JPS62198723A - Variable wavelength light source - Google Patents

Variable wavelength light source

Info

Publication number
JPS62198723A
JPS62198723A JP61040772A JP4077286A JPS62198723A JP S62198723 A JPS62198723 A JP S62198723A JP 61040772 A JP61040772 A JP 61040772A JP 4077286 A JP4077286 A JP 4077286A JP S62198723 A JPS62198723 A JP S62198723A
Authority
JP
Japan
Prior art keywords
wavelength
light source
light
output
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61040772A
Other languages
Japanese (ja)
Inventor
Hideto Iwaoka
秀人 岩岡
Akira Ote
明 大手
Koji Akiyama
浩二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP61040772A priority Critical patent/JPS62198723A/en
Priority to US06/942,448 priority patent/US4893353A/en
Priority to US06/943,670 priority patent/US4856899A/en
Priority to GB8630375A priority patent/GB2185567B/en
Priority to DE3643553A priority patent/DE3643553C2/en
Priority to DE3643569A priority patent/DE3643569C2/en
Priority to GB8630374A priority patent/GB2185619B/en
Publication of JPS62198723A publication Critical patent/JPS62198723A/en
Priority to US07/293,020 priority patent/US4912526A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/04Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by beating two waves of a same source but of different frequency and measuring the phase shift of the lower frequency obtained
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell

Abstract

PURPOSE:To make wavelength measurement with high accuracy over a wide band by providing a wavelength selector which is inputted with the output light of a variable wavelength laser light source and generates light output at prescribed wavelength intervals. CONSTITUTION:A resonator FP1 consists of a Fabry-Perot etalon to be inputted with the transmitted light of a beam splitter BS1 to constitute the wavelength selector. The variable wavelength laser light source 2 generates the output light of the wavelength corresponding to a signal Ei and part thereof is reflected by a splitter BS1 form variable wavelength output light Rv. The other part transmits the splitter and is inputted to the resonator EP1. The resonator EP 1 changes the equiv. resonator intervals by the effect of an electrooptic element EO1 existing on the optical path. The output light Rm of the resonator FP1, therefore, has the peak value at the wavelength intervals corresponding to the output of the signal source E1. The photodetector PD1 of the resonator EP1 converts the output light Rm to an electric signal and outputs a marker signal Em from a terminal 3.

Description

【発明の詳細な説明】 3、発明のAT、 mな説明 (産業上の利用分野) 本発明は、光スペクトル・アナライザ等に用いられて精
密な波長測定を可能にする可変波長光源の改良に関する
Detailed Description of the Invention 3. AT of the Invention (Industrial Field of Application) The present invention relates to improvements in a variable wavelength light source that is used in optical spectrum analyzers and the like to enable precise wavelength measurement. .

(従来の技術) 従来、光スベク1〜ル・アナライブや分光器などを用い
て波長特性や分光特性を測定する場合、精反を上げるに
は波長の基準となる光源が必要であった。
(Prior Art) Conventionally, when measuring wavelength characteristics or spectral characteristics using an optical spectrum analyzer, a spectrometer, or the like, a light source that serves as a wavelength reference is required to increase the precision.

(発明が解決しようとする問題点) しかしながら、基準波長光源の波長から離れた帯域を測
定する場合に誤差が大きくなるという欠点があった。
(Problems to be Solved by the Invention) However, there is a drawback that the error increases when measuring a band far from the wavelength of the reference wavelength light source.

また、雄型波長光源として可変波長光源を使用すれば、
波長範囲は広くとれるが、可変波長光源の入力と発振波
長を精度よ(対応づけをするのは容易でない。
In addition, if a variable wavelength light source is used as the male wavelength light source,
Although the wavelength range can be wide, it is not easy to accurately match the input and oscillation wavelength of the tunable wavelength light source.

本発明はこのような問題点を解決するためになされたも
ので、広い帯域にわたって高精度な波長測定を可能とす
る可変波長光源を実現することを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to realize a variable wavelength light source that enables highly accurate wavelength measurement over a wide band.

(問題点を解決するための手段) 本発明に係る可変波長光源は入力信号に対応して出力光
の波長が変化する可変波長レーザ光源と、この可変波長
レーザ光源の出力光を入力し所定の波長間隔でピークを
有する光出力を発生する共振器と、前記可変波長レーザ
光源の出ツノ帯域内で一定波長の光出力を発生する基1
vilji長レーナ光源とを備えたことを特徴とする。
(Means for Solving the Problems) A tunable wavelength light source according to the present invention includes a tunable wavelength laser light source whose output light wavelength changes in response to an input signal, and a tunable wavelength laser light source that inputs the output light of the tunable wavelength laser light source and generates a predetermined signal. a resonator that generates an optical output having peaks at wavelength intervals; and a base 1 that generates an optical output of a constant wavelength within the output horn band of the variable wavelength laser light source.
It is characterized by being equipped with a long-lenah light source.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明に係る可変波長光源の一実施例を示す偶
成ブロック図である。可変波長光源10にJ3いて、1
は波長を制御する入力電気13号)E tが加わる入力
端子、2はこの入力端子1を介して前記電気信号Eiを
入力する可変波長レーザ光源、BSlはこの可変波長レ
ーザ光源2の出力光を入射して2方向に分離Jるビーム
スプリッタ、FPlはこのビームスプリッタBS1の透
過光を入力するファプリ・ベロー・エタロンからなる共
振器で波長選択装置を構成するもの、Eolはこの共振
器FPl内の光軸上に設けられた電気光学素子、Elは
この電気光学素子EOIを駆動する信号源、PDIは前
記共振器FP1の出力光を大割して電気信号に変換する
受光素子、4は一定波長の出力光を発生する高安定、高
精度の基準波長レーザ光源である。
FIG. 1 is a conjunctive block diagram showing an embodiment of a variable wavelength light source according to the present invention. J3 is in the variable wavelength light source 10, and 1
is an input terminal to which an input electric signal (No. 13) Et for controlling the wavelength is added, 2 is a variable wavelength laser light source to which the electrical signal Ei is input via this input terminal 1, and BS1 is an input terminal for the output light of this variable wavelength laser light source 2. A beam splitter that enters the beam and separates it into two directions, FPl is a resonator consisting of a Fabry-Bello etalon that inputs the transmitted light of this beam splitter BS1, and constitutes a wavelength selection device. An electro-optical element provided on the optical axis, El is a signal source that drives this electro-optical element EOI, PDI is a light receiving element that roughly divides the output light of the resonator FP1 and converts it into an electrical signal, 4 is a constant wavelength This is a highly stable and highly accurate reference wavelength laser light source that generates an output light of .

