【発明の詳細な説明】[Detailed description of the invention]
本発明はヒラメのふ化初期の稚仔魚用飼料に関
するもので、その目的とするところは稚仔魚の成
長がよく奇形などの発生が少なく、生残率の高い
稚仔魚用飼料を提供するもので、リン脂質を生物
飼料である動植物性プランクトンおよび酵母類に
補食せしめてなるヒラメの稚仔魚用飼料に関する
ものである。
近年、魚貝類の人工種苗生産技術が発達し、マ
ダイ、アユ、クルマエビ、ヒラメ、タイ類、トラ
フグ、メナダ、マコガレイ、イシガレイ、カサ
ゴ、アイゴ、ブリ等各種水産動物の人工種苗生産
が可能となり、中でも特にヒラメはアユ、マダ
イ、クルマエビと同様に大量の人工種苗生産が実
施されて完全養殖が行われつつある。
しかしこれもふ化直後からの種苗である稚仔魚
の量産化いかんにかかつており、稚仔魚の成長、
歩留(生残率)、奇形魚のない健全な種苗の育成
に影響される。
これら人工種苗生産において、初期飼料の大部
分は生きた動物プランクトンのシオミズツボワム
シ(以下ワムシと略)、アルテミア、その他の微
細甲殻類、またクロレラ、珪藻などのいわゆる生
物飼料依存している。
生物初期飼料の培養には施設、経費、労力など
管理面で問題があるだけでなく、生産したワム
シ、アルテミアなどが栄養的に欠陥をもつため奇
形や大量へい死をひきおこす場合も多い。
ワムシは栄養価の高い海産クロレラを用いて倍
養すれば比較的安定に良質な生物飼料として生産
ができるが、しかし海産クロレラの培養にも問題
がありそこでパン酵母と海産クロレラの代りに用
いてワムシを大量培養する試みがなされている。
この酵母ワムシは質的にも問題があり、栄養価を
改善するために、パン酵母ワムシを海産クロレラ
で3〜12時間二次培養する試みや、ω3高度不飽
和脂肪酸(ω3HUFAと略)を強化した酵母(イ
カ肝油等強化の油脂酵母)でワムシを培養する方
法、またω3HUFAの多いイカ肝油などを乳化さ
せ、パン酵母と同時にワムシに直接給餌して富化
する方法などが行われている。ワムシ以外のアル
テミアなどについても同様の方法で行われてい
る。
しかしワムシなどの生物飼料の培養にも、また
生物飼料を用いた稚仔魚の種苗生産についても未
だ大量へい死、奇形魚などの問題点があるのが現
状である。
最近、この稚仔魚の育成に人工微粒子の初期飼
料の開発がなされ、アユではふ化後約10日に単独
投与したり生物飼料と併用して試用されている。
稚仔魚ではふ化直後は消化酵素が存在せず、これ
ら飼料が消化吸収されなかつたり栄養的に問題も
あり、生物飼料に比較すると特に初期は成長、生
残率共に劣るようである。
現在ワムシ、アルテミアなどの生物飼料でも、
また微粒子の初期飼料のいずれでもヒラメ稚仔魚
の成長、生残率、奇形発生率の改善の点で多くの
知見が要望されている。
本発明者らはこれら改善のため鋭意研究の結
果、リン脂質を補食したワムシ、アルテミアなど
の生物飼料および酵母類を飼料としたヒラメ稚仔
魚の成長、生残率および奇形発生率が著しく改善
されることを見出した。
ω3HUFAに富イカ肝油などを富化したワムシ、
アルテミアなど投与のヒラメ稚仔魚の成長および
生残率も無処理の生物飼料に比較して顕著な改善
がみられるが、さらに同様にリン脂質を富化した
これら生物飼料は、なお優れた成長、生残率を示
すことを見出したものである。
即ち前述したような方法で、酵母類に取りこま
せて強化したものでワムシなどを培養したり、直
接ワムシなどに給餌して富化させたりして、リン
脂質を間接的に生物飼料である動植物性プランク
トン類および酵母類に補食せせしめてヒラメ稚仔
魚与えることで、極めて優れた効果を示すもので
ある。特に消化酵母未発達の初期の稚仔魚ではリ
ン脂質の添加は効果的である。
リン脂質は動植物性細胞の常成分で、動物、植
物、微生物等生体に広く分布し、体内での生理作
用が注目される物質である。リン脂質としては鶏
卵レシチンでも大豆レシチンでも共に優れた成
長、生残率を示し、その他魚卵、アサリなど動植
物性を問わずリン脂質なら全てに効果がみられ
る。
特に、大豆から工業的に極めて廉価かつ大量に
製造されているリン脂質いわゆる大豆レシチンで
優れた効果が見られる。
リン脂質の添加量は飼料の組成、リン脂質の内
容などで異なるが、生物飼料の培養液重量に対し
てリン脂質の重量換算で0.001〜0.02%が好まし
い。
以下、実施例、比較試験例により本発明をさら
に具体的に説明する。
実施例 1
鶏卵レシチンと大豆レシチンを各々生物飼料で
あるアルテミアに富化してヒラメ稚仔魚生物飼料
を得た。即ち富化はレシチンを0.1ml/の割合
で乳化剤とともに乳化溶解させ添加したロ過海水
中に、アルテミアふ化幼生を20〜24時間浸漬後、
アルテミアのみ採集するという方法で行なつた。
(比較試験に供試)
実施例 2
二次培養槽にシオミズツボワムシを3000個体/
mlの割合で収容し、これにパン酵母とイカ肝油、
大豆レシチンを投与して富化させた。即ち培養液
1tに対して生酵母100gおよびイカ肝油40mlと大
豆レシチン40mlを乳化剤とともに乳化して投与
し、8時間次培養後ワムシのみ採集したリン脂質
富化のヒラメ稚仔魚生物飼料を得た。
比較試験例 1
100水槽に全長6mmのヒラメ稚仔魚を1000尾
ずつ収容し、実施例1の鶏卵レシチンを富化した
アルテミナと、同様の方法でイカ肝油を富化した
アルテミア、無処理のアルテミアを各々30日間投
与飼育し比較試験した。表1に示す。
