトリウムを、また窒素源としては、例え
ば、ヒスチジン、ベタイン、硫酸アンモニウム、グルタ
ミン酸塩、およびイ−ストエキスをそれぞれ挙げること
ができる。さらに、炭素源および窒素源以外の成分とし
て、例えば、リン酸塩、微量金属、ビタミン類を培地に
添加することができる。
[0007] The pure culture of chrysecodinium is preferably carried out at 25-30 ° C or lower using a flask, a jar fermenter or the like while aeration or stirring is performed. As the medium used at this time, for example, seawater having a salt content of 3 to 30% or artificial seawater to which a carbon source and a nitrogen source are added can be used. Examples of the carbon source added to the medium include glucose, glycerol, ethanol and sodium acetate, and examples of the nitrogen source include histidine, betaine, ammonium sulfate, glutamate, and yeast extract. Each can be listed. Furthermore, as components other than the carbon source and the nitrogen source, for example, phosphates, trace metals, and vitamins can be added to the medium.

【0008】培養を終了した藻体は、凍結乾燥または噴
霧乾燥などの手段により粉末とした後、プランクトン用
飼料として利用が可能である。また、藻体をそのまま水
洗・濃縮し、海水等に懸濁させて冷蔵保存することによ
り生きたまま利用することもできる。さらに、このよう
にして得られた藻体に、従来動物性プランクトン用飼料
として用いられている物質、例えば、ナンノクロロプシ
ス、クロレラ、パン酵母を添加して利用することもでき
る。
[0008] The cultured alga can be used as a feed for plankton after being made into powder by means such as freeze-drying or spray-drying. Alternatively, the alga can be used as it is by washing it with water, concentrating it, suspending it in seawater, etc., and refrigerating it. Furthermore, the alga thus obtained can be used by adding substances conventionally used as a feed for zooplankton such as Nannochloropsis, Chlorella, and baker's yeast.

【0009】クリセコディニウムは優れた細胞内成分を
有しており、動物性プランクトンに対する飼料価値が高
い。また、DHA含量が高いため、海産魚の飼料として
重要なワムシ、アルテミア等の動物性プランクトンのD
HA含量を高めるための栄養強化用飼料としても好適に
用いることができる。
[0009] Chrysecodinium has excellent intracellular components and has a high feed value for zooplankton. Also, because of the high DHA content, D of zooplankton such as rotifer and artemia, which are important as feed for marine fish,
It can also be suitably used as a nutrition-enhancing feed for increasing the HA content.

【0010】このように、クリセコディニウムは通常の
培養法であってもDHA含量が高く、有用である。しか
しながら、本発明者らは、培養の条件を変えることによ
り、クリセコディニウムのDHA含量をさらに高めるこ
とが可能であることをも見出した。
As described above, chrysecodinium is useful because it has a high DHA content even in the usual culture method. However, the present inventors have also found that it is possible to further increase the DHA content of chrysecodinium by changing the culture conditions.

【0011】まず、培地の成分を変えることによりDH
Aの生産量を増大させることができる。通常用いられる
培養培地では窒素源として上述のようにヒスチジン、ベ
タイン等を用いているが、これをグルタミン酸、グルタ
ミン酸ナトリウム等のグルタミン酸塩、イ−ストエキス
等に変更することによりDHAの生産量は約数倍に増加
する。また、炭素源としては、上述のように、通常グル
コ−ス等が用いられているが、これをグリセロ−ル、エ
タノ−ル等のアルコ−ル類に変更することによりDHA
の生産量はさらに約2倍に増加する。さらに、クリセコ
ディニウムは通常10〜30℃で成長するが、10〜20℃で培
養を行なった場合に特にDHA含量が高く好ましい。
First, by changing the components of the medium, DH
The production amount of A can be increased. In a commonly used culture medium, histidine, betaine, etc. are used as the nitrogen source as described above. Glutamic acid, glutamate such as sodium glutamate, etc. Doubled. As described above, glucose or the like is usually used as the carbon source, but by changing it to an alcohol such as glycerol or ethanol, DHA can be obtained.
Production will be further increased about twice. Furthermore, chrysecodinium usually grows at 10 to 30 ° C., but when cultured at 10 to 20 ° C., the DHA content is particularly high, which is preferable.

【0012】また、従来クリセコディニウムの培養に使
用されている培地の濃度は、炭素源濃度が 6g/lと低
いものであった。このため、培養後の細胞密度は 2.5g
乾燥密度/lと低いものに止まり、これを高めることは
困難であった。本発明者らは、クリセコディニウムの増
殖に対する培地濃度の影響について検討を行ない、炭素
源濃度を50g/l程度とした場合でも増殖には何ら影響
がないことを見出した。炭素源濃度を50g/lとして培
養を行なった結果、培養終了後の細胞密度は25g/lと
なり、DHAの生産量は 850mg/lまで高まった。こ
れは、従来法と比較すると、細胞密度で10倍、DHA生
産量では20倍である。
The concentration of the medium conventionally used for culturing chrysecodinium was as low as 6 g / l of carbon source. Therefore, the cell density after culture is 2.5 g.
It was as low as dry density / l, and it was difficult to increase it. The present inventors have examined the influence of the medium concentration on the growth of chrysocodinium, and have found that even if the carbon source concentration is about 50 g / l, there is no effect on the growth. As a result of culturing with a carbon source concentration of 50 g / l, the cell density after culturing was 25 g / l, and the DHA production amount was increased to 850 mg / l. This is 10 times higher in cell density and 20 times higher in DHA production amount than the conventional method.