上記のような構成の可変波長光源の動作を次に説明する
。可変波長レーザ光源2は入力端子1を介して加わる(
Fj号「1に34応する波長の出力光をJIEする。こ
の出力光の一部はビームスプリッタBS1で反射されて
可変波長出力光Rυとなり、他の一部は透過して共振器
FPIに入ツノする。共振器「Pllよ光路上にひ在す
る電気光学素子EO1の作用により等価的な共振器間隔
を変えることができる。したがって共振器FP1の出力
光RWLは信号源E1の出力(電圧)に対応する波長間
隔でピーク値を有する。受光素子PCIはこの出力光R
mを電気信号に変換してマーカ信@E電を端子3から出
力する。第2図はこのマーカ信号Exを周波数領域で示
したスペクトラム・ヂャートである。基準波長レーザ光
源4は可変波長レーザ光源2の出力帯域の範囲内で一定
波長の出力光R6を発生する。
The operation of the variable wavelength light source configured as described above will be explained next. A variable wavelength laser light source 2 is applied via the input terminal 1 (
The output light with a wavelength corresponding to No. Fj "1" is JIE. A part of this output light is reflected by the beam splitter BS1 and becomes the variable wavelength output light Rυ, and the other part is transmitted and enters the resonator FPI. The equivalent resonator spacing can be changed by the action of the electro-optical element EO1 present on the optical path of the resonator Pll. Therefore, the output light RWL of the resonator FP1 is equal to the output (voltage) of the signal source E1. The light receiving element PCI has a peak value at a wavelength interval corresponding to the output light R.
m is converted into an electric signal and a marker signal @E electric signal is output from terminal 3. FIG. 2 is a spectrum chart showing this marker signal Ex in the frequency domain. The reference wavelength laser light source 4 generates output light R6 of a constant wavelength within the output band of the variable wavelength laser light source 2.

第1図装置において、可変波長光源2としては半導体レ
ーザの注入電流や温度を変えて波長を変化させるもの、
外部共振器の片りのミラーを回折格子とし、その回転角
を変えて波長を変化させるもの、そのほか各便のものを
使用できる。
In the apparatus shown in FIG. 1, the variable wavelength light source 2 is one that changes the wavelength by changing the injection current or temperature of a semiconductor laser;
It is possible to use a diffraction grating that uses one mirror of the external resonator and change the wavelength by changing the rotation angle, or other types of various types.

第3図は可変波長レー會ア光源2の一実施例を示す構成
ブロック図である。図においてLDlはず導体レーザ、
a、bはこの半導体レーザLD1の両端に設けられた無
反射コート部、LSIはこの無反射コート部aから出射
される光を平行光とするレンズ、BS2はこのレンズ1
81を通過した光が反射されるとともに共振光を外部へ
出力するビームスプリッタ、LS2は無反射コーi・部
すから出射される光を平行光とするレンズ、LIMIは
このレンズLS2を通過する光が入射する第1の超音波
変調器、UM2はこの超音波変調ii1iUM1からの
出力光が入射する第2の超音波変調器、Mlはこの超音
波変調器LJM2から出射した光を反射するミラー、D
I(1は前記超音波変調:褐UMI。
FIG. 3 is a block diagram showing an embodiment of the variable wavelength laser beam source 2. As shown in FIG. In the figure, LDl should be a conductor laser,
a and b are anti-reflection coating parts provided at both ends of this semiconductor laser LD1, LSI is a lens that converts the light emitted from this anti-reflection coating part a into parallel light, and BS2 is this lens 1.
LS2 is a lens that converts the light emitted from the non-reflective core into parallel light, and LIMI is the light that passes through this lens LS2. UM2 is a second ultrasonic modulator into which the output light from the ultrasonic modulator ii1iUM1 is incident, Ml is a mirror that reflects the light emitted from the ultrasonic modulator LJM2, D
I (1 is the ultrasonic modulation: brown UMI.

UM2を周波数Fで励振する発振器である。半導体レー
ザLDIの無反射コート部aから出射した光はレンズ1
81で平行光とされた後ビームスプリッタ882で反射
され、反射光は光路を元に戻って再び半導体レーザLD
1に入射する。無反射コート部すから出射した周波数f
oIの光はレンズL S 2で平行光とされ、第1の超
音波変調器UM1に入射する。超音波により生じる回折
格子に対して特定の入射角および出射角を満足するよう
な九の波長は超音波の波長が変われば変化する。
This is an oscillator that excites UM2 at frequency F. The light emitted from the non-reflection coating part a of the semiconductor laser LDI is transmitted through the lens 1.
After being converted into parallel light at 81, it is reflected at a beam splitter 882, and the reflected light returns to the original optical path and enters the semiconductor laser LD again.
1. Frequency f emitted from the non-reflection coating part
The oI light is made into parallel light by the lens L S 2 and enters the first ultrasonic modulator UM1. The nine wavelengths that satisfy specific incident and exit angles for the diffraction grating produced by the ultrasound vary as the wavelength of the ultrasound changes.

