JPH0740181Y2 - Variable frequency light source using laser frequency characteristic measuring device and nuclear device - Google Patents

Variable frequency light source using laser frequency characteristic measuring device and nuclear device

Info

Publication number
JPH0740181Y2
JPH0740181Y2 JP1989056716U JP5671689U JPH0740181Y2 JP H0740181 Y2 JPH0740181 Y2 JP H0740181Y2 JP 1989056716 U JP1989056716 U JP 1989056716U JP 5671689 U JP5671689 U JP 5671689U JP H0740181 Y2 JPH0740181 Y2 JP H0740181Y2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
light
frequency
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989056716U
Other languages
Japanese (ja)
Other versions
JPH0319933U (en
Inventor
浩二 秋山
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1989056716U priority Critical patent/JPH0740181Y2/en
Publication of JPH0319933U publication Critical patent/JPH0319933U/ja
Application granted granted Critical
Publication of JPH0740181Y2 publication Critical patent/JPH0740181Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、半導体レーザの温度−発振周波数特性や電流
−発振周波数特性等を高精度に測定する装置および該装
置を利用した可変周波数光源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for measuring temperature-oscillation frequency characteristics, current-oscillation frequency characteristics, etc. of a semiconductor laser with high accuracy, and a variable frequency light source using the apparatus. It is a thing.

〈従来の技術〉 第9図は半導体レーザの温度−発振周波数特性を測定す
る装置の第1の従来例で、回折格子を利用するものを示
す原理構成図である。被測定半導体レーザ1は温度制御
回路2によって温度が掃引される。被測定レーザ1の出
力光を回転中心4の回りに回転している回折格子3に入
射すると、波長によって回折角が変るので、光検出器5
に入射する時の光の入射角θとレーザ1の温度を観測す
ると、レーザ1の温度−発振周波数特性を測定すること
ができる。
<Prior Art> FIG. 9 is a principle configuration diagram showing a first conventional example of an apparatus for measuring the temperature-oscillation frequency characteristic of a semiconductor laser, which uses a diffraction grating. The temperature of the semiconductor laser 1 to be measured is swept by the temperature control circuit 2. When the output light of the measured laser 1 is incident on the diffraction grating 3 rotating around the rotation center 4, the diffraction angle changes depending on the wavelength.
The temperature-oscillation frequency characteristic of the laser 1 can be measured by observing the incident angle θ of the light when entering the laser 1 and the temperature of the laser 1.

第10図は半導体レーザの温度−発振周波数特性を測定す
る第2の従来例で、マイケルソン干渉計を利用するもの
を示す原理構成図である。被測定レーザ1は第9図と同
様に温度が掃引される。被測定レーザ1の出力光
(λx)をハーフミラー6,7,可動ミラー8,ミラー9から
なるマイケルソン干渉計に入射し、光検出器10で干渉縞
を検出する。レーザ1の各温度での波長値を測定し、レ
ーザ1の温度−発振周波数特性を測定することができ
る。
FIG. 10 is a principle configuration diagram showing a second conventional example for measuring the temperature-oscillation frequency characteristic of a semiconductor laser, which uses a Michelson interferometer. The temperature of the measured laser 1 is swept as in FIG. The output light (λ x ) of the laser to be measured 1 is incident on a Michelson interferometer consisting of half mirrors 6, 7, movable mirrors 8 and mirrors 9, and a photodetector 10 detects interference fringes. By measuring the wavelength value of the laser 1 at each temperature, the temperature-oscillation frequency characteristic of the laser 1 can be measured.

〈考案が解決しようとする課題〉 しかしながら、上記の各従来方式は共に機械的な可動部
分があるため、高速応答性が悪い(1サンプル/1〜2
s)。また第9図の方式の場合は機械精度が測定精度に
影響するので、高精度化が困難で経時変化にも弱い。精
度を上げるには第9図の場合には回折格子3と光検出器
5の距離を大きくし、第10図の場合は可動ミラー8の可
動距離Δlを大きくしなければならないが、いずれも光
学系が大きくなるという問題を生じる。また第10図の場
合には基準光源(λref)が必要となるため、光学系の
構成が複雑となる。
<Problems to be solved by the invention> However, since each of the above-mentioned conventional methods has a mechanically movable part, high-speed response is poor (1 sample / 1 to 2
s). Further, in the case of the method shown in FIG. 9, since the machine accuracy affects the measurement accuracy, it is difficult to improve the accuracy and it is weak against the change with time. In order to improve the accuracy, it is necessary to increase the distance between the diffraction grating 3 and the photodetector 5 in the case of FIG. 9 and to increase the movable distance Δl of the movable mirror 8 in the case of FIG. The problem arises that the system becomes large. Further, in the case of FIG. 10, a reference light source (λ ref ) is required, which complicates the configuration of the optical system.