【0013】上に示す最適の条件でクリセコディニウム
の培養を行なった場合、クリセコディニウムの総脂肪酸
に占めるDHAの割合を約55%まで高めることができ
る。したがって、培養後乾燥してDHA高含有藻体とす
ることにより、動物性プランクトン用試料として使用す
るだけではなく、食品や他の動物の飼料に簡単に利用す
ることができる。また、この藻体から、ヘキサン等を用
いる常法によって脂質を抽出することによりDHAを高
度に含有するオイルを得ることができる。このようにし
て調製されたDHA高含有オイルは、医薬品原料や健康
食品原料として好適に用いることができる。
When the chrysecodinium is cultured under the optimum conditions shown above, the proportion of DHA in the total fatty acids of the chrysecodinium can be increased to about 55%. Therefore, by drying after culturing to obtain a DHA-rich algal body, it can be used not only as a sample for zooplankton but also as a food or a feed for other animals. Further, an oil containing a high amount of DHA can be obtained by extracting lipids from this alga by a conventional method using hexane or the like. The DHA-rich oil thus prepared can be suitably used as a raw material for medicines and a raw material for health foods.

【0014】[0014]

【実施例】以下、この発明を、実施例に基づいてより詳
細に説明する。 実施例 1 海産魚の初期飼料として重要なシオミズツボワムシ(以
下、ワムシと記載する)の生産を、クリセコディニウム
を用いて行なった。
EXAMPLES The present invention will now be described in more detail based on examples. Example 1 Production of an important rotifer, Rotifer (hereinafter referred to as rotifer), which is important as an initial feed for marine fish, was carried out using chrysecodinium.

【0015】ワムシの飼料となるクリセコディニウム・
スピ−セスは、下記表1に示す組成の培地で 7日間培養
した後、遠心分離により水洗・濃縮を行ない、冷蔵保存
した。 表 1 −−−−−−−−−−−−−−−−−−−−−−−−− NaCl 10 g MgCl2 ・7H2 O 1.67 g KCl 0.27 g CaCl2 ・2H2 O 0.27 g グルコ−ス 20 g グルタミン酸 10 g (NH3 2 SO4 0.33 g NH2 PO4 0.66 g ビオチン 6.6 μg ビタミンB1 333 μg ビタミンB12 3.3 μg EDTA -Na -Fe 19.5 mg A5 溶液(1) 3.3 ml −−−−−−−−−−−−−−−−−−−−−−−−−− (1) H3 BO3 2.86g、MgCl2 ・4H2 O 1.81
g、ZnSO4 ・7H2 O 0.22g、CuSO4 ・5H
2 O0.08gおよびNa2 MoO4 0.021gを純水 1リッ
トルに溶解し、H2 SO4 1滴を添加して調製。 このようにして生産されたクリセコディニウムには、そ
の総脂肪酸の45%を占めるDHAが含まれていた。
Chrysecodinium as a feed for rotifers
The space was cultured in a medium having the composition shown in Table 1 below for 7 days, washed with water and concentrated by centrifugation, and stored in a refrigerator. Table 1 ------------------------- NaCl 10 g MgCl 2 · 7H 2 O 1.67 g KCl 0.27 g CaCl 2 · 2H 2 O 0.27 g glucoside -Su 20 g Glutamic acid 10 g (NH 3 ) 2 SO 4 0.33 g NH 2 PO 4 0.66 g Biotin 6.6 μg Vitamin B 1 333 μg Vitamin B 12 3.3 μg EDTA-Na 1-Fe 19.5 mg A 5 solution (1) 3.3 ml −−−−−−−−−−−−−−−−−−−−−−−−−− (1) H 3 BO 3 2.86 g, MgCl 2 .4H 2 O 1.81
g, ZnSO 4 · 7H 2 O 0.22g, CuSO 4 · 5H
Prepared by dissolving 0.08 g of 2 O and 0.021 g of Na 2 MoO 4 in 1 liter of pure water, and adding 1 drop of H 2 SO 4 . The chrysecodinium produced in this way contained DHA, which accounted for 45% of its total fatty acids.

【0016】ワムシの培養は、 500リットルのパンライ
ト水槽中で、毎日1回上述のクリセコディニウムを給餌
しながら8日間行なった。その結果、ワムシは図1に示
す通りに増殖した。図1において、横軸は培養日数、縦
軸は 1ml当りの個体数で表わした培養液中のワムシ密
度をそれぞれ示す。増加したワムシは、培養開始から4
日目および8日目に収穫した。8日間の培養で、 2.8×
107 個体のワムシを生産することができた。 実施例 2 海産魚の生物飼料として重要なアルテミアを、クリセコ
ディニウムを用いて養成した。アルテミアの飼料となる
クリセコディニウム・スピ−セスは、実施例1と同様に
して培養したものを用いた。
Cultivation of rotifers was carried out in a 500-liter Panlite water tank once daily for 8 days while feeding the above-mentioned chrysecodinium. As a result, the rotifer grew as shown in FIG. In FIG. 1, the horizontal axis shows the number of culture days and the vertical axis shows the rotifer density in the culture solution expressed in the number of individuals per ml. The increased rotifer is 4
Harvested on days 1 and 8. 8 days of culture, 2.8 ×
10 7 It was possible to produce individual rotifers. Example 2 Artemia, which is important as a biofeed for marine fish, was cultivated using chrysecodinium. Crycecodinium spices, which is a feed for Artemia, was cultured in the same manner as in Example 1.