入射光は回折の際に超音波によるドツプラシフトを受け
、+1次回折光(超音波の方向と回折される方向が同じ
)の周波数はfo r +Fとなる。超音波変調器UM
1からの出射光は超音波変調器UM2で再び回折する。
The incident light undergoes a Doppler shift due to the ultrasonic wave during diffraction, and the frequency of the +1st order diffracted light (the direction of the ultrasonic wave is the same as the diffracted direction) becomes for +F. Ultrasonic modulator UM
The emitted light from 1 is diffracted again by the ultrasonic modulator UM2.

超音波′a′調器LJM2では超音波の進行波と回折光
の関係が超音波変調器UM1におけるJJi合と逆で、
−1次回折光となるので、ドツプラシフI−fflは−
Fとなり、超音波変調nuM2の出力光の周波数は「。
In the ultrasonic 'a' modulator LJM2, the relationship between the ultrasonic traveling wave and the diffracted light is opposite to the JJi combination in the ultrasonic modulator UM1.
-Since it is the first-order diffracted light, Dopplash I-ffl is -
F, and the frequency of the output light of ultrasonic modulation nuM2 is ".

、+F−F==f。lとなる。超音波変調器UM2の出
力光はミラーM1で反射した後超音波変調器UM2でド
ツプラシフトを受けて周波数がfoI  Fとなった後
、超音波変alllLJM1でf’o r −F+F−
fo rとなり、元の周波数f’o+となって半導体レ
ー’J’LD1に戻るので、共振状態が持続する。この
様な構成で超音波の波長(周波数F)を変えれば、共振
する光の波長を掃引することができる。ビームスプリッ
タBS2を介して共振した光が外部に出力される。
, +F−F==f. It becomes l. The output light of the ultrasonic modulator UM2 is reflected by the mirror M1, and then undergoes a Doppler shift in the ultrasonic modulator UM2, so that the frequency becomes foIF, and then the ultrasonic modulator allLJM1 converts it into f'or −F+F−.
for r, and returns to the original frequency f'o+ to the semiconductor laser 'J'LD1, so that the resonance state continues. By changing the wavelength (frequency F) of the ultrasonic wave in such a configuration, it is possible to sweep the wavelength of the resonant light. The resonant light is output to the outside via the beam splitter BS2.

第4図は可変波長レーザ光源2の第2の実施例を示す構
成ブロック図である。第3図と同一の部分には同じ記号
を付して説明を省略プる。BS3はレンズLS2からの
出射光を2方向に分離するビームスプリッタ、EO2は
このビームスプリッタ883を透過した光を入tJJ丈
る電気光学素子、vlはこの電気光学素子EO2を制御
する信号源、Mlは前記電気光学素子EO2の出射光を
反射するミラー、EO3は前記ビームスプリッタBS3
で反射した光を入射する電気光学素子、M2はこの電気
光学素子EO3の出射光を反射するミラー、v2はこの
電気光学素子EO3をシ制御する信号源である。電気光
学素子EO2,EO3の光路方向の長さをそれぞれQ+
+92、屈折率をそれぞれnI r n2 、ビームス
プリッタ1382.Ml間の光路に沿ったe、を除く距
離をl−1、ビームスプリツタ882. vF′!離をL2 、Qを整数とすると、この場合の発
振周波数Co2は f’o  2 =q−c  / 2 1   (I−+
   lln+   (V+   >R+   )− 
  (L2   +nz   (V2   )   9
2   )   lとなる。すなわち信号源■1または
v2により電気光学素子EO2またはEO3の電界強1
復を変えて屈折率n,またはn2を変化させることによ
り、発振周波数f02を広範囲にに1引できる。
FIG. 4 is a block diagram showing a second embodiment of the variable wavelength laser light source 2. In FIG. The same parts as in FIG. 3 are given the same symbols and their explanation will be omitted. BS3 is a beam splitter that separates the light emitted from the lens LS2 into two directions, EO2 is an electro-optical element that receives the light transmitted through this beam splitter 883, and vl is a signal source that controls this electro-optical element EO2, Ml is a mirror that reflects the light emitted from the electro-optical element EO2, and EO3 is the beam splitter BS3.
M2 is a mirror that reflects the light emitted from the electro-optical element EO3, and v2 is a signal source that controls the electro-optical element EO3. The lengths of electro-optical elements EO2 and EO3 in the optical path direction are each Q+
+92, refractive index nI r n2 , beam splitter 1382. The distance e along the optical path between Ml, excluding e, is l-1, and the beam splitter 882. vF′! When distance is L2 and Q is an integer, the oscillation frequency Co2 in this case is f'o2 = q-c/21 (I-+
lln+ (V+ >R+)-
(L2 +nz (V2) 9
2) It becomes l. In other words, the electric field strength 1 of the electro-optical element EO2 or EO3 is increased by the signal source 1 or v2.
By changing the refractive index n or n2, the oscillation frequency f02 can be subtracted by 1 over a wide range.