本考案はこのような課題を解決するためになされたもの
で、簡単な構成で半導体レーザの温度−発振周波数特性
や電流−発振周波数特性を高速・高精度に測定できる装
置を実現することを目的とする。さらにこのような装置
を用いて高精度な可変周波数光源を実現することを目的
とする。
The present invention has been made to solve such a problem, and an object thereof is to realize a device capable of measuring the temperature-oscillation frequency characteristic and the current-oscillation frequency characteristic of a semiconductor laser with a simple configuration at high speed and with high accuracy. And It is another object of the present invention to realize a highly accurate variable frequency light source using such a device.

〈課題を解決するための手段〉 本考案の第1に係るレーザ周波数特性測定装置は被測定
半導体レーザの温度または電流を掃引する掃引手段と、
前記半導体レーザの出力光を2つに分離する分離手段
と、この分離手段の一方の出力光を入射し特定の周波数
で吸収を起こす吸収セルと、前記分離手段の他方の出力
光を入射するファブリ・ペロー・エタロンと、前記吸収
セルの透過光を検出する第1の光検出器と、前記ファブ
リ・ペロー・エタロンの透過光を検出する第2の光検出
器と、前記第1および第2の光検出器の出力と前記掃引
手段の掃引信号とから前記被測定半導体レーザの各温度
または電流における発振周波数を演算する演算回路とを
備えたことを特徴とする。
<Means for Solving the Problem> A laser frequency characteristic measuring apparatus according to a first aspect of the present invention is a sweeping means for sweeping a temperature or a current of a semiconductor laser to be measured,
Separation means for separating the output light of the semiconductor laser into two, an absorption cell for making one output light of this separation means incident and absorbing at a specific frequency, and a fabric for making the other output light of the separation means incident. A Perot etalon, a first photodetector for detecting the transmitted light of the absorption cell, a second photodetector for detecting the transmitted light of the Fabry-Perot etalon, and the first and second An arithmetic circuit for calculating an oscillation frequency at each temperature or current of the semiconductor laser to be measured from the output of the photodetector and the sweep signal of the sweep means is provided.

本考案の第2に係る可変周波数光源は半導体レーザと、
この半導体レーザの温度を掃引する掃引手段と、前記半
導体レーザの出力光を2つに分離する分離手段と、この
分離手段の一方の出力光を入射し特定の周波数で吸収を
起こす標準物質を封入した吸収セルと、前記分離手段の
他方の出力光を入射するファブリ・ペロー・エタロン
と、前記吸収セルの透過光を検出する第1の光検出器
と、前記ファブリ・ペロー・エタロンの透過光を検出す
る第2の光検出器と、前記第1および第2の光検出器の
出力と前記掃引手段の掃引信号とから前記半導体レーザ
の発振周波数を演算する演算回路と、前記吸収セルの吸
収線または前記ファブリ・ペロー・エタロンの透過線に
前記半導体レーザの発振周波数を制御する制御手段とを
備えたことを特徴とする。
A second variable frequency light source according to the present invention is a semiconductor laser,
A sweeping means for sweeping the temperature of the semiconductor laser, a separating means for separating the output light of the semiconductor laser into two, and a standard substance which absorbs one output light of the separating means and absorbs at a specific frequency are enclosed. The absorption cell, the Fabry-Perot etalon that enters the other output light of the separating means, the first photodetector that detects the transmitted light of the absorption cell, and the transmitted light of the Fabry-Perot etalon. A second photodetector for detecting, an arithmetic circuit for calculating the oscillation frequency of the semiconductor laser from the outputs of the first and second photodetectors and the sweep signal of the sweep means, and an absorption line of the absorption cell. Alternatively, the transmission line of the Fabry-Perot etalon is provided with control means for controlling the oscillation frequency of the semiconductor laser.

〈作用〉 温度または電流により掃引される半導体レーザの出力光
の周波数は吸収セルの透過光のピーク位置とファブリ・
ペロー・エタロンの透過光のピークの数で、絶対値の目
盛り付が行なわれる。
<Operation> The frequency of the output light of the semiconductor laser swept by temperature or current is the peak position of the transmitted light of the absorption cell and the
Absolute value is calibrated by the number of peaks of the transmitted light of the Perot etalon.