【0017】アルテミアの養成は、ふ化したアルテミア
幼生を 100リットル容のパンライト水槽に 5個体/ml
となるように収容し、毎日1回上記クリセコディニウム
を給餌しながら10日間培養することにより行なった。そ
の結果を図2に示す。図2において、横軸は養成日数、
縦軸はアルテミアの生存率(%)並びに全長の平均値
(mm)をそれぞれ示す。
The training of Artemia was carried out by hatching Artemia reared larvae in a Panlite water tank of 100 liters at 5 individuals / ml.
It was carried out by culturing for 10 days while feeding the above chrysecodinium once a day. The result is shown in FIG. In Fig. 2, the horizontal axis is the number of training days,
The vertical axis represents the survival rate (%) of Artemia and the average value (mm) of the entire length.

【0018】図2より明らかなように、養成開始から10
日目には、アルテミアの平均全長は3.0mmに達した。
また、養成期間中の生存率も70%と高いものであった。
したがって、クリセコディニウムはアルテミア養成用飼
料としても優れていることが明らかである。 実施例 3 クリセコディニウムを用いてワムシおよびアルテミアを
短期間培養し、DHA含有量の増大効果を調べた。ワム
シおよびアルテミアの培養に用いるクリセコディニウム
は、実施例1と同様に培養したものを用いた。
As is clear from FIG. 2, 10 times from the start of training.
On day one, the average total length of Artemia reached 3.0 mm.
In addition, the survival rate during the training period was as high as 70%.
Therefore, it is clear that chrysecodinium is excellent as a feed for artemia training. Example 3 Rotifer and Artemia were cultured for a short period of time using chrysecodinium, and the effect of increasing DHA content was examined. The chrysecodinium used for culturing rotifer and artemia was cultured in the same manner as in Example 1.

【0019】培養するワムシおよびアルテミアは、それ
ぞれ 300個体/mlおよび 100個体/mlの密度になる
ように海水に懸濁し、共にクリセコディニウムを給餌し
ながら30時間培養した。ワムシおよびアルテミアの培養
開始時および培養終了時の脂肪酸分析の結果を下記表2
に示す。 表 2 ワムシおよびアルテミアの脂肪酸分析結果 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ワ ム シ アルテミア −−−−−−− −−−−−−− 開始時 終了時 開始時 終了時 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ミリスチン酸 1.3 6.2 -- 12.2 パルミチン酸 19.0 12.7 13.2 3.8 パルミトオレイン酸 4.0 2.5 -- -- ステアリン酸 4.4 4.0 5.8 3.0 オレイン酸 2.9 12.7 33.4 43.5 リノ−ル酸 23.0 5.3 5.5 4.6 リノレン酸 28.6 3.8 21.3 16.1 イコサペンタエン酸 -- 5.7 2.6 5.7 ドコサヘキサエン酸(DHA) -- 40.3 -- 10.6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 数字は%
The rotifer and artemia to be cultured were suspended in seawater so as to have a density of 300 individuals / ml and 100 individuals / ml, respectively, and cultured for 30 hours while feeding chrycecodinium together. The results of fatty acid analysis at the start and end of culture of rotifer and artemia are shown in Table 2 below.
Shown in. Table 2 Fatty acid analysis results of rotifer and artemia --------------------------- Rotifer artemia ----- −−−−−−−−−− At start At end At start At end −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Myristin Acid 1.3 6.2-- 12.2 Palmitic acid 19.0 12.7 13.2 3.8 Palmitooleic acid 4.0 2.5 ---- Stearic acid 4.4 4.0 5.8 3.0 Oleic acid 2.9 12.7 33.4 43.5 Linoleic acid 23.0 5.3 5.5 4.6 Linolenic acid 28.6 3.8 21.3 16.1 Icosapentaenoic acid --5.7 2.6 5.7 Docosahexaenoic acid (DHA) --40.3 --10.6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

【0020】表2から明らかなように、ワムシの場合に
は、培養開始時にはDHAを全く含有しなかったにもか
かわらず、30時間培養した後にはDHAの含有量は40%
にも達し、短時間でDHAの含有量を飛躍的に高めるこ
とができた。また、アルテミアの場合にも、培養開始時
にはDHAを全く含有していなかったが、短時間でDH
Aの含有量を10%まで高めることが可能であった。した
がって、クリセコディニウムは、動物性プランクトンの
栄養強化用飼料としても非常に優れた効果を有している
ことが明らかである。 比較例 1
As is clear from Table 2, in the case of rotifer, the content of DHA was 40% after 30 hours of culturing, although it did not contain DHA at the start of culturing.
In addition, the content of DHA could be dramatically increased in a short time. Also, in the case of Artemia, DH was not contained at the start of the culture, but DH
It was possible to increase the content of A to 10%. Therefore, it is clear that chrysecodinium has a very excellent effect as a diet for enrichment of zooplankton. Comparative example 1

