JPS6112530B2 - - Google Patents

Info

Publication number
JPS6112530B2
JPS6112530B2 JP15594677A JP15594677A JPS6112530B2 JP S6112530 B2 JPS6112530 B2 JP S6112530B2 JP 15594677 A JP15594677 A JP 15594677A JP 15594677 A JP15594677 A JP 15594677A JP S6112530 B2 JPS6112530 B2 JP S6112530B2
Authority
JP
Japan
Prior art keywords
wavelength
infrared detector
laser beam
divider
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15594677A
Other languages
Japanese (ja)
Other versions
JPS5487588A (en
Inventor
Koji Shinohara
Mitsuo Yoshikawa
Michiharu Ito
Masaru Koseto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15594677A priority Critical patent/JPS5487588A/en
Publication of JPS5487588A publication Critical patent/JPS5487588A/en
Publication of JPS6112530B2 publication Critical patent/JPS6112530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Description

【発明の詳細な説明】 本発明はレーザ光を光源とする赤外線分光分析
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared spectrometer using a laser beam as a light source.

赤外線に対する吸収スペクトルによつて特定物
質の存在や化学構造の決定を行う赤外線分光分析
は古くから行われてきた分析方法である。このよ
うな分析を行う装置には分析に使用する波長帯域
の赤外線に対する分光手段が必要であつて、これ
にはプリズムまたは高精度の回折格子を必要とす
る。
Infrared spectroscopy, which determines the presence and chemical structure of specific substances based on the absorption spectrum of infrared rays, is an analytical method that has been used for a long time. An apparatus for performing such an analysis requires a spectroscopic means for infrared rays in the wavelength band used for the analysis, and this requires a prism or a highly accurate diffraction grating.

これに対し、本発明者らはさきに特願昭52−
128465号により、鉛を含む合金半導体で製したレ
ーザを測定用光源とする分光分析装置を提案し
た。この種の半導体レーザは動作電流、素子温度
等により発光波長を変化する性質を有するため、
外部からの制御によりある範囲内で発光波長を所
定の速度で掃引することができる。したがつて制
御要因と発光波長との関係を充分較正しておけば
回折格子、プリズム等は不要である。この較正の
ためには吸収スペクトル既知の透明物質を封入し
た標準セルにレーザ光を一部分岐して透過させこ
の透過光のスペクトルと測定対象による吸収スペ
クトルとを比較すればよい。
In contrast, the present inventors previously filed a patent application filed in 1973-
In No. 128465, we proposed a spectroscopic analyzer using a laser made of a lead-containing alloy semiconductor as the measurement light source. This type of semiconductor laser has the property of changing its emission wavelength depending on the operating current, element temperature, etc.
The emission wavelength can be swept at a predetermined speed within a certain range by external control. Therefore, if the relationship between the control factors and the emission wavelength is sufficiently calibrated, a diffraction grating, prism, etc. are not necessary. For this calibration, a part of the laser beam is split and transmitted through a standard cell sealed with a transparent material whose absorption spectrum is known, and the spectrum of the transmitted light is compared with the absorption spectrum of the object to be measured.

しかるにこの種の半導体レーザは現在のところ
若干の不安定性があり、発光強度、発光波長等に
標動が生じ易い。とくに発光波長に変動が生じて
測定対象の吸収のピークに該当する波長と異なる
波長の光を発するようになれば、測定対象による
吸収も標準セルによる吸収もともに弱くなつて分
析精度を低下させる不利がある。
However, this type of semiconductor laser currently has some instability, and fluctuations in emission intensity, emission wavelength, etc. are likely to occur. In particular, if the emission wavelength fluctuates and light is emitted at a wavelength different from the wavelength corresponding to the absorption peak of the measurement target, both the absorption by the measurement target and the absorption by the standard cell will become weaker, resulting in a disadvantageous reduction in analysis accuracy. There is.

本発明は前述の点に鑑みなされたもので、光源
として発光波長可変の半導体レーザを用い、かつ
該レーザの発光波長を、標準セルから得られる信
号を利用して正規化する手段を具えた新規なる赤
外線分光分析装置を提供せんとするものである。
The present invention has been made in view of the above points, and is a novel method that uses a semiconductor laser with a variable emission wavelength as a light source and includes means for normalizing the emission wavelength of the laser using a signal obtained from a standard cell. The purpose of this invention is to provide an infrared spectroscopic analysis device.