〈実施例〉 以下本考案を図面を用いて詳しく説明する。<Example> The present invention will be described in detail below with reference to the drawings.

第1図は本考案に係るレーザ周波数特性測定装置の一実
施例を示す構成ブロック図である。11は被測定半導体レ
ーザ、13は被測定レーザ11を収める恒温槽、12は恒温槽
13の温度を制御する温度制御回路、15は温度制御回路12
の温度設定入力に加算手段14を介して掃引信号を加える
掃引用発振器、16は被測定レーザ11を一定の注入電流で
駆動する定電流源である。17は被測定レーザ11の出力光
を平行光にするコリメートレンズ、18はレンズ17の出力
光を2つに分割する第1のビームスプリッタ、19はビー
ムスプリッタ18の透過光を入射して特定の波長で吸収す
る物質を封入した吸収セル、20はビームスプリッタ18の
反射光を入射するファブリ・ペロー・エタロン、21,22
はそれぞれ吸収セル19,ファブリ・ペロー・エタロン20
の透過光を検出する第1,第2の光検出器、23は第1,第2
の光検出器21,22および掃引用発振器15の出力から被測
定レーザ11の各温度での発振周波数を演算する演算回路
である。演算回路23は例えばマイクロプロセッサ等で構
成することができる。恒温槽13,温度制御回路12,加算手
段14および掃引用発振器15は被測定半導体レーザ11の温
度を掃引する掃引手段を構成する。
FIG. 1 is a configuration block diagram showing an embodiment of a laser frequency characteristic measuring apparatus according to the present invention. Reference numeral 11 is a semiconductor laser to be measured, 13 is a constant temperature bath containing the measured laser 11, 12 is a constant temperature bath.
13 is a temperature control circuit for controlling the temperature, 15 is a temperature control circuit 12
Reference numeral 16 is a sweep quote oscillator for adding a sweep signal to the temperature setting input via the adding means 14, and 16 is a constant current source for driving the laser 11 under measurement with a constant injection current. Reference numeral 17 is a collimating lens that collimates the output light of the laser 11 to be measured, 18 is a first beam splitter that splits the output light of the lens 17 into two, and 19 is a specific beam that enters the transmitted light of the beam splitter 18. Absorption cell encapsulating a substance that absorbs at a wavelength, 20 is a Fabry-Perot etalon that receives the reflected light of the beam splitter 18, 21 and 22
Absorption cell 19, Fabry-Perot Etalon 20 respectively
First and second photodetectors for detecting transmitted light of
2 is an arithmetic circuit for calculating the oscillation frequency of the laser under test 11 at each temperature from the outputs of the photodetectors 21, 22 and the sweep oscillator 15. The arithmetic circuit 23 can be composed of, for example, a microprocessor. The constant temperature chamber 13, the temperature control circuit 12, the adding means 14, and the sweeping reference oscillator 15 constitute a sweeping means for sweeping the temperature of the semiconductor laser 11 to be measured.