第5図は基準波長レーザ光源4の1実施例を示す構成ブ
ロック図である。図において、LD2は半導体レーザ、
884はこの半導体レーザL D 2の出力光が入射す
るビームスプリッタ、CLlはこのビームスプリッタB
S4の反射光を入射する標準物質が封入された吸収セル
、PO2はこの吸収セルCL1の出力光が入射する受光
素子、1.、、 A1はこの受光°素子PD2の電気出
力を入力しこれに対応する出力で前記半導体レーザしD
2の電流をυ制御するロックインアンプ、DR2は前記
半導体レーザLD2の電流を周波数変調するとともに前
記ロックインアンプLAIの位相検波周波数を供給する
発振器である。ビームスプリッタ13S4の透過光がこ
の基準波長レーデ光源の出力光となる。標準物質として
はCs 、Rb 、NH3,I−!20など任意の物質
を用いることができる。
FIG. 5 is a block diagram showing one embodiment of the reference wavelength laser light source 4. As shown in FIG. In the figure, LD2 is a semiconductor laser,
884 is a beam splitter into which the output light of this semiconductor laser LD2 enters, and CLl is this beam splitter B.
An absorption cell sealed with a standard substance into which the reflected light of S4 enters; PO2 is a light receiving element into which the output light of this absorption cell CL1 enters; 1. ,, A1 inputs the electric output of this light receiving element PD2 and outputs the semiconductor laser D with the corresponding output.
A lock-in amplifier DR2 that controls the current of the semiconductor laser LD2 is an oscillator that frequency-modulates the current of the semiconductor laser LD2 and supplies a phase detection frequency of the lock-in amplifier LAI. The transmitted light of the beam splitter 13S4 becomes the output light of this reference wavelength Rade light source. Standard substances include Cs, Rb, NH3, I-! Any material such as 20 can be used.

半導体レーザLD2の出力光はビームスプリッタ834
で反射されて吸収セルCLIに入IJ’J L、吸収セ
ル内CL1の標準物質による吸収を受ける。
The output light of the semiconductor laser LD2 is sent to the beam splitter 834.
It is reflected by IJ'JL and enters the absorption cell CLI, where it is absorbed by the standard substance in the absorption cell CL1.

吸収量を受光素子PD2で検出し、ロックインアンプL
Δ1を介して半導体レーデ1−D2の電流に帰還する。
The amount of absorption is detected by the light receiving element PD2, and the lock-in amplifier L
The current is fed back to the semiconductor radar 1-D2 via Δ1.

半導体レーザLD2の出力波長は標準物質の吸収スペク
トル線にロックされるので、高安定、高精度の基準波長
光源を実現できる。
Since the output wavelength of the semiconductor laser LD2 is locked to the absorption spectrum line of the standard material, a highly stable and highly accurate reference wavelength light source can be realized.

なお上記第1図の実施例において、ファブリ・ペロー・
エタロンの共振器間隔を自由に変えることができる場合
には電気光学素子EOIが不要となる。
In the embodiment shown in FIG. 1 above, Fabry-Perot
If the spacing between the resonators of the etalon can be freely changed, the electro-optical element EOI is not necessary.

また共振器FP1として77ノブリ・ベロー・エタロン
の代りに第6図に示すようなマイケルソン干渉「1を用
いてもよい。図においてレーデ光源LD3から入射した
光はビームスプリッタ884で2方向に分離され、ビー
ムスプリッタBS4で反射する光と、ビームスプリッタ
BS4を透過した光がミラーM3で反射した後ビームス
プリッタBS4およびミラー4で反射し、ビームスプリ
ッタ[3S4を透過する光とが干渉する。この結果一定
の波長間隔でピークを有する出力光を発生できる。
Also, as the resonator FP1, a Michelson interference "1" as shown in FIG. 6 may be used instead of the 77-noble bellow etalon. In the figure, the light incident from the Rade light source LD3 is separated into two directions by the beam splitter 884. The light reflected by the beam splitter BS4 and the light transmitted through the beam splitter BS4, which is reflected by the mirror M3 and then reflected by the beam splitter BS4 and the mirror 4, interfere with the light transmitted through the beam splitter [3S4.This result Output light having peaks at regular wavelength intervals can be generated.

また基準波長レーデ光源4の1実施例として示した第5
図の方法は線形吸収法とよばれ、ドツプラシフトにより
吸収スペクトルが比較的太くなるが、飽和吸収法(堀、
開田、北野、藪崎、小用:飽和1汲収分光を用いた半導
体レーザの周波数安定化、信学技報 0QE82−11
6>によりドツプラシフトで隠れている超微細構造の吸
収線を検出して、これに半導体レーザLD2の発振波長
をロックすればざらに高安定とすることができる。
In addition, the fifth light source shown as an embodiment of the reference wavelength Rade light source 4
The method shown in the figure is called the linear absorption method, and the absorption spectrum becomes relatively thick due to the Doppler shift.
Kaida, Kitano, Yabusaki, Koyo: Frequency stabilization of semiconductor lasers using saturation single-spectrum spectroscopy, IEICE Technical Report 0QE82-11
6>, by detecting the absorption line of the ultrafine structure hidden by the Doppler shift, and locking the oscillation wavelength of the semiconductor laser LD2 to this, it is possible to achieve a high degree of stability.

第7図は第1図装置の変形例を示す要部構成ブロック図
である。第1図と同じ部分は同一の記号を付して説明を
省略する。BS5は基準波長レーザ光源4の出力光路に
設けられその反射光をビームスプリッタ881に入射す
るビームスプリッタ、1−△2は受光素子PD1の出力
を入力するロックインアンプ、E2はこのロックインア
ンプの出力と加鐸して電気光学素子EO1に印加される
バイアス信号源である。基準波長レーザ光源4の出力光
の一部はビームスプリッタBS5で反射し、ビームスプ
リッタ881を介して共振器F P 1に入射する。ロ
ックインアンプLA2を含む帰還ループで基準波長成分
が最大となるように共振器F l)1の共j■は隔を制
御づることにより、マーカ光と基準波長とを一致さぜる
ことができる。
FIG. 7 is a block diagram illustrating a modification of the apparatus shown in FIG. 1. The same parts as in FIG. 1 are given the same symbols and the explanation is omitted. BS5 is a beam splitter that is provided in the output optical path of the reference wavelength laser light source 4 and makes the reflected light enter the beam splitter 881, 1-△2 is a lock-in amplifier that inputs the output of the photodetector PD1, and E2 is a lock-in amplifier of this lock-in amplifier. This is a bias signal source that is applied to the electro-optical element EO1 in combination with the output. A part of the output light from the reference wavelength laser light source 4 is reflected by the beam splitter BS5 and enters the resonator F P 1 via the beam splitter 881. The marker light and the reference wavelength can be matched by controlling the distance between the resonances of the resonator Fl)1 so that the reference wavelength component is maximized in the feedback loop including the lock-in amplifier LA2. .