The present invention relates to a feed for young flounder in the early stage of hatching, and its purpose is to provide a feed for young flounder that allows for good growth, less occurrence of malformations, and a high survival rate. The present invention relates to a feed for young flounder fish, which is made by supplementing phospholipids with animal and plant plankton and yeast, which are biological feeds. In recent years, artificial seedling production technology for fish and shellfish has been developed, and it has become possible to produce artificial seedlings for various aquatic animals such as red sea bream, sweetfish, prawn, flounder, sea bream, tiger puffer, menada, flatfish, rock flounder, rockfish, rabbitfish, yellowtail, etc. In particular, flounder, like sweetfish, red sea bream, and prawns, is being produced in large quantities by artificial seedlings, and is now being fully farmed. However, this is also due to the mass production of young fish, which are seeds immediately after hatching, and the growth of young fish,
Yield (survival rate) is affected by the growth of healthy seedlings without deformed fish. In the production of these artificial seedlings, most of the initial feed relies on so-called biological feed such as living zooplankton such as the rotifer (hereinafter referred to as rotifer), Artemia, and other microscopic crustaceans, as well as chlorella and diatoms. Cultivation of primary biological feed not only involves problems in terms of management such as facilities, costs, and labor, but also the produced rotifers, Artemia, etc. are nutritionally defective, often resulting in malformations and mass mortality. Rotifers can be produced as high-quality biological feed in a relatively stable manner by multiplying them using highly nutritious marine chlorella.However, there are also problems with culturing marine chlorella, so rotifers are used instead of baker's yeast and marine chlorella. Attempts have been made to mass culture rotifers.
This yeast rotifer has qualitative problems, and in order to improve its nutritional value, attempts have been made to subculture baker's yeast rotifer with marine chlorella for 3 to 12 hours, and to enrich it with ω3 polyunsaturated fatty acids (ω3HUFA). Methods include cultivating rotifers with yeast (fatty yeast enriched with squid liver oil, etc.), and enriching rotifers by emulsifying squid liver oil, which is rich in ω3HUFA, and feeding it directly to rotifers at the same time as baker's yeast. The same method is used for other rotifers such as Artemia. However, the current situation is that there are still problems such as mass mortality and deformed fish in the cultivation of biological feeds such as rotifers and in the production of young fish using biological feeds. Recently, an initial feed containing artificial fine particles has been developed for raising these young fish, and it has been used for sweetfish by administering it alone or in combination with biological feed about 10 days after hatching.