以下本発明の一実施例について図面を用いて説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明を適用した大気中の汚染成分の
分析装置の一例構造を系統図として示したもの
で、赤外線を放射する光源1としては鉛(Pb)、
錫(Sn)、テルル(Te)の3元半導体から成るレ
ーザを用いる。この種のレーザは波長数μm以上
の赤外線をコヒーレント光として放射し、同一の
素子に対して供給電流、外囲温度等を変化させる
ことによりその発光波長を変化させることができ
る。砒化ガリウム(GaAs)系の半導体レーザ素
子にも同様の性質がわずかに認められるもののそ
の範囲はきわめて狭い。これに比し上記3元半導
体の波長可変範囲ははるかに広く、たとえば後述
するように供給電流の変化のみで1μm程度の範
囲に亘つて発光波長を可変制御することが可能で
ある。2は電流供給用電源であつて、後述するよ
うに交流分を含む直流電流を出力する。半導体レ
ーザ1の発光はチヨツパ3によつて断続され、断
続光として偏向・分岐系4に入る。この部分はレ
ーザ光の光路を2分して片方は偏向・集束系5に
入射させ、他方は後述の別の検知器に入射させ
る。上記偏向・集束系5は入射したレーザ光を集
束し、平行光として分析すべきガス中に投射する
ためのもので、周知のカセグレイン鏡、半透明鏡
等の組合せによつて容易に構成できる。
FIG. 1 is a system diagram showing the structure of an example of an atmospheric pollution component analyzer to which the present invention is applied.
A laser consisting of ternary semiconductors of tin (Sn) and tellurium (Te) is used. This type of laser emits infrared rays with a wavelength of several μm or more as coherent light, and the emission wavelength can be changed by changing the supply current, ambient temperature, etc. to the same element. Similar properties are slightly observed in gallium arsenide (GaAs)-based semiconductor laser devices, but the range is extremely narrow. In comparison, the wavelength variable range of the ternary semiconductor is much wider; for example, as will be described later, it is possible to variably control the emission wavelength over a range of about 1 μm just by changing the supply current. Reference numeral 2 denotes a current supply power source, which outputs a direct current including an alternating current component, as will be described later. The light emitted from the semiconductor laser 1 is interrupted by the chopper 3, and enters the deflection/branching system 4 as intermittent light. This part divides the optical path of the laser beam into two, one of which is incident on the deflection/focusing system 5, and the other is incident on another detector to be described later. The deflection/focusing system 5 is for focusing the incident laser light and projecting it as parallel light into the gas to be analyzed, and can be easily constructed by a combination of well-known Cassegrain mirrors, semi-transparent mirrors, etc.

上記偏向・集束系5に入つた赤外線は平行光と
されて分析の対象となるガス6中を通過し、さら
に折曲げ反射鏡7によつて反射されてふたたび偏
向・集束系5に8のごとく帰る。このように赤外
線を往復させるのは光路を長くして分析対象のガ
ス6による吸収量を大きくするためである。なお
以後偏向・分岐系4を第1光学系・偏向・集束系
5を第2光学系と呼ぶ。
The infrared rays entering the deflection/focusing system 5 are converted into parallel light, pass through the gas 6 to be analyzed, are further reflected by the bending reflector 7, and are sent back to the deflection/focusing system 5 as shown in 8. I'm going home. The purpose of reciprocating the infrared rays in this way is to lengthen the optical path and increase the amount of absorption by the gas 6 to be analyzed. Note that hereinafter, the deflection/branching system 4 will be referred to as a first optical system, and the deflection/focusing system 5 will be referred to as a second optical system.