上記のような構成の装置の動作を次に説明する。被測定
レーザ11は定電流源16により定電流で駆動される。被測
定レーザ11として例えば1,5μm帯DFBレーザを用いる場
合には、温度変化に対して約12.5GHz/℃(100pm/℃)で
発振周波数がシフトする。ここで吸収セル19の封入物質
をアセチレンとすると、その1.536〜1.54μm帯の吸収
線は第2図に示すようになる。またファブリ・ペロー・
エタロン20のFSR(透過ピークの間隔)を100MHz、被測
定レーザ11の温度掃引を10℃から40℃まで100sで行うと
すると、ファブリ・ペロー・エタロン20の透過パワー,
吸収セル19の透過パワーおよび温度掃引信号の関係は第
3図(A)(B)(C)に示すようになる。第3図点線
内の拡大図を第4図に示す。吸収線周波数は絶対値が高
精度に測定されて既知であり、P19とP21,P21とP23の吸
収線の周波数差がそれぞれ約171GHz,174GHzなので、t1
〜t2間に出るエタロン透過信号の数は171GHz/100MHz≒1
710本、t2〜t3間では1740本である。すなわち、吸収線
の周波数間隔が異なるので、エタロン透過信号の本数で
吸収線を同定することができる。また第4図のように各
吸収線からのエタロン透過信号の数をN本とすると、N
本目の発振周波数ν(N)は ν(N)=ν+100・N …(1) となる。ここでν(THz)は各吸収線の発振周波数で
ある。N本目の時の温度をT(N)とすると、ν(N)
およびT(N)から第5図に示すような被測定レーザの
温度−発振周波数特性を、演算装置23において精度よく
得ることができる。周波数分解能はエタロンのFSRで決
まり、この場合は100MHzである。上記実施例のように吸
収物質にアセチレンを使用する場合には、1.53〜1.545
μm帯の被測定レーザを測定することができる。その他
の波長帯の被測定レーザに対しては、その波長帯で吸収
線のある分子を吸収物質として用いる。また被測定レー
ザの駆動電流をパラメータとして温度−発振周波数特性
を測定することにより、電流周波数特性を得ることがで
きる。
Next, the operation of the apparatus having the above configuration will be described. The measured laser 11 is driven by a constant current source 16 at a constant current. When a 1,5 μm band DFB laser is used as the laser to be measured 11, the oscillation frequency shifts at about 12.5 GHz / ° C. (100 pm / ° C.) with respect to temperature changes. If acetylene is used as the encapsulating material of the absorption cell 19, the absorption line in the 1.536 to 1.54 μm band is as shown in FIG. Also Fabry Perot
Assuming that the FSR (transmission peak interval) of the etalon 20 is 100 MHz and the temperature sweep of the measured laser 11 is performed from 10 ° C to 40 ° C in 100 s, the transmission power of the Fabry-Perot etalon 20 is
The relationship between the transmission power of the absorption cell 19 and the temperature sweep signal is as shown in FIGS. 3 (A) (B) (C). FIG. 3 shows an enlarged view within the dotted line in FIG. Absorption line frequency is known absolute value is measured with high accuracy, P19 and P21, the frequency difference of the absorption line of P21 and P23, respectively about 171GHz, so 174GHz, t 1
The number of transmitted etalon signals between 〜 t 2 is 171 GHz / 100 MHz ≈ 1
710 lines, 1740 lines between t 2 and t 3 . That is, since the frequency intervals of the absorption lines are different, the absorption lines can be identified by the number of etalon transmission signals. As shown in FIG. 4, if the number of etalon transmission signals from each absorption line is N, then N
The actual oscillation frequency ν (N) is ν (N) = ν 1 + 100 · N (1) Here, ν 1 (THz) is the oscillation frequency of each absorption line. If the temperature at the N-th time is T (N), then ν (N)
The temperature-oscillation frequency characteristic of the laser to be measured as shown in FIG. 5 can be accurately obtained from the arithmetic unit 23 from T and N (N). The frequency resolution is determined by the etalon's FSR, which in this case is 100 MHz. When acetylene is used as the absorbing material as in the above example, 1.53 to 1.545
It is possible to measure the measured laser in the μm band. For the laser to be measured in other wavelength bands, molecules having absorption lines in those wavelength bands are used as the absorbing substance. Further, the current-frequency characteristic can be obtained by measuring the temperature-oscillation frequency characteristic using the drive current of the laser to be measured as a parameter.

このような構成のレーザ周波数特性測定装置によれば、
機械的可動部がないので高速測定ができ、経時変化に強
い。
According to the laser frequency characteristic measuring device having such a configuration,
Since there are no mechanical moving parts, high-speed measurement is possible and it is resistant to changes over time.

また従来例第10図の場合と比較して周波数基準光源が不
要なため、構成が簡単になる。
Further, as compared with the case of FIG. 10 of the conventional example, since the frequency reference light source is not necessary, the structure becomes simple.

また周波数絶対値の精度の出た分子吸収線とエタロンFS
Rで波長値を測定するので、測定値が高精度となる。し
たがって校正の必要もない。
In addition, the molecular absorption line and the etalon FS with the accurate frequency absolute value
Since the wavelength value is measured with R, the measured value is highly accurate. Therefore, there is no need for calibration.

なお上記の実施例で被測定レーザの駆動電流を一定にし
て温度を掃引しているが、吸収線間隔の小さい吸収物質
を用いれば、温度を一定に制御して駆動電流を掃引(6G
Hz程度)し、電流−周波数特性を測定することもでき
る。
Although the temperature is swept with the driving current of the laser under measurement being constant in the above example, if an absorbing substance with a small absorption line interval is used, the driving current is swept (6G
It is also possible to measure current-frequency characteristics.