第8図は本発明に係る可変波長光源の1応用例である光
スペクトラムアナライザを示す構成ブロック図である。
FIG. 8 is a configuration block diagram showing an optical spectrum analyzer which is an application example of the variable wavelength light source according to the present invention.

帯状の矢印は光信号の流れを示し実線の矢印は電気信号
の流れを示す。11は被測定光を入射する…気光学効果
結晶(Y I G、鉛ガラス他〉などを用いた嘔光制御
部、12はこの(偏光制御部11の出力光を入力する光
増幅部、13は1吊引信号発生器、10(ユこの掃引信
号発生器13により可変波長レーザ光源2の周波Ml抑
引をルリ御される可変波長光源、l−1M2はこの可変
波長光源10のに(単波長光Rsおよび可変波長)ヒ1
<υを合成するハーフミラ−1l−IMIはこのハーフ
ミラHM 2 J3にびnO記光増幅部12の出力光を
入力Jるハーフミラ−114はPINフ第1・ダイオー
ドやアバランシェフォトダイオードなどからなり前記ハ
ーフミラ−]」M1の出力光を入カリ−る光へテロダイ
ン検波部、15はこの光ヘテロ検波部検波部14の電気
IIj力を入力して増幅するとともにバンドパス特性を
有するフィルタ部、16はこのフィルタ部15の電気出
力を入力する検波部、17はこの検波部16の電気出力
を入力する信号処理・表示部である。光増幅部12はG
 aA I A sレーザ(780nm帯)や1uGa
AsPレーザ(1500nm帯)などで構成され、下記
の3方式のものを用いることができる。
Band-shaped arrows indicate the flow of optical signals, and solid arrows indicate the flow of electrical signals. Reference numeral 11 denotes a light control section using a pneumatic effect crystal (YIG, lead glass, etc.) into which the light to be measured is incident, 12 a light amplification section into which the output light of the polarization control section 11 is input; 1 is a suspension signal generator; Wavelength light Rs and variable wavelength) Hi1
The half mirror 1l-IMI which synthesizes 15 is an optical heterodyne detection section which inputs the output light of M1, 15 is a filter section which inputs and amplifies the electric power of the optical heterodyne detection section 14 and has a bandpass characteristic, and 16 is a filter section which has a bandpass characteristic. A detection section 17 receives the electrical output of the filter section 15, and a signal processing/display section 17 receives the electrical output of the detection section 16. The optical amplifying section 12 is G
aA I As laser (780nm band) and 1uGa
It is composed of an AsP laser (1500 nm band), and the following three types can be used.

(イ)共振器形半導体レーザ増幅器と呼ばれ、発振閾値
近傍のバイアス′Ijl流を流し、レーザダイオードに
信号光を入射して誘導放出により線形光増幅を行うもの
(a) This is called a resonator type semiconductor laser amplifier, which performs linear optical amplification through stimulated emission by passing a bias current near the oscillation threshold and inputting signal light into a laser diode.

([1)光注入同期増幅器とげばれ、発J辰しているレ
ーザダイオードに信号光を入射して発振光の光周波aお
よび位相を制御するもの。
([1) Optical injection-locked amplifier, which controls the optical frequency a and phase of the oscillated light by inputting signal light into the emitting laser diode.

(ハ)進行波形レーザ増幅器と呼ばれ、レーザ”ダイオ
ード・チップの両端面を無反射ツー1−シ、信号光の通
過のみで光増幅するもの。
(c) This is called a traveling wave laser amplifier, and it amplifies light only by passing signal light through non-reflective two-pieces on both end faces of a laser diode chip.

上記のような構成の光スペク1−ラム7ナライゾの動作
を次に詳しく説明する。偏光制御部11に周波数ω(の
被測定光が入射すると、磁気光学効果結晶の旋光性を利
用して印加磁界を制御することにより、入射光の偏光面
をハーフミラ−1−1M2の出力光と同じ偏光面となる
ように制御IIする。偏光制御部11の光出力は光増幅
部12で増幅された後ハーフミラ−1」Mlで可変波長
光源10の周波数ω。の出力光と合成され、光ヘテロダ
イン検波部14で画周波数の差ω0−ω1′(ただしこ
の場合はω、′−ω、)の周波数をもつ電気信号に変換
される。光ヘテロダイン検波部14の電気出力はフィル
タ15のバンドパス特性を一部が通過し検波部16でパ
ワーとして取出される。信号処理・表示部17はh3引
信号発生器13からのThe引に関連した信号を周波数
軸信号として入力し、検波部16の電気出力をパワー信
号として入力して被測定光18および基準光19をスペ
クトル表示するとともに、可変波長光IfA10から出
力されるンー力信号を入力して、マーカ20を表示する
The operation of the optical spectrum 1-ram 7-narrow zoomer configured as described above will be explained in detail below. When the measured light of frequency ω is incident on the polarization control unit 11, the polarization plane of the incident light is changed to the output light of the half mirror 1-1M2 by controlling the applied magnetic field using the optical rotation of the magneto-optic effect crystal. The light output from the polarization control unit 11 is amplified by the optical amplification unit 12, and then combined with the output light at the frequency ω of the variable wavelength light source 10 by the half mirror 1”Ml, and the light output from the polarization control unit 11 is The optical heterodyne detection section 14 converts the image frequency difference into an electrical signal having a frequency of ω0 - ω1' (in this case, ω,' - ω,). A part of the characteristic passes through and is extracted as power by the detection section 16.The signal processing/display section 17 inputs the signal related to The subtraction from the h3 subtraction signal generator 13 as a frequency axis signal, and outputs the signal to the detection section 16. The electrical output is input as a power signal to display the spectrum of the light to be measured 18 and the reference light 19, and the power signal output from the variable wavelength light IfA 10 is input to display the marker 20.