さて分析対象のガス7によつて吸収された後の
赤外線は一旦補正用セル9を通つてから第1赤外
線検知器10に集束入射されて電気信号に変換さ
れる。一方偏向・分岐系4を出た他方の分岐赤外
線は第2赤外線検知器12に入射して電気信号と
なる。上記両赤外線検知器10および12の出力
信号は除算器11に入力として印加され、第2赤
外線検知器12の出力e2で第1赤外線検知器10
の出力e1を割る演算(除算)を施される。この演
算出力をたとえば自記オシログラフに印加するこ
とにより分析対象のガス6の分光吸収スペクトル
が得られる。ただし本来一定波長の光を発するレ
ーザを光源として上記スペクトルを得ることの可
能な理由は、後述するように本発明においては発
振波長を可変制御することのできる半導体レーザ
を用い、外部制御(本実施例では電源の制御)に
よりレーザ発振周波数の掃引を行なつているから
である。なおL1,L2,L3は集束用赤外線レンズ
である。補正用セル9はシステム利得の較正用で
ある。
Now, the infrared rays after being absorbed by the gas 7 to be analyzed once pass through the correction cell 9, and then are focused and incident on the first infrared detector 10, where they are converted into electrical signals. The other branched infrared rays exiting the deflection/branching system 4 enter the second infrared detector 12 and become an electrical signal. The output signals of both infrared detectors 10 and 12 are applied as inputs to a divider 11, and the output e 2 of the second infrared detector 12 is applied to the first infrared detector 10.
The output e is subjected to an operation (division) that divides it by 1 . By applying this calculation output to, for example, a self-recording oscillograph, a spectral absorption spectrum of the gas 6 to be analyzed can be obtained. However, the reason why it is possible to obtain the above spectrum using a laser that originally emits light of a constant wavelength as a light source is that, as will be described later, in the present invention, a semiconductor laser whose oscillation wavelength can be variably controlled is used, and external control (this implementation This is because the laser oscillation frequency is swept by controlling the power supply in the example. Note that L 1 , L 2 , and L 3 are focusing infrared lenses. The correction cell 9 is for calibrating the system gain.

ここで第2検知器12は分析対象のガス6を通
過しない赤外線を受けるので、その出力e2は上記
ガスの種類や状態に無関係に半導体レーザ1の動
作状態のみを反映する。したがつて前述したよう
に除算器11によつてe1/e2を求めれば、吸収ス
ペクトルの情報を含む信号e1はe2によつて正規化
されたことになるため、半導体レーザの発光強度
の制御し難い因子による変動を補正することがで
きる。除算器11の出力端子13には上述した正
規化後の信号が現れるから、該信号を記録または
表示装置に印加することにより、光源の変動の影
響を受けずに分析対象のガス6の吸収スペクトル
を観測することができる。なお光波長の掃引は本
実施例においては電流供給用の電源2の供給電流
の制御により行われる。すなわち上記電源2から
レーザ1に対しレーザ発振に充分なだけの直流に
ゆるやかな鋸歯状波を重畳させた波形の電流を供
給することにより発振波長を連続的に変化させ
る。ただしこのような発光波長の制御方法自体は
本発明者らがさきに提案した特願昭52−128465号
の明細書中にすでに記述している方法と本質的に
同じである。上記鋸歯状波の繰返し周波数は記録
又は表示装置の特性をも考慮する必要があるが、
また本発明の分析装置はきわめて分解能がよいか
ら、上記繰返し周波数は1Hz以下、好ましくは
0.1Hz程度とするのが望ましい。
Here, since the second detector 12 receives infrared rays that do not pass through the gas 6 to be analyzed, its output e2 reflects only the operating state of the semiconductor laser 1, regardless of the type and state of the gas. Therefore, as described above, if e 1 /e 2 is calculated by the divider 11, the signal e 1 containing absorption spectrum information has been normalized by e 2 , so the emission of the semiconductor laser Variations in intensity due to factors that are difficult to control can be corrected. Since the above-mentioned normalized signal appears at the output terminal 13 of the divider 11, by applying this signal to a recording or display device, the absorption spectrum of the gas 6 to be analyzed can be obtained without being affected by fluctuations in the light source. can be observed. In this embodiment, the optical wavelength is swept by controlling the supply current of the power supply 2 for supplying current. That is, the oscillation wavelength is continuously changed by supplying from the power supply 2 to the laser 1 a current having a waveform in which a gentle sawtooth wave is superimposed on a direct current sufficient for laser oscillation. However, the method for controlling the emission wavelength itself is essentially the same as the method previously proposed by the present inventors and already described in the specification of Japanese Patent Application No. 128465/1983. The repetition frequency of the above-mentioned sawtooth wave must also take into account the characteristics of the recording or display device,
Furthermore, since the analyzer of the present invention has extremely high resolution, the repetition frequency is preferably 1 Hz or less.
It is desirable to set it to around 0.1Hz.