【0021】ワムシの飼料としてクリセコディニウムの
代わりに下記表3に示す種々の飼料を用いた他は上記実
施例1と同様の方法でワムシの培養を行ない、培養後の
ワムシに含有されるイコサペンタエン酸(EPA)およ
びドコサヘキサエン酸(DHA)の量を測定した。その
結果を表3に併記する。なお、表3における各数値は総
脂肪酸に対する割合(%)を示し、trはトレ−ス量を
表わす。 表 3 ワムシのEPAおよびDHA含量 −−−−−−−−−−−−−−−−−−−−−−−−−−− 飼 料 EPA DHA −−−−−−−−−−−−−−−−−−−−−−−−−−− ナンノクロロプシス 22.8 3.4 テトラセルミス 5.2 0.3 クロレラ tr 0 パン酵母 0 0 油脂酵母 7.5 3.1 =========================== クリセコディニウム 5.7 40.3 −−−−−−−−−−−−−−−−−−−−−−−−−−−
The rotifer was cultivated in the same manner as in Example 1 except that various feeds shown in Table 3 below were used instead of chrysecodinium as the rotifer feed, and the rotifer was contained in the rotifer after culturing. The amounts of icosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were measured. The results are also shown in Table 3. Each numerical value in Table 3 indicates a ratio (%) to the total fatty acid, and tr indicates a trace amount. Table 3 EPA and DHA content of rotifers --------------------------- Feed EPA DHA ------------- −−−−−−−−−−−−−−−− Nannochloropsis 22.8 3.4 Tetrasermis 5.2 0.3 Chlorella tr 0 Baker's yeast 0 0 Oil and fat yeast 7.5 3.1 === ======================== Chrysecodinium 5.7 40.3 ------------------ −−−−−−−−−−−

【0022】表3から明らかなように、従来用いられて
いる飼料ではわずかにナンノクロロプシスだけがEPA
を強化するのみであり、DHAを強化する飼料はない。
これに対して、クリセコディニウムはDHAを著しく強
化することがわかる。 実施例 4 種々の窒素化合物を添加した培地でクリセコディニウム
・スピ−セスを培養し、各々の場合のDHAの生産量の
比較を行なった。
As is clear from Table 3, in the conventional feeds, only the nannochloropsis was found to be EPA.
There is no diet that enhances DHA.
In contrast, chrysecodinium is found to significantly enhance DHA. Example 4 Chrysecodinium spesces was cultured in a medium containing various nitrogen compounds, and the DHA production amount in each case was compared.

【0023】まず、下記表4に示す組成を有する基礎培
地に、窒素源として下記表5に示す各種の窒素化合物を
窒素濃度で 0.3g/lとなるように添加して培地を調製
した。調製した各々の培地を坂口フラスコに入れ、25℃
で 7日間、クリセコディニウム・スピ−セスの培養を行
ない、DHAの生産量を測定した。その結果を表5に併
記する。 表 4 基 礎 培 地 の 組 成 −−−−−−−−−−−−−−−−−−−−−−−−− NaCl 10 g MgCl2 ・7H2 O 1.67 g KCl 0.27 g CaCl2 ・2H2 O 0.27 g グルコ−ス 6 g KH2 PO4 0.2 g ビオチン 2 μg ビタミンB1 100 μg ビタミンB12 1 μg EDTA -Na -Fe 5.8 mg A5 溶液(1) 1 ml −−−−−−−−−−−−−−−−−−−−−−−−−− (1) H3 BO3 2.86g、MgCl2 ・4H2 O 1.81
g、ZnSO4 ・7H2 O 0.22g、CuSO4 ・5H
2 O0.08gおよびNa2 MoO4 0.021gを純水 1リッ
トルに溶解し、H2 SO4 1滴を添加して調製。 表 5 各種の窒素化合物を添加した培地でクリセコディニウム・ スピ−セスを培養したときのDHAの生産量 −−−−−−−−−−−−−−−−−−−−−−−−−−− 窒 素 源 DHAの生産量(mg/l) −−−−−−−−−−−−−−−−−−−−−−−−−−− 硫酸アンモニウム 1.0 ヒスチジン 3.6 塩酸ベタイン 1.8 カザミノ酸 27.3 グルタミン酸 42.5 グルタミン酸ナトリウム 45.3 イ−ストエキス 40.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−
First, a basic medium having the composition shown in Table 4 below.
On the ground, various nitrogen compounds shown in Table 5 below were used as nitrogen sources.
Prepare the medium by adding it to a nitrogen concentration of 0.3 g / l
did. Put each prepared medium into a Sakaguchi flask and keep at 25 ℃.
Crycecodinium spesces culture for 7 days at
No, DHA production was measured. The results are also shown in Table 5.
Write down. Table 4 Foundation composition2・ 7H2O 1.67 g KCl 0.27 g CaCl2・ 2H2O 0.27 g Glucose 6 g KH2POFour 0.2 g biotin 2 μg vitamin B1 100 μg vitamin B12 1 μg EDTA-Na-Fe 5.8 mg AFivesolution(1)  1 ml −−−−−−−−−−−−−−−−−−−−−−−−−− (1) H3BO32.86g, MgCl2・ 4H2O 1.81
g, ZnSOFour・ 7H2O 0.22g, CuSOFour・ 5H
2O 0.08g and Na2MoOFour 0.021 g of pure water 1 liter
Dissolve in tor, H2SOFourPrepared by adding 1 drop. Table 5 Amount of DHA produced when Crycecodinium spices was cultured in a medium supplemented with various nitrogen compounds ----------------------- -------- Nitrate source DHA production (mg / l) ------------------------------------------- ammonium sulfate 1.0 histidine 3.6 betaine hydrochloride 1.8 Casamino acid 27.3 Glutamic acid 42.5 Sodium glutamate 45.3 Yeast extract 40.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−