第6図は第1図装置の一変形例で、被測定レーザの出力
パワーを一定に制御するものを示す構成ブロック図であ
る。第1図の場合と異なり、被測定レーザ11を定電流で
駆動する代りに被測定レーザ内のモニタ用フォトダイオ
ードの出力を用いてパワー制御回路24により出力パワー
を一定に保っている。この結果被測定レーザの温度を変
えても出力パワーが変化せずに温度−発振周波数特性を
測定することができる。吸収物質によっては入射パワー
が大きくなると飽和して吸収波形が変る等、入射光強度
によって吸収波形・周波数が変るものであるが、その影
響を除くことができる。また実際に半導体レーザはパワ
ーを安定化して使用することが多い。
FIG. 6 is a block diagram showing a modified example of the apparatus shown in FIG. 1 for controlling the output power of the laser to be measured constant. Unlike the case of FIG. 1, instead of driving the measured laser 11 with a constant current, the output power of the power control circuit 24 is kept constant by using the output of the monitoring photodiode in the measured laser. As a result, the temperature-oscillation frequency characteristic can be measured without changing the output power even if the temperature of the laser to be measured is changed. Depending on the absorption substance, the absorption waveform and frequency change depending on the incident light intensity, such as saturation when the incident power increases and the absorption waveform changes. However, the effect can be eliminated. Further, in practice, semiconductor lasers are often used with stabilized power.

第7図は本考案に係る周波数可変光源の一実施例を示す
構成ブロック図である。第1図と同じ部分は同一の記号
を付して説明を省略する。11aは可変周波数光源装置の
光源となる半導体レーザ、25は半導体レーザ11aの出力
光をコリメートレンズ17を介し入射して2つに分離する
第2のビームスプリッタで、その透過光が第1のビーム
スプリッタ18に入射しその反射光が本装置の可変周波数
出力光となるもの、26はファブリ・ペロー・エタロン20
の任意の透過周波数に半導体レーザ11aの出力周波数を
制御する周波数制御回路、27は半導体レーザ11aの周波
数掃引モードと周波数制御モードを切換えるスイッチ、
28はスイッチ27の出力を定電流源16の出力に加算する加
算手段でその出力が半導体レーザ11aの注入電流に印加
されるもの、29は掃引用発振器15と加算手段14の間に接
続する電圧ホールド回路で掃引用発振器15の出力をその
まま出力するアップデート(update)モードと掃引用発
振器15の出力を保持するホールドモードとを有する。
FIG. 7 is a block diagram showing the configuration of an embodiment of the variable frequency light source according to the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof is omitted. Reference numeral 11a is a semiconductor laser that serves as a light source of the variable frequency light source device, and 25 is a second beam splitter that splits the output light of the semiconductor laser 11a through a collimator lens 17 and splits it into two beams, the transmitted light of which is the first beam. The light that enters the splitter 18 and is reflected by it becomes the variable frequency output light of this device. 26 is the Fabry-Perot etalon 20.
A frequency control circuit for controlling the output frequency of the semiconductor laser 11a to an arbitrary transmission frequency of 27, a switch for switching the frequency sweep mode and the frequency control mode of the semiconductor laser 11a,
28 is an adding means for adding the output of the switch 27 to the output of the constant current source 16, the output of which is applied to the injection current of the semiconductor laser 11a, and 29 is the voltage connected between the sweep oscillator 15 and the adding means 14. The hold circuit has an update mode in which the output of the sweep oscillator 15 is output as it is and a hold mode in which the output of the sweep oscillator 15 is held.

このような可変周波数光源の2つの動作モードを次に説
明する。
Two modes of operation of such a variable frequency light source are described below.

(イ)発振周波数掃引モード スイッチ27をオフ、電圧ホールド回路29をアップデート
モードとする。この場合ビームスプリッタ25から周波数
掃引光が出力されるが、これと同時に第1図の場合と同
様にして、演算回路23で出力光の周波数が演算され、そ
の表示等が行なわれる。すなわちエタロン透過信号の数
Nを計数するとともに、(1)式を用いて掃引中のレー
ザ発振周波数を正確に測定することができる。
(B) Oscillation frequency sweep mode Switch 27 is turned off and voltage hold circuit 29 is in update mode. In this case, the frequency sweep light is output from the beam splitter 25. At the same time, the frequency of the output light is calculated by the arithmetic circuit 23 in the same manner as in the case of FIG. 1, and the display thereof is performed. That is, the number N of etalon transmission signals can be counted and the laser oscillation frequency during the sweep can be accurately measured by using the equation (1).