ここまでは特定1ユニツトのレーザについては
電流と発振(発光)波長との関係は、他の条件が
変らない限り一定であるとした。しかしながら鉛
を含む合金半導体から成る半導体レーザの場合に
は過大電流、発熱等により劣化する可能性があり
劣化が起こると発光波長が変化する。このような
場合には分析対象のガス通過前のレーザ光を標準
ガスセルに入射させ、該ガスセル通過後の赤外線
を赤外線検知器で受けて得た信号を利用すればよ
い。これには単に第1光学系4とレンズL2との
間に標準ガスセルを挿入するだけで目的を達し得
るのであるが、第2図には必要に応じて第2検知
器12−除算器11(以下第1除算器という)の
系と切換えて使用するようにした実施例を示し
た。第2図において半透明鏡14以外の部分は第
1図と共通である。またレンズL2以前の光学系
等は省略したが、すべて第1図と共通である。
Up to this point, it has been assumed that the relationship between the current and the oscillation (emission) wavelength for one particular unit of laser is constant unless other conditions change. However, in the case of a semiconductor laser made of an alloy semiconductor containing lead, there is a possibility of deterioration due to excessive current, heat generation, etc., and when deterioration occurs, the emission wavelength changes. In such a case, the laser beam before passing through the gas to be analyzed may be incident on a standard gas cell, and the signal obtained by receiving the infrared rays after passing through the gas cell with an infrared detector may be used. This can be achieved by simply inserting a standard gas cell between the first optical system 4 and the lens L2 , but in FIG. (hereinafter referred to as the first divider) system and an embodiment has been shown in which it is used in place of the first divider system. In FIG. 2, the parts other than the semi-transparent mirror 14 are the same as in FIG. 1. Although the optical system and the like before lens L2 are omitted, they are all the same as in Fig. 1.

標準ガスセル15には分析対象のガス中に含ま
れていると思われるガス、たとえば分析対象が大
気で、その汚染を調査したい場合にはSO2
NO2,NO等を所定モル数だけ封入したものであ
る。標準ガスセル15通過後のレーザ光すなわち
赤外線は集束レンズL3によつて集束されて第3
赤外線検知器16に入射し、光電変換される。該
検知器16の光電変換出力e3は除算器17に印加
され、さらに第1赤外線検知器10の出力e1がバ
ツフア回路18を通つて上記除算器17に印加さ
れて、e1をe3で除する演算を施し、除算器17
(以後第2除算器という)の出力端子19にe1
e3に比例する出力が得られる。この出力は標準セ
ル15による吸収を以つて測定の対象(この場合
には大気)による吸収を規格化したものに相当す
る。標準セル内のガスの吸収スペクトルは既知で
あるから、たとえ半導体レーザの劣化等のため発
光波長が狂つていたとしても、これによる測定誤
差は生じない。なお切換えスイツチ20は第1除
算器11の出力と、第2除算器17の出力とを切
換えるためのもので、本図の例では単一の切換え
スイツチを用いているが、連動スイツチを用いて
両除算器の出力切換えと同時に第1除算器11の
入力をも切換えるようにすれば、バツフア回路1
8を省くことができる。
The standard gas cell 15 contains a gas that is thought to be contained in the gas to be analyzed, for example, if the target to be analyzed is the atmosphere and you want to investigate its pollution, SO 2 ,
A predetermined number of moles of NO 2 , NO, etc. are sealed. The laser beam, that is, infrared rays after passing through the standard gas cell 15 is focused by a focusing lens L 3 and
The light enters the infrared detector 16 and is photoelectrically converted. The photoelectric conversion output e 3 of the detector 16 is applied to a divider 17, and the output e 1 of the first infrared detector 10 is applied to the divider 17 through a buffer circuit 18 to convert e 1 into e 3 The divider 17 performs the operation of dividing by
e 1 / to the output terminal 19 of (hereinafter referred to as the second divider)
An output proportional to e 3 is obtained. This output corresponds to the absorption by the object of measurement (in this case, the atmosphere) normalized by the absorption by the standard cell 15. Since the absorption spectrum of the gas in the standard cell is known, even if the emission wavelength is deviated due to deterioration of the semiconductor laser, this will not cause a measurement error. Note that the changeover switch 20 is for switching between the output of the first divider 11 and the output of the second divider 17. Although a single changeover switch is used in the example shown in this figure, it is also possible to use an interlocking switch. If the input of the first divider 11 is also switched at the same time as the outputs of both dividers are switched, the buffer circuit 1
8 can be omitted.