【0024】表5から明らかなように、培地にグルタミ
ン酸ナトリウム、グルタミン酸およびイ−ストエキスを
添加した場合にDHAの生産量が40mg/lを上回っ
た。これらの窒素化合物と比較すると、カザミノ酸を用
いた場合にはやや劣り、他の化合物を用いた場合には著
しく劣っていた。 実施例 5 種々の炭素源を添加した培地でクリセコディニウム・ス
ピ−セスを培養し、各々の場合のDHAの生産量の比較
を行なった。
As is clear from Table 5, when sodium glutamate, glutamic acid and east extract were added to the medium, the production amount of DHA exceeded 40 mg / l. Compared with these nitrogen compounds, they were slightly inferior when casamino acids were used, and remarkably inferior when other compounds were used. Example 5 Chrysecodinium spesces was cultured in a medium supplemented with various carbon sources, and the production amount of DHA in each case was compared.

【0025】まず、上記表4に示す組成を有する基礎培
地にグルタミン酸ナトリウム 3.7g/lを添加し、グル
コ−スの代わりに下記表6に示す各種の炭素源を各々 6
g/lとなるように添加して培地を調製した。この際、
エタノ−ルおよび有機酸については、培養中に消費され
る量に応じて少量ずつ添加した。調製した各々の培地を
坂口フラスコに入れ、25℃で 7日間、クリセコディニウ
ム・スピ−セスの培養を行い、培養後にDHA生産量を
測定した。その結果を表6に併記する。 表 6 各種の炭素源を添加した培地でクリセコディニウム・ スピ−セスを培養したときのDHAの生産量 −−−−−−−−−−−−−−−−−−−−−−−−−−− 炭 素 源 DHAの生産量(mg/l) −−−−−−−−−−−−−−−−−−−−−−−−−−− グルコ−ス 45.3 酢酸 37.0 ガラクト−ス 44.1 ショ糖 1.5 グリセロ−ル 100.6 エタノ−ル 93.6 コハク酸 1.5 廃糖蜜 5.8 −−−−−−−−−−−−−−−−−−−−−−−−−−−
First, 3.7 g / l of sodium glutamate was added to the basal medium having the composition shown in Table 4 above, and various carbon sources shown in Table 6 below were added instead of glucose.
The medium was prepared by adding them so as to be g / l. On this occasion,
Ethanol and organic acid were added little by little depending on the amount consumed during the culture. Each of the prepared culture media was placed in a Sakaguchi flask, and the chrysecodinium spices were cultured at 25 ° C. for 7 days, and the DHA production amount was measured after the culture. The results are also shown in Table 6. Table 6 Amount of DHA produced when Crycecodinium spices was cultured in a medium to which various carbon sources were added ----------------------- ----- Carbon source DHA production (mg / l) ---------------------------------------- Glucose 45.3 Acetic acid 37.0 Galactose 44.1 Sucrose 1.5 Glycerol 100.6 Ethanol 93.6 Succinic acid 1.5 Waste molasses 5.8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−

【0026】表6から明らかなように、炭素源としてグ
リセロ−ルまたはエタノ−ルを用いた場合には、従来法
で用いられるグルコ−ス等を用いた場合の約2倍の量の
DHAが得られた。さらに、グリセロ−ル並びにエタノ
−ルは、その他の炭素源と比較しても著しく優れたもの
である。また、安価な発酵原料として知られている廃糖
蜜も、生産量は低いもののDHA生産を可能にする炭素
源である。 実施例 6 異なった温度でクリセコディニウム・スピ−セスを培養
し、各々の場合のDHAの生産量の比較を行なった。ク
リセコディニウム・スピ−セスの培養は、上記表4に示
す組成を有する基礎培地を用い、25℃で 7日間行なっ
た。結果を下記表7に示す。 表 7 異なった温度でクリセコディニウム・スピ−セス を培養したときのDHAの生産量 −−−−−−−−−−−−−−−−−−−−−−−−− 培養温度(℃) DHAの生産量(mg/l) −−−−−−−−−−−−−−−−−−−−−−−−− 30 43.2 25 45.3 20 47.0 15 72.3 12 126.0 10 75.0 −−−−−−−−−−−−−−−−−−−−−−−−−
As is clear from Table 6, when glycerol or ethanol is used as the carbon source, the amount of DHA is about twice as much as that when glucose or the like used in the conventional method is used. Was obtained. Further, glycerol and ethanol are remarkably excellent as compared with other carbon sources. Also, molasses, which is known as an inexpensive fermentation raw material, is a carbon source that enables DHA production although its production is low. Example 6 Chrysecodinium spices were cultured at different temperatures, and the amount of DHA produced in each case was compared. Crycecodinium spesces was cultured for 7 days at 25 ° C. using a basal medium having the composition shown in Table 4 above. The results are shown in Table 7 below. Table 7 Production of DHA when culturing Chrysecodinium spesces at different temperatures ----------------- Culture temperature (° C.) DHA production (mg / l) −−−−−−−−−−−−−−−−−−−−−−−− 30 43.2 25 45.3 20 47.0 15 72.3 12 126.0 10 75.0 −−−−−−−−−−−−−−−−−−−−−−−−−