本応用例における光周波数の動作例を次に示す。An example of optical frequency operation in this application example is shown below.

基準波長光Rsの波長: 780nm (レーザダイオ
ードの波長をRbの吸収線にOツクする)可変波長光R
oの波1: 780nm+50nmω1の波長: 78
0nm±5Qnm 第8図ではパルス光を被測定光としてそのスペクトルを
測定する場合を示すために、挿引信号発生器13にパル
ス同期信号を加えている。被測定パルス光に同期したト
リが信号を掃引信号発生器13に入力し、これに同期し
て可変波長光源10の可変波長光Rυの周波数をステッ
プ状に掃引する。、同時に信@@理・表示部17にステ
ップ周波数に対応した信号を送る。その結果、1つのパ
ルス光ごとに1点の周波数のパワースペクトルを測定す
ることになり、掃引後はパルス光の全スペクトルを出力
できる。
Wavelength of reference wavelength light Rs: 780 nm (tuning the wavelength of the laser diode to the absorption line of Rb) Variable wavelength light R
o wave 1: 780nm + 50nm ω1 wavelength: 78
0nm±5Qnm In FIG. 8, a pulse synchronization signal is applied to the insertion signal generator 13 in order to show the case where pulsed light is used as the light to be measured and its spectrum is measured. A bird synchronized with the pulsed light to be measured inputs a signal to the sweep signal generator 13, and in synchronization with this, the frequency of the variable wavelength light Rυ of the variable wavelength light source 10 is swept in steps. At the same time, a signal corresponding to the step frequency is sent to the communication/display section 17. As a result, the power spectrum of one frequency point is measured for each pulsed light, and after sweeping, the entire spectrum of the pulsed light can be output.

第8図の実施例に述べたような構成によれば、光スペク
トラムアナライザの周波数分解能は可変波長光f110
の可変波長出力光Rυのスペクトル幅とフィルタ部15
の帯域幅で決まる。可変波長出力Rυのスペクトル幅は
可変波長レーず光源2で決まるので、これに前述(第3
図、第4図)のような外部共振器形レーザダイオードを
使用することにより、浸れた周波数分解能を10にとが
できる。
According to the configuration described in the embodiment shown in FIG. 8, the frequency resolution of the optical spectrum analyzer is as follows:
The spectral width of the variable wavelength output light Rυ and the filter section 15
determined by the bandwidth of The spectral width of the variable wavelength output Rυ is determined by the variable wavelength laser light source 2.
By using an external cavity laser diode such as the one shown in FIG.

なお上記の応用例ではフィルタ部15としてバンドパス
フィルタを用いたが、これに限らず、ローパスフィルタ
を用いてもよい。
Note that in the above application example, a bandpass filter is used as the filter section 15, but the present invention is not limited to this, and a lowpass filter may be used.

第9図は本発明に係る可変波長光源の第2の応用例で、
従来の光スペクトラム・アナライプ(または分光器、以
下同様〉の光源として使用したものを示す構成ブロック
図である。可変波長光源10のマーカ光出力Rmはミラ
ーM3で反射され基準波長光出力Rsとと5にビームス
プリッタBS6で加え合され、ビームスプリッタ887
で被測定光と加え合されて光スペクトル・アナライザ2
1に入力する。光スペクトル・アナライtア21からの
月明信号は可変波長光源10の波長可変人力E、となる
。このような構成で、光スペクトル・アナライザ21の
画面上にはモの作用に月明して画面上に被測定光22.
基準光23およびマーカ光24のスペクトルが現れる。
FIG. 9 shows a second application example of the variable wavelength light source according to the present invention,
FIG. 2 is a block diagram showing the configuration of a conventional optical spectrum analyzer (or spectrometer, hereinafter the same) used as a light source.The marker light output Rm of the variable wavelength light source 10 is reflected by a mirror M3 and becomes the reference wavelength light output Rs. 5 by beam splitter BS6, beam splitter 887
The optical spectrum analyzer 2 is added to the light to be measured.
Enter 1. The moonlight signal from the optical spectrum analyzer 21 becomes the wavelength variable power E of the variable wavelength light source 10. With such a configuration, the light to be measured 22.
The spectra of the reference light 23 and marker light 24 appear.