つぎにタイミング回路21は吸収のピークを検
出してこのピークを含む所要時間内において除算
回路を動作状態とするためのものである。このタ
イミング回路は記憶機能を有していて、最初の1
回の発振周波数掃引で最も強い吸収の生ずる時点
を記憶しておき、2回目の掃引に際し上記最大吸
収時点の前後所要の時間幅内だけ制御信号を発す
ることができる。ゆえに最大吸収点の精密な観測
を行ないたい時には該タイミング回路を用いると
好都合であるが、定性分析の場合等には省いて差
支えない。
Next, the timing circuit 21 is for detecting the absorption peak and activating the division circuit within the required time including this peak. This timing circuit has a memory function, and the first
The time point at which the strongest absorption occurs in the second oscillation frequency sweep is memorized, and the control signal can be issued only within a required time width before and after the maximum absorption time point during the second sweep. Therefore, it is convenient to use this timing circuit when it is desired to precisely observe the maximum absorption point, but it can be omitted for qualitative analysis.

なお、上記の掃引は、鋸歯状波を用いる。従つ
て、ガス吸収のピークを示す波長に対応するまで
の時間を最初の鋸歯状波で検出し、以後はそのタ
イミングで測定を行う。
Note that the above sweep uses a sawtooth wave. Therefore, the time until the wavelength corresponding to the peak of gas absorption is detected is detected using the first sawtooth wave, and subsequent measurements are performed at that timing.

測定の時間幅は、ピーク波形を含む時間であ
る。すなわち、ピーク波形の立ち上がりから立ち
下がりまでの時間である。
The measurement time width is the time including the peak waveform. That is, it is the time from the rise to the fall of the peak waveform.

以上説明した本発明の分光分析装置は、発光波
長可変の半導体レーザを光源として用いているか
ら、このことにより分光手段(回折格子等)が不
要でかつ波長制御が容易である等の利点を有する
ことはもちろんであるが、さらに該レーザの発光
強度の変動や劣化に対する対策として非吸収のレ
ーザ光により測定値の正規化を行なつているため
きわめて安定に動作し、また、光吸収のピーク時
点における測定を行うことから、精密な測定値が
得られるという優れた利点がある。ゆえに本発明
は大気汚染監視装置その他赤外線を利用した能動
方式の分光分析装置に適用してきわめて有利であ
る。
The spectroscopic analyzer of the present invention described above uses a semiconductor laser with variable emission wavelength as a light source, and therefore has advantages such as no need for spectroscopic means (diffraction grating, etc.) and easy wavelength control. Of course, as a countermeasure against fluctuations and deterioration of the light emission intensity of the laser, the measured values are normalized using non-absorbing laser light, so the operation is extremely stable, and the peak point of light absorption is Since measurements are carried out at Therefore, the present invention is extremely advantageous when applied to air pollution monitoring devices and other active type spectroscopic analyzers that utilize infrared rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る分光分析装置の一実施例
を示す系統図、第2図は本発明に係る分光分析装
置の別の実施例を示す要部系統図である。 1:波長可変の半導体レーザ、2:電源、3:
チヨツパ、4:第1光学系、5:第2光学系、
6:測定対象(大気)、7:折曲げ鏡、9:補正
用セル、10:第1赤外線検知器、11:第1除
算器、12:第2赤外線検知器、13:出力端
子、14:半透明鏡、15:標準ガスセル、1
6:第3赤外線検知器、17:第2除算器、1
8:バツフア回路、19:第2除算器の出力端
子、20:切換えスイツチ、21:タイミング回
路。
FIG. 1 is a system diagram showing one embodiment of a spectroscopic analyzer according to the present invention, and FIG. 2 is a system diagram of essential parts showing another embodiment of the spectroscopic analyzer according to the present invention. 1: Tunable wavelength semiconductor laser, 2: Power supply, 3:
Chiyotsupa, 4: first optical system, 5: second optical system,
6: Measurement object (atmosphere), 7: Bending mirror, 9: Correction cell, 10: First infrared detector, 11: First divider, 12: Second infrared detector, 13: Output terminal, 14: Semi-transparent mirror, 15: Standard gas cell, 1
6: Third infrared detector, 17: Second divider, 1
8: buffer circuit, 19: output terminal of second divider, 20: changeover switch, 21: timing circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 波長を可変できるレーザ光を発振する光源
と、上記レーザ光の波長を掃引制御する波長制御
手段と、レーザ光の光束を分岐する光分岐手段
と、分析対象物により吸収を受けた分岐光を受け
る主赤外線検知器と、分析対象物により吸収され
ない分岐光を受ける副赤外線検知器と、該分析対
象物において波長掃引開始時点から分岐光の最大
吸収がおこるまでの所定時間経過したタイミング
を記憶するタイミング回路と、該主赤外線検知器
と副赤外線検知器の出力をそれぞれ入力する除算
器とを具えてなり、上記記憶されたタイミングに
おける該最大吸収が生じるピーク波形の立ち上が
りから立ち下がりまでの所定時間幅の該除算器出
力を得ることを特徴とする赤外線分光分析装置。
1. A light source that oscillates a laser beam whose wavelength can be varied, a wavelength control means that sweeps and controls the wavelength of the laser beam, an optical branching means that branches the beam of the laser beam, and a light source that oscillates a laser beam whose wavelength can be varied; A main infrared detector receives the branched light that is not absorbed by the analyte, a sub-infrared detector receives the branched light that is not absorbed by the analyte, and the timing at which a predetermined period of time has elapsed from the start of wavelength sweep until the maximum absorption of the branched light occurs in the analyte is memorized. It comprises a timing circuit and a divider inputting the outputs of the main infrared detector and the sub-infrared detector, respectively, and a predetermined time from the rise to the fall of the peak waveform at which the maximum absorption occurs at the stored timing. An infrared spectroscopic analysis device characterized in that the divider output is obtained in a width.
JP15594677A 1977-12-24 1977-12-24 Infrared spectral analytical apparatus Granted JPS5487588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15594677A JPS5487588A (en) 1977-12-24 1977-12-24 Infrared spectral analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15594677A JPS5487588A (en) 1977-12-24 1977-12-24 Infrared spectral analytical apparatus