(ロ)発振周波数制御モード (イ)の発振周波数掃引モードで、レーザ発振周波数が
N本目のエタロン透過線上にあるとき、スイッチ27をオ
ン、電圧ホールド回路29をホールドモードとして半導体
レーザ11aの温度を一定に保つ。その結果、レーザ発振
周波数はN本目のエタロン透過線上に一定に制御され
る。このモードでとり得るレーザ発振周波数の分解能は
ファブリ・ペロー・エタロン20のFSR(この場合100MH
z)で決まる。すなわちFSR間隔ごとにステップ的に一定
周波数の出力光を得ることができる。(イ)と組合せて
ステップ状に掃引することもできる。
(B) Oscillation frequency control mode In the oscillation frequency sweep mode of (a), when the laser oscillation frequency is on the Nth etalon transmission line, the switch 27 is turned on and the voltage hold circuit 29 is set to the hold mode to change the temperature of the semiconductor laser 11a. Keep constant. As a result, the laser oscillation frequency is controlled to be constant on the Nth etalon transmission line. The resolution of the laser oscillation frequency that can be taken in this mode is the FSR of the Fabry-Perot Etalon 20 (100 MHz in this case).
z). That is, output light having a constant frequency can be obtained stepwise at each FSR interval. It is also possible to perform stepwise sweeping in combination with (a).

上記の(イ)モードによれば、その可変周波数光とその
周波数値を利用して、物質のスペクトル検出や光フィル
タの特性測定等を行なうことができる。また(ロ)モー
ドによればその周波数一定の出力光とビートをとって被
測定レーザ光の特性測定等を行なうことができる。
According to the mode (a), the variable frequency light and the frequency value thereof can be used to detect the spectrum of the substance, measure the characteristics of the optical filter, and the like. Further, according to the (b) mode, it is possible to measure the characteristics of the laser light to be measured and the like by taking a beat with the output light having a constant frequency.

このような構成の可変周波数光源によれば、物質の吸収
線とエタロンのFSRをレーザ発振周波数の目盛りとする
ので、発振周波数を高精度に把握することができる。
According to the variable frequency light source having such a configuration, since the absorption line of the substance and the FSR of the etalon are used as the scale of the laser oscillation frequency, the oscillation frequency can be grasped with high accuracy.

また機械的可動部が無いので、高精度に発振周波数を掃
引でき、経時変化にも強い。
Moreover, since there is no mechanically movable part, the oscillation frequency can be swept with high accuracy and is resistant to changes over time.

なお吸収物質としては、アセチレンに限らず、アンモニ
ア,シアン化水素等複数の吸収線が異なる周波数間隔で
並んでいる任意の物質を用いることができる。
The absorbing substance is not limited to acetylene, and any substance having a plurality of absorption lines such as ammonia and hydrogen cyanide arranged at different frequency intervals can be used.

また出力光と同時に、光検出器21,22の出力をマーカ信
号として外部に出力してもよい。マーカ信号を用いてデ
ィスプレイ上の目盛り付を行なうことができる。
Further, the outputs of the photodetectors 21 and 22 may be output as marker signals to the outside at the same time as the output light. The marker signal can be used to calibrate on the display.

第8図は第7図装置の変形例を示す構成ブロック図であ
る。第7図と異なるのは光検出器22と周波数制御回路26
の間に切換スイッチ30を接続した点で、前述の(ロ)モ
ードにおいて、スイッチ30により光検出器21の出力を周
波数制御回路26に接続することにより、半導体レーザ11
aの発振周波数を吸収セル19の標準物質の吸収線にロッ
クできるようにしている。このような構成により、
(ロ)モードにおいて、絶対周波数が安定な出力光を得
ることができる。
FIG. 8 is a configuration block diagram showing a modification of the apparatus shown in FIG. The difference from FIG. 7 is that the photodetector 22 and the frequency control circuit 26
The changeover switch 30 is connected between the semiconductor laser 11 and the semiconductor laser 11 in the (b) mode by connecting the output of the photodetector 21 to the frequency control circuit 26 by the switch 30.
The oscillation frequency of a can be locked to the absorption line of the standard substance of the absorption cell 19. With this configuration,
In the (b) mode, output light with a stable absolute frequency can be obtained.