第10図は本発明に係る可変波長光源の第3の応用例で
ある光ネットワーク・アナライザを示す構成ブロック図
である。可変波長光源10の可変波長出力光Rυを被測
定物22に入射してその出力光を受光素子PD3で検出
し、出力をXYし=1−ダ25の第1のY軸入力Y1と
する。可変波長光源10からのマーカ光出力Rmおよび
基準波長光出力RsもミラーM3およびビームスプリッ
タBS6を介して受光素子PD4に入射し、電気信号に
変換されてXYレコーダ25の第2のY軸入力Y2とな
る。ランプジェネレータ29の出力は可変波長光源10
の波長可変人力EえおよびXYレコーダ25のX軸入力
となる。この結果XYレコーダ25上には分光特性26
とともに基準光27およびマーカ光28が記録される。
FIG. 10 is a configuration block diagram showing an optical network analyzer which is a third application example of the variable wavelength light source according to the present invention. The variable wavelength output light Rυ of the variable wavelength light source 10 is incident on the object to be measured 22, the output light is detected by the light receiving element PD3, and the output is converted to XY and is set as the first Y-axis input Y1 of the 25. The marker light output Rm and the reference wavelength light output Rs from the variable wavelength light source 10 also enter the light receiving element PD4 via the mirror M3 and the beam splitter BS6, where they are converted into electrical signals and sent to the second Y-axis input Y2 of the XY recorder 25. becomes. The output of the lamp generator 29 is the output of the variable wavelength light source 10.
It serves as the wavelength variable manual output and the X-axis input of the XY recorder 25. As a result, the spectral characteristics 26 are displayed on the XY recorder 25.
At the same time, reference light 27 and marker light 28 are recorded.

上記の各応用例によれば、測定データとともに基準光と
マーカ光が表示または記録されるので、基準光の波長か
らマーカ光の間隔数を数えるとともに、内挿を行えば波
長を容易に知ることができる。
According to each of the above application examples, the reference light and marker light are displayed or recorded together with the measurement data, so the wavelength can be easily determined by counting the number of intervals between marker lights from the wavelength of the reference light and performing interpolation. I can do it.

(発明の効果) 以上述べたように本発明によれば、基準波長とともに一
定間隔のマーカ信号が出力されるので、広い帯域にわた
って高精度な波長測定を可能とする可変波長光源を実現
することができる。また可変波長レー+r光源の入力信
号と発振波長の間の関係に精度が要求されないので、可
変波長レーザ光源の構成がI!!!中である。
(Effects of the Invention) As described above, according to the present invention, since marker signals at regular intervals are output together with the reference wavelength, it is possible to realize a variable wavelength light source that enables highly accurate wavelength measurement over a wide band. can. Furthermore, since precision is not required for the relationship between the input signal of the tunable wavelength laser +r light source and the oscillation wavelength, the configuration of the tunable wavelength laser light source is I! ! ! It's inside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る可変波長光源の1実施例を示す構
成ブロック図、第2図は第1図装置の動作を説明するた
めのタイムチャート、第3図〜第6図は第1図装置の各
構成要素の実施例を示す構成ブロック図、第7図は第1
図装置の変形例を示す原理説明図、第8図は本発明に係
る可変波長光源の1応用例を示す構成ブロック図、第9
図は本発明に係る可変波長光源の第2の応用例を示す構
成ブロック図、第10図は本発明に係る可変波長光源の
第3の応用例を示す構成ブロック図である。 2・・・可変波長レーザ光源、4・・・基準波長レーザ
光源、10・・・可変波長光源、E+・・・入力信号、
「Pl・・・波長選択装置。 ′=   ミ     a ν    − 第4図 第5図 ム箔 第り図 第7図 A2
FIG. 1 is a configuration block diagram showing one embodiment of the variable wavelength light source according to the present invention, FIG. 2 is a time chart for explaining the operation of the device shown in FIG. 1, and FIGS. 3 to 6 are the same as those shown in FIG. 1. A configuration block diagram showing an example of each component of the device, FIG.
8 is a principle explanatory diagram showing a modification of the device; FIG. 8 is a configuration block diagram showing one application example of the variable wavelength light source according to the present invention; FIG.
FIG. 10 is a block diagram showing a second application example of the variable wavelength light source according to the present invention, and FIG. 10 is a block diagram showing a third application example of the variable wavelength light source according to the present invention. 2... Variable wavelength laser light source, 4... Reference wavelength laser light source, 10... Variable wavelength light source, E+... Input signal,
"Pl...Wavelength selection device. ' = Mi a ν - Figure 4 Figure 5 Mu foil diagram Figure 7 A2

Claims (10)