Publications (2)

Publication Number Publication Date
JPS5487588A JPS5487588A (en) 1979-07-12
JPS6112530B2 true JPS6112530B2 (en) 1986-04-09

Family

ID=15616970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15594677A Granted JPS5487588A (en) 1977-12-24 1977-12-24 Infrared spectral analytical apparatus

Country Status (1)

Country Link
JP (1) JPS5487588A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629127A (en) * 1979-08-20 1981-03-23 Fujitsu Ltd Infrared spectroscopic analysis method
JPS56147034A (en) * 1980-04-17 1981-11-14 Tokyo Electric Power Co Inc:The Gas leakage detector
JPS5730915A (en) * 1980-06-24 1982-02-19 Fujitsu Ltd Difference absorption laser radar
JPS61202128A (en) * 1985-03-06 1986-09-06 Hitachi Ltd Semiconductor laser heterodyne interferometer

Also Published As

Publication number Publication date
JPS5487588A (en) 1979-07-12

Similar Documents

Publication Publication Date Title
US5815277A (en) Deflecting light into resonant cavities for spectroscopy
US6441900B1 (en) Method and apparatus for calibrating an optical spectrum analyzer in wavelength
US4412744A (en) Absolute spectrophotometer
US20220268629A1 (en) Spectral measurement method, spectral measurement system, and broadband pulsed light source unit
US6452674B1 (en) In-situ wave correction apparatus
JPS608735B2 (en) How to measure contaminated gas
GB2220063A (en) Electro-optical streak camera
CN109856078B (en) Optical gas detection system
US3924950A (en) Atomic absorption spectroscopy with background correction
US4818102A (en) Active optical pyrometer
JPS6112530B2 (en)
US11391667B2 (en) Laser gas analyzer
CA2997148C (en) Laser gas analyzer
US4624573A (en) Total optical loss measurement device
US4176959A (en) High gain laser spectrometer
JP7332650B2 (en) Optical spectrum analyzer and pulse modulated light measurement method
JP2020187076A (en) Spectroscopic analyzer and spectroscopic analysis method
JPH0740181Y2 (en) Variable frequency light source using laser frequency characteristic measuring device and nuclear device
JPH0894446A (en) Method and apparatus for measurement of wavelength
US11686617B2 (en) Optical spectrum analyzer and pulse-modulated light measurement method
JP2909954B2 (en) Carbon isotope analyzer
JPH0552745A (en) Optical gas detector
JPS6252436A (en) Gas detector
JPS5845195B2 (en) Diode laser emission wavelength control method
JP2021156853A (en) Gas analyser