〈考案の効果〉 以上述べたように本考案によれば、半導体レーザの温度
−発振周波数特性や電流−発振周波数特性を高速・高精
度に測定できるレーザ周波数特性測定装置を簡単な構成
で実現することができる。また上記装置を利用して発振
周波数が高精度で、信頼性の高い可変周波数光源を簡単
な構成で実現することができる。
<Effects of the Invention> As described above, according to the present invention, a laser frequency characteristic measuring device capable of measuring the temperature-oscillation frequency characteristic and the current-oscillation frequency characteristic of a semiconductor laser with high speed and high accuracy is realized with a simple configuration. be able to. Further, it is possible to realize a highly reliable variable frequency light source with a simple structure by using the above-mentioned device, with a high oscillation frequency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係るレーザ周波数特性測定装置の一実
施例を示す構成ブロック図、第2図は吸収セルの吸収特
性を示す特性曲線図、第3図および第4図は第1図装置
の動作説明図、第5図は第1図装置によって測定された
被測定レーザの温度−波長特性を示す図、第6図は第1
図装置の一変形例を示す構成ブロック図、第7図は本考
案に係る可変周波数光源の一実施例を示す構成ブロック
図、第8図は第7図装置の変形例を示す構成ブロック
図、第9図,第10図は従来のレーザ周波数特性測定装置
を示す構成原理図である。 11……被測定半導体レーザ、15……掃引手段、18……分
離手段、19……吸収セル、20……ファブリ・ペロー・エ
タロン、21……第1の光検出器、22……第2の光検出
器、23……演算回路、26……周波数制御回路、27……ス
イッチ、29……電圧ホールド回路、30……切換スイッ
チ。
FIG. 1 is a block diagram showing an embodiment of a laser frequency characteristic measuring apparatus according to the present invention, FIG. 2 is a characteristic curve diagram showing absorption characteristics of an absorption cell, and FIGS. 3 and 4 are apparatus shown in FIG. FIG. 5 is a diagram showing the temperature-wavelength characteristics of the laser to be measured measured by the apparatus shown in FIG. 1, and FIG.
FIG. 7 is a structural block diagram showing a modified example of the device shown in FIG. 7, FIG. 7 is a structural block diagram showing an embodiment of a variable frequency light source according to the present invention, and FIG. 8 is a structural block diagram showing a modified example of the device shown in FIG. 9 and 10 are structural principle diagrams showing a conventional laser frequency characteristic measuring apparatus. 11 ... Semiconductor laser to be measured, 15 ... Sweeping means, 18 ... Separation means, 19 ... Absorption cell, 20 ... Fabry-Perot etalon, 21 ... First photodetector, 22 ... Second Photodetector, 23 ... Arithmetic circuit, 26 ... Frequency control circuit, 27 ... Switch, 29 ... Voltage hold circuit, 30 ... Changeover switch.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】被測定半導体レーザの温度または電流を掃
引する掃引手段と、前記半導体レーザの出力光を2つの
分離する分離手段と、この分離手段の一方の出力光を入
射し特定の周波数で吸収を起こす吸収セルと、前記分離
手段の他方の出力光を入射するファブリ・ペロー・エタ
ロンと、前記吸収セルの透過光を検出する第1の光検出
器と、前記ファブリ・ペロー・エタロンの透過光を検出
する第2の光検出器と、前記第1および第2の光検出器
の出力と前記掃引手段の掃引信号とから前記被測定半導
体レーザの各温度または電流における発振周波数を演算
する演算回路とを備えたことを特徴とするレーザ周波数
特性測定装置。
1. A sweeping means for sweeping a temperature or a current of a semiconductor laser to be measured, a separating means for separating the output light of the semiconductor laser into two, and an output light of one of the separating means is incident to a specific frequency. An absorption cell that causes absorption, a Fabry-Perot etalon that inputs the other output light of the separation means, a first photodetector that detects the transmitted light of the absorption cell, and a transmission of the Fabry-Perot etalon A second photodetector for detecting light, and a calculation for calculating the oscillation frequency at each temperature or current of the semiconductor laser to be measured from the outputs of the first and second photodetectors and the sweep signal of the sweep means. And a laser frequency characteristic measuring device.
【請求項2】半導体レーザと、この半導体レーザの温度
を掃引する掃引手段と、前記半導体レーザの出力光を2
つの分離する分離手段と、この分離手段の一方の出力光
を入射し特定の周波数で吸収を起こす標準物質を封入し
た吸収セルと、前記分離手段の他方の出力光を入射する
ファブリ・ペロー・エタロンと、前記吸収セルの透過光
を検出する第1の光検出器と、前記ファブリ・ペロー・
エタロンの透過光を検出する第1の光検出器と、前記第
1および第2の光検出器の出力と前記掃引手段の掃引信
号とから前記半導体レーザの発振周波数を演算する演算
回路と、前記吸収セルの吸収線または前記ファブリ・ペ
ロー・エタロンの透過線に前記半導体レーザの発振周波
数を制御する制御手段とを備えたことを特徴とする可変
波長光源。
2. A semiconductor laser, a sweeping means for sweeping the temperature of the semiconductor laser, and an output light of the semiconductor laser.
Separation means for separating, an absorption cell enclosing a standard substance which receives output light from one of the separation means and absorbs light at a specific frequency, and a Fabry-Perot etalon that receives output light from the other of the separation means. A first photodetector for detecting the transmitted light of the absorption cell, and the Fabry-Perot
A first photodetector for detecting the transmitted light of the etalon; an arithmetic circuit for computing the oscillation frequency of the semiconductor laser from the outputs of the first and second photodetectors and the sweep signal of the sweep means; A variable wavelength light source comprising: an absorption line of an absorption cell or a transmission line of the Fabry-Perot etalon; and control means for controlling the oscillation frequency of the semiconductor laser.
JP1989056716U 1989-03-30 1989-05-17 Variable frequency light source using laser frequency characteristic measuring device and nuclear device Expired - Lifetime JPH0740181Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989056716U JPH0740181Y2 (en) 1989-03-30 1989-05-17 Variable frequency light source using laser frequency characteristic measuring device and nuclear device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-37147 1989-02-16
JP3714789 1989-03-30
JP1989056716U JPH0740181Y2 (en) 1989-03-30 1989-05-17 Variable frequency light source using laser frequency characteristic measuring device and nuclear device