【特許請求の範囲】[Claims] (1)入力信号に対応して出力光の波長が変化する可変
波長レーザ光源と、この可変波長レーザ光源の出力光を
入力し所定の波長間隔で光出力を発生する波長選択装置
とを備えたことを特徴とする可変波長光源。
(1) Equipped with a tunable wavelength laser light source whose output light wavelength changes in accordance with an input signal, and a wavelength selection device which inputs the output light of the tunable wavelength laser light source and generates optical output at predetermined wavelength intervals. A variable wavelength light source characterized by:
(2)可変波長レーザ光源の出力帯域内で一定波長の光
出力を発生する基準波長レーザ光源を備えたことを特徴
とする特許請求の範囲第1項記載の可変波長光源。
(2) The tunable wavelength light source according to claim 1, further comprising a reference wavelength laser light source that generates an optical output of a constant wavelength within the output band of the tunable wavelength laser light source.
(3)波長選択装置としてファブリ・ペロー・エタロン
を用いた特許請求の範囲第1項記載の可変波長光源。
(3) The tunable wavelength light source according to claim 1, which uses a Fabry-Perot etalon as a wavelength selection device.
(4)波長選択装置としてファブリ・ペロー・エタロン
を用いた特許請求の範囲第2項記載の可変波長光源。
(4) The tunable wavelength light source according to claim 2, which uses a Fabry-Perot etalon as a wavelength selection device.
(5)波長選択装置として所定の波長間隔の光のみを通
過する干渉計を用いた特許請求の範囲第1項記載の可変
波長光源。
(5) A tunable wavelength light source according to claim 1, which uses an interferometer that passes only light at predetermined wavelength intervals as a wavelength selection device.
(6)波長選択装置の透過光を入力して電気信号に変換
する受光素子を備え、前記受光素子の出力をマーカ信号
出力とする特許請求の範囲第1項記載の可変波長光源。
(6) The tunable wavelength light source according to claim 1, further comprising a light-receiving element that inputs transmitted light of the wavelength selection device and converts it into an electrical signal, and the output of the light-receiving element is a marker signal output.
(7)ファブリ・ペロー・エタロンの共振器間隔を変化
させることでマーカ光の波長間隔を変えるように構成し
た特許請求の範囲第3項記載の可変波長光源。
(7) The tunable wavelength light source according to claim 3, wherein the wavelength interval of the marker light is changed by changing the resonator interval of the Fabry-Perot etalon.
(8)ファブリ・ペロー・エタロン内に電気光学素子を
備え、電気信号により等価的な共振器間隔を変えるよう
に構成した特許請求の範囲第3項記載の可変波長光源。
(8) The tunable wavelength light source according to claim 3, wherein an electro-optical element is provided in the Fabry-Perot etalon, and the equivalent resonator spacing is changed by an electric signal.
(9)ファブリ・ペロー・エタロン内に電気光学素子を
備え、電気信号により等価的な共振器間隔を変えるよう
に構成した特許請求の範囲第4項記載の可変波長光源。
(9) The tunable wavelength light source according to claim 4, wherein the Fabry-Perot etalon is provided with an electro-optical element, and the equivalent resonator spacing is changed by an electric signal.
(10)ファブリ・ペロー・エタロンに基準波長レーザ
光源の出力光の一部を入射し、基準波長成分の透過光が
最大となるように電気光学素子を制御することにより、
マーカ光の1つが基準波長と一致するように構成した特
許請求の範囲第9項記載の可変波長光源。
(10) By inputting a part of the output light of the reference wavelength laser light source into the Fabry-Perot etalon and controlling the electro-optical element so that the transmitted light of the reference wavelength component is maximized,
10. The variable wavelength light source according to claim 9, wherein one of the marker lights is configured to match a reference wavelength.
JP61040772A 1985-12-20 1986-02-26 Variable wavelength light source Pending JPS62198723A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61040772A JPS62198723A (en) 1986-02-26 1986-02-26 Variable wavelength light source
US06/942,448 US4893353A (en) 1985-12-20 1986-12-16 Optical frequency synthesizer/sweeper
US06/943,670 US4856899A (en) 1985-12-20 1986-12-18 Optical frequency analyzer using a local oscillator heterodyne detection of incident light
GB8630375A GB2185567B (en) 1985-12-20 1986-12-19 Optical frequency analyzer
DE3643553A DE3643553C2 (en) 1985-12-20 1986-12-19 Device for generating and wobbling optical frequencies
DE3643569A DE3643569C2 (en) 1985-12-20 1986-12-19 Optical frequency analyzer
GB8630374A GB2185619B (en) 1985-12-20 1986-12-19 Optical frequency synthesizer/sweeper
US07/293,020 US4912526A (en) 1985-12-20 1989-01-03 Optical frequency synthesizer/sweeper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040772A JPS62198723A (en) 1986-02-26 1986-02-26 Variable wavelength light source

Publications (1)

Publication Number Publication Date
JPS62198723A true JPS62198723A (en) 1987-09-02

Family

ID=12589922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040772A Pending JPS62198723A (en) 1985-12-20 1986-02-26 Variable wavelength light source

Country Status (1)

Country Link
JP (1) JPS62198723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319933U (en) * 1989-03-30 1991-02-27

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350757A (en) * 1976-10-15 1978-05-09 Western Electric Co Interferoscope
JPS56624A (en) * 1979-06-14 1981-01-07 Mitsubishi Electric Corp Fabry-perot interference spectrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350757A (en) * 1976-10-15 1978-05-09 Western Electric Co Interferoscope
JPS56624A (en) * 1979-06-14 1981-01-07 Mitsubishi Electric Corp Fabry-perot interference spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319933U (en) * 1989-03-30 1991-02-27

Similar Documents

Publication Publication Date Title
US4856899A (en) Optical frequency analyzer using a local oscillator heterodyne detection of incident light
US4893353A (en) Optical frequency synthesizer/sweeper
Jones et al. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis
Onae et al. Toward an accurate frequency standard at 1.5/spl mu/m based on the acetylene overtone band transition
Siciliani de Cumis et al. Microcavity‐Stabilized Quantum Cascade Laser
Luvsandamdin et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space
Bertinetto et al. Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method
CN112117636A (en) Double-feedback semiconductor laser frequency stabilization system based on optical frequency comb
JPS62198723A (en) Variable wavelength light source
Bodermann et al. Frequency measurement of I2 lines in the NIR using Ca and CH4 optical frequency standards
Minamikawa et al. Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser
JP3005065B2 (en) Reference frequency light source and ultra-high precision optical frequency measurement system using the same
JPS62198725A (en) Variable wavelength light source
JP7376917B2 (en) Optical frequency swept laser light source
JPH0549055B2 (en)
Bhatia et al. A single-mode semiconductor diode laser operating in the strong optical feedback regime and tunable within the D1 line of the Cs atom
Tino Atomic spectroscopy with diode lasers
JP2583410B2 (en) Optical frequency spectrum analyzer
Moreno et al. Rb-stabilized optical frequency reference at 1572 nm
JPH0531930B2 (en)
D’Ambrosio et al. A QCL-based metrological-grade source at 6 μm
Kurosu et al. Frequency stabilization of a 1.54-um DFB laser diode to Doppler-free absorption lines of acetylene
JPS62252982A (en) Variable wavelength light source
Krause et al. Iodine-stabilized 633 nm diode lasers for metrology and interferometry
Dongliang et al. A single-laser system for mobile cold atom gravimeter