【0027】表7から明らかなように、10〜30℃の温度
範囲において、クリセコディニウム・スピ−セスは生長
し、DHAの生産も行われる。とりわけ10〜20℃におい
ては、生産量が70mg/lを上回り、DHA生産の観点
からは好ましい。 実施例 7 培地濃度を高くしてクリセコディニウム・スピ−セスを
高密度に培養し、DHAの生産を行なった。
As is clear from Table 7, in the temperature range of 10 to 30 ° C., chrysecodinium spices grow and DHA is also produced. Particularly, at 10 to 20 ° C, the production amount exceeds 70 mg / l, which is preferable from the viewpoint of DHA production. Example 7 Chrysecodinium spices were cultivated at high density with increasing medium concentration to produce DHA.

【0028】培地には、上記表4に示す組成を有する基
礎培地の 8.3倍濃度の培地を調製し、これに炭素源とし
てグリセロ−ルを60g/l、窒素源としてグルタミン酸
ナトリウムを25g/l添加したものを用いた。培養は、
ジャ−ファメンタ−を用い、25℃で行なった。培養中の
細胞密度およびDHA濃度の変化を図3に示す。図3に
おいて、−○−は細胞濃度をg/lで示し、−●−はD
HA濃度をmg/lで示す。また、横軸は培養時間を表
わす。図1より明らかなように、DHA濃度は細胞濃度
にほぼ比例して増加し、培養開始後70〜 100時間には 8
50mg/lに達した。また、培養された細胞中に含まれ
る脂質の分析を行なった。その結果を下記表8に示す。 表 8 製造された藻体の脂質含量と脂肪酸組成 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 総脂質量(%藻体乾燥重量) 12.0 脂肪酸組成(%総脂肪酸) ラウリン酸 1.8 ミリスチン酸 9.6 パルミチン酸 16.8 パルミトオレイン酸 1.4 ステアリン酸 1.4 オレイン酸 12.8 ドコサヘキサエン酸(DHA) 51.9 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 表8に示すように、製造された藻体中には12%の脂質が
含まれ、その脂肪酸組成のうちの51.9%がDHAであっ
た。 実施例 8 培養により得られたDHA高含有藻体からのオイルの抽
出を行なった。
As the medium, a medium having a concentration of 8.3 times that of the basal medium having the composition shown in Table 4 above was prepared, to which 60 g / l of glycerol as a carbon source and 25 g / l of sodium glutamate as a nitrogen source were added. What was done was used. The culture is
It was carried out at 25 ° C. using a jar fermenter. Changes in cell density and DHA concentration during culture are shown in FIG. In FIG. 3, − ◯ − indicates the cell concentration in g / l, −−− indicates D
HA concentration is shown in mg / l. The horizontal axis represents the culture time. As is clear from FIG. 1, the DHA concentration increased almost in proportion to the cell concentration, and 8 to 70 hours after the initiation of the culture.
Reached 50 mg / l. In addition, the lipid contained in the cultured cells was analyzed. The results are shown in Table 8 below. Table 8 Lipid content and fatty acid composition of the produced algal cells ----------------------- Total lipid amount (% algal dry weight) 1) Fatty acid composition (% total fatty acid) Lauric acid 1.8 Myristic acid 9.6 Palmitic acid 16.8 Palmitooleic acid 1.4 Stearic acid 1.4 Oleic acid 12.8 Docosahexaenoic acid (DHA) 51. 9 −−−−−−−−−−−−−−−−−−−−−−−−−−− As shown in Table 8, the produced algal cells contained 12% lipid. 51.9% of the fatty acid composition was DHA. Example 8 Oil was extracted from the DHA-rich algal cells obtained by culturing.