Publications (2)

Publication Number Publication Date
JPH0319933U JPH0319933U (en) 1991-02-27
JPH0740181Y2 true JPH0740181Y2 (en) 1995-09-13

Family

ID=31717793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989056716U Expired - Lifetime JPH0740181Y2 (en) 1989-03-30 1989-05-17 Variable frequency light source using laser frequency characteristic measuring device and nuclear device

Country Status (1)

Country Link
JP (1) JPH0740181Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570894B2 (en) * 2001-01-30 2003-05-27 Tektronix, Inc. Real-time wavelength calibration for swept lasers
US6985234B2 (en) * 2001-01-30 2006-01-10 Thorlabs, Inc. Swept wavelength meter
GB2541903B (en) * 2015-09-02 2020-06-03 Thermo Fisher Scient Bremen Gmbh Optimisation of the laser operating point in a laser absorption spectrometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100138A (en) * 1972-03-31 1973-12-18
JPS5812385A (en) * 1981-06-26 1983-01-24 Fujitsu Ltd Emitting light wave length sweep system of wave length variable laser
JPS60140141A (en) * 1983-12-27 1985-07-25 Fujitsu Ltd Optical gas sensor
JPS62198723A (en) * 1986-02-26 1987-09-02 Yokogawa Electric Corp Variable wavelength light source

Also Published As

Publication number Publication date
JPH0319933U (en) 1991-02-27

Similar Documents

Publication Publication Date Title
EP0401799B1 (en) Length measuring apparatus
US6891149B1 (en) Optical phase detector
JPH04331333A (en) Wavelength change measuring device
JP5421013B2 (en) Positioning device and positioning method
US3708229A (en) System for measuring optical path length across layers of small thickness
JPH0740181Y2 (en) Variable frequency light source using laser frequency characteristic measuring device and nuclear device
US20020149776A1 (en) Wavelength meter adapted for averaging multiple measurements
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
WO1989006781A1 (en) A method and apparatus for measuring optical distances
JPS61501340A (en) Mirror scan speed control device
JPH02307027A (en) Light frequency measuring instrument
JPH07103828A (en) Estimation unit for variable frequency characteristics
JPH01210804A (en) Spacing measuring method
JPH0723708Y2 (en) Laser frequency meter
JPH0626264B2 (en) Variable wavelength light source
JPS60500734A (en) Mirror scanning speed control device
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JPS6112530B2 (en)
JPH0648365Y2 (en) Laser frequency meter
JPH01276784A (en) Variable frequency light source
JPH0283422A (en) Laser frequency meter
JPH01313722A (en) Optical frequency meter
JPH0716982Y2 (en) Optical frequency change measuring device
JPH0714836Y2 (en) Laser frequency meter
JP3183472B2 (en) Optical wavelength switching characteristic measuring method and measuring apparatus