Digestive enzymes are not present in young fish immediately after hatching, and these feeds are not digested and absorbed, causing nutritional problems, and compared to biological feeds, both growth and survival rates seem to be inferior, especially in the early stages. Currently, even biological feed such as rotifers and Artemia,
Further, there is a need for much knowledge regarding the improvement of the growth, survival rate, and malformation rate of young flounder using fine particle initial feeds. As a result of intensive research aimed at improving these conditions, the present inventors found that the growth, survival rate, and malformation rate of young flounder fish fed biological feed such as rotifers and Artemia and yeasts supplemented with phospholipids were significantly improved. I found out that it can be done. Rotifers enriched with ω3HUFA-rich squid liver oil, etc.
The growth and survival rate of young flounder treated with Artemia etc. was also significantly improved compared to the untreated biological feed, but these biological feeds enriched with phospholipids still showed superior growth, It was discovered that the survival rate was shown to be high. In other words, phospholipids can be indirectly used as biological feed by cultivating rotifers and the like with yeast that has been fortified using the method described above, or by feeding rotifers directly to enrich them. By feeding young flounder with supplementary feeding on zooplankton and yeast, extremely excellent effects are shown. Addition of phospholipids is particularly effective for early stage fry when digestive yeasts have not yet developed. Phospholipids are common components of animal and plant cells, are widely distributed in living organisms such as animals, plants, and microorganisms, and are substances that are attracting attention for their physiological effects within the body. As for phospholipids, both chicken egg lecithin and soybean lecithin show excellent growth and survival rates, and all other phospholipids, regardless of animal or plant origin, such as fish eggs and clams, are effective. In particular, excellent effects have been seen with the phospholipid so-called soybean lecithin, which is industrially produced from soybeans at extremely low cost and in large quantities. The amount of phospholipid added varies depending on the feed composition, phospholipid content, etc., but it is preferably 0.001 to 0.02% in terms of phospholipid weight based on the weight of the culture solution of the biological feed. Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Test Examples. Example 1 Chicken egg lecithin and soybean lecithin were each enriched with Artemia, a biological feed, to obtain a biological feed for young flounder. That is, the enrichment was carried out by immersing Artemia hatched larvae for 20 to 24 hours in Rover seawater to which lecithin was emulsified and dissolved together with an emulsifier at a rate of 0.1 ml/ml.
This was done by collecting only Artemia.
(Tested for comparative test) Example 2 3000 Shiomizu rotifers/in a secondary culture tank
ml of bread yeast and squid liver oil,
Soybean lecithin was administered and enriched. i.e. culture solution
100 g of live yeast, 40 ml of squid liver oil, and 40 ml of soybean lecithin were emulsified and administered with an emulsifier per 1 ton, and after subculture for 8 hours, a phospholipid-enriched young flounder fish biological feed from which only rotifers were collected was obtained. Comparative Test Example 1 1000 juvenile flounder fish with a total length of 6 mm were housed in 100 aquariums, and Artemia enriched with chicken egg lecithin from Example 1, Artemia enriched with squid liver oil in the same manner, and untreated Artemia were placed in 100 aquariums. Each was administered and reared for 30 days, and a comparative test was conducted. It is shown in Table 1.
【表】
比較試験例 2
30水槽に全長3.4mmのヒラメ稚仔魚を1500尾
ずつ収容し、実施例2の大豆レシチンを富化した
ワムシ、レシチン無添加の処理ワムシを各々16日
間投与飼育し比較試験した。表2に示す。[Table] Comparative test example 2 1,500 young flounder with a total length of 3.4 mm were housed in 30 aquariums, and rotifers enriched with soybean lecithin from Example 2 and rotifers treated with no lecithin were fed and reared for 16 days for comparison. Tested. It is shown in Table 2.
【表】
比較試験例 3
50水槽に全長5mmのヒラメ稚仔魚を500尾ず
つ収容し、実施例2の大豆レシチンを富化したシ
オムズツボワムシを10日間投与し、次いで実施例
1の大豆レシチンを富化したアルテミナを24日間
投与し総計34日間飼育した。
同様に無処理シオミゾツボワムシを10日間投与
し、次いで無処理シルテミアを24日間投与して比
較試験した。[Table] Comparative Test Example 3 500 young flounder with a total length of 5 mm were housed in 50 aquariums, and the soybean lecithin-enriched rotifers of Example 2 were administered for 10 days, and then the soybean lecithin of Example 1 was administered. Artemina enriched with was administered for 24 days and kept for a total of 34 days. Similarly, a comparative test was carried out by administering untreated Shirtemia for 10 days and then administering untreated Shirtemia for 24 days.
【表】【table】