【0029】抽出に用いた藻体(クレセコディニウム・
スピ−セス)は、実施例7と同様にして培養し、溶媒と
してn−ヘキサンを用いて常法により抽出を行なった。
その結果、 1kgの藻体から約80gのオイルを製造する
ことができた。得られたオイルの脂肪酸組成を下記表9
に示す。なお、表9において、trはトレ−ス量を表わ
す。 表 9 製造されたオイルの脂肪酸組成(%総脂肪酸) −−−−−−−−−−−−−−−−−−−−−−− ラウリン酸 tr ミリスチン酸 7.7 パルミチン酸 13.1 パルミトオレイン酸 tr ステアリン酸 tr オレイン酸 21.0 ドコサヘキサエン酸(DHA) 58.2 −−−−−−−−−−−−−−−−−−−−−−− 表9に示されるように、得られたオイルの脂肪酸組成に
おいて、その50%以上がDHAであった。
Algal bodies used for extraction (cresecodinium
Was cultured in the same manner as in Example 7, and extraction was carried out by a conventional method using n-hexane as a solvent.
As a result, about 80 g of oil could be produced from 1 kg of algal cells. The fatty acid composition of the obtained oil is shown in Table 9 below.
Shown in. In Table 9, tr represents a trace amount. Table 9 Fatty acid composition of produced oil (% total fatty acid) ---------- Lauric acid tr Myristic acid 7.7 Palmitic acid 13.1 Palmitooleic acid tr Stearic acid tr Oleic acid 21.0 Docosahexaenoic acid (DHA) 58.2 -------------------- As shown in Table 9. In the fatty acid composition of the obtained oil, 50% or more thereof was DHA.

【0030】[0030]

【発明の効果】以上のように、この発明の鞭毛藻類クリ
セコディニウムを飼料として用いることにより、海産魚
の飼料となる動物性プランクトンを効率よく養成するこ
とができる。また、動物性プランクトンに不足するDH
Aを強化することができるため、DHAの不足を補うた
めに動物性プランクトンの他に魚油等を投与する必要が
なくなる。
INDUSTRIAL APPLICABILITY As described above, by using the flagellated alga Chrysecodinium of the present invention as a feed, zooplankton, which is a feed for marine fish, can be efficiently cultivated. In addition, DH lacking in zooplankton
Since A can be strengthened, it is not necessary to administer fish oil or the like in addition to zooplankton to compensate for the lack of DHA.

【0031】また、この発明の培養方法によると、DH
A含量がより増大した鞭毛藻類クリセコディニウムを得
ることができ、さらに培養により得られたクリセコディ
ニウムからはDHA高含有オイルを抽出することができ
る。
According to the culture method of the present invention, DH
It is possible to obtain the flagellated chrysocodinium having a further increased A content, and it is possible to extract a DHA-rich oil from the chrysecodinium obtained by culturing.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の鞭毛藻類クリセコディニウムを飼料
としたワムシの培養における、ワムシ個体数の経時変化
を示すグラフ。
FIG. 1 is a graph showing changes over time in the number of rotifers in the culture of rotifers fed with the flagellated chrysocodinium of the present invention.

【図2】この発明の鞭毛藻類クリセコディニウムを飼料
としたアルテミアの培養における、アルテミアの生長お
よび生存率の経時変化を示すグラフ。
FIG. 2 is a graph showing changes over time in the growth and survival rate of Artemia in the culture of Artemia that was fed with the flagellate Chrysecodinium of the present invention.

【図3】クリセコディニウム・スピ−セスを高密度培養
した際の細胞密度およびDHA生産量の経時変化を示す
グラフ。
FIG. 3 is a graph showing changes over time in cell density and DHA production when high-density culture of chrysocodynium spices was performed.

【図4】シマアジ稚魚の育成における、魚体重の変化に
対するEPAおよびDHAの効果を示すグラフ。
FIG. 4 is a graph showing the effect of EPA and DHA on changes in fish weight in the development of juvenile striped horse mackerel.

【図5】シマアジ稚魚の育成における、生存率の変化に
対するEPAおよびDHAの効果を示すグラフ。
FIG. 5 is a graph showing the effect of EPA and DHA on the change in survival rate in rearing juvenile striped horse mackerel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:89) (C12P 7/64 C12R 1:89) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C12R 1:89) (C12P 7/64 C12R 1:89)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 鞭毛藻類クリセコディニウムを含有する
動物性プランクトン用飼料。
1. A feed for zooplankton containing a flagellated alga Chrysecodinium.
【請求項2】 グルタミン酸およびその塩並びにイ−ス
トエキスからなる群より選ばれる少なくとも1種の窒素
化合物を窒素源として含有する培地を用いることを特徴
とする鞭毛藻類クリセコディニウムの培養方法。
2. A method for culturing a flagellated alga Chrycecodinium, which comprises using a medium containing at least one nitrogen compound selected from the group consisting of glutamic acid and salts thereof and yeast extract as a nitrogen source.
【請求項3】 炭素源としてアルコ−ル類を含有する培
地を用いることを特徴とする請求項2記載の培養方法。
3. The culture method according to claim 2, wherein a medium containing alcohols as a carbon source is used.
【請求項4】 20℃以下で培養を行なうことを特徴とす
る請求項3記載の培養方法。
4. The culture method according to claim 3, wherein the culture is performed at 20 ° C. or lower.
【請求項5】 グルタミン酸およびその塩並びにイ−ス
トエキスからなる群より選ばれる少なくとも1種の窒素
化合物を窒素源として含有する培地において培養された
鞭毛藻類クリセコディニウムから抽出することを特徴と
するドコサヘキサエン酸高含有オイルの製造方法。
5. Extraction from flagellated alga Chrycecodinium cultured in a medium containing at least one nitrogen compound selected from the group consisting of glutamic acid and salts thereof and yeast extract as a nitrogen source. A method for producing an oil high in docosahexaenoic acid.
【請求項6】 炭素源としてアルコ−ル類を含有する培
地を用いることを特徴とする請求項5記載の製造方法。
6. The method according to claim 5, wherein a medium containing alcohols as a carbon source is used.
【請求項7】 20℃以下で培養を行なうことを特徴とす
る請求項6記載の製造方法。
7. The production method according to claim 6, wherein the culture is performed at 20 ° C. or lower.
JP4258007A 1992-09-28 1992-09-28 Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil Expired - Lifetime JPH0740890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4258007A JPH0740890B2 (en) 1992-09-28 1992-09-28 Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4258007A JPH0740890B2 (en) 1992-09-28 1992-09-28 Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil

Publications (2)

Publication Number Publication Date
JPH06105659A JPH06105659A (en) 1994-04-19
JPH0740890B2 true JPH0740890B2 (en) 1995-05-10

Family

ID=17314244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4258007A Expired - Lifetime JPH0740890B2 (en) 1992-09-28 1992-09-28 Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil

Country Status (1)

Country Link
JP (1) JPH0740890B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103445008A (en) * 2013-06-26 2013-12-18 浙江省海洋开发研究院 Feed for Siganus
CN108485981A (en) * 2018-03-27 2018-09-04 中国科学院城市环境研究所 A kind of separation of arenaceous shell worm and culture technique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3096654B2 (en) * 1997-04-01 2000-10-10 クロレラ工業株式会社 Method for producing chlorella containing highly unsaturated fatty acids
ATE305232T1 (en) * 2000-01-14 2005-10-15 Baldur Hjaltason BREEDING AQUATIC SPECIES WITH DHA-RICH PREY ORGANISMS
EP1359224A1 (en) * 2002-05-01 2003-11-05 Ato B.V. A process for production of polyunsaturated fatty acids by marine microorganisms
WO2023100773A1 (en) * 2021-12-01 2023-06-08 日本水産株式会社 Method for rearing artemias, feed for artemia, artemia and artemia population

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080930A (en) * 1977-01-25 1978-03-28 University Of Delaware Bivalve molluscs rearing process
JPH07106124B2 (en) * 1987-09-14 1995-11-15 ハリマ化成株式会社 Feed for Artemia and production method thereof
US5407957A (en) * 1990-02-13 1995-04-18 Martek Corporation Production of docosahexaenoic acid by dinoflagellates
JPH0488954A (en) * 1990-08-02 1992-03-23 Sagami Chem Res Center Method for culturing organism as feed for juvenile fish
JPH0659174B2 (en) * 1991-05-24 1994-08-10 日清製油株式会社 Feed for zooplankton

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103445008A (en) * 2013-06-26 2013-12-18 浙江省海洋开发研究院 Feed for Siganus
CN108485981A (en) * 2018-03-27 2018-09-04 中国科学院城市环境研究所 A kind of separation of arenaceous shell worm and culture technique
CN108485981B (en) * 2018-03-27 2020-12-08 中国科学院城市环境研究所 Separation and culture technology of arenaria

Also Published As

Publication number Publication date
JPH06105659A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
JP2830951B2 (en) Method for producing docosahexaenoic acid-containing oil
US5567732A (en) Eicosapentaenoic acid-containing oil and methods for its production
JP3669372B2 (en) Heterotropic process for producing microbial products containing high concentrations of omega-3 highly unsaturated fatty acids
JP2002125601A (en) Feed for animal plankton, method for producing the same, and method for culturing animal plankton
JP4852662B2 (en) Selenium-containing single-cell microalgae for zooplankton feed and methods for culturing selenium-containing zooplankton using the same
ES2275142T3 (en) PROCEDURE FOR POTENTIATING THE LEVELS OF POLINSATURATED FATTY ACIDS IN THRAUSTOCHYTRIUM PROTISTS.
JPH0740890B2 (en) Feed for zooplankton, method for culturing flagella algae used in the feed, and method for producing DHA-rich oil
JPH03277241A (en) Nutrition enriched feed of rotifer
JP3302123B2 (en) Animal Plankton Culture Feed
KR102010192B1 (en) A useful as live-food copepod, Apocyclops royi of aquaculture species and mass culturing method
JP3096654B2 (en) Method for producing chlorella containing highly unsaturated fatty acids
Pandey et al. Nutritional value of a heterotrichous ciliate, Fabrea salina with emphasis on its fatty acid profile
JPH1169947A (en) Feed for culturing biological feed
CN110923146A (en) Chlorella rich in polyunsaturated fatty acids and essential amino acids and application thereof
JP2003528618A (en) Methods for increasing the level of polyunsaturated fatty acids in thraustochytridfungi
JPH04346760A (en) Feed for animal plankton
JPH03277242A (en) Nutrition enriched feed of artemia
JPH07147907A (en) Live feed for fry and production thereof
CN108587913A (en) A kind of scenedesmus, its cultural method and its application with high ALA contents
JPS6127029B2 (en)
CN117143738A (en) Rapid breeding method for high-density chaetoceros
JPS5944020B2 (en) How to raise marine fish using oleaginous yeast
KR100768757B1 (en) Process for the production of Chlorella containing omega-3 fatty acids
JPS6335223B2 (en)
KR20040086004A (en) High cell density fermentation of Chlorella sp. containing w-3 fatty acid by heterotrophic fed-batch culture