JPH0739701A - 蒸留装置及びそれを用いた有機溶媒の精製方法 - Google Patents

蒸留装置及びそれを用いた有機溶媒の精製方法

Info

Publication number
JPH0739701A
JPH0739701A JP19239393A JP19239393A JPH0739701A JP H0739701 A JPH0739701 A JP H0739701A JP 19239393 A JP19239393 A JP 19239393A JP 19239393 A JP19239393 A JP 19239393A JP H0739701 A JPH0739701 A JP H0739701A
Authority
JP
Japan
Prior art keywords
cooling
liquid
condenser
distillation apparatus
condensed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19239393A
Other languages
English (en)
Inventor
Tsuyoshi Shioda
堅 塩田
Haruo Asatani
治生 浅谷
Mineo Izumi
峰雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP19239393A priority Critical patent/JPH0739701A/ja
Publication of JPH0739701A publication Critical patent/JPH0739701A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

(57)【要約】 【構成】 缶液加熱蒸発機能を備えた缶部、缶部より上
部に位置する塔部、及び塔部より上部に位置する凝縮器
部の3主要部分から構成され、凝縮器部内に蒸気冷却凝
縮機能をもった冷却面を二系統内包し、それぞれの該冷
却面に通ずる冷却液は別個の流入口を有し、一方の該冷
却面で凝縮した凝縮液を塔部へ流下させて還流液とする
ことができ、他方の該冷却面で凝縮した凝縮液を器外へ
流出させて留出液とすることができ、該二系統各々の冷
却面を冷却するための冷却液流量を増減し、且つ/また
は冷却液供給温度を上下させ、且つ/または冷却面面積
を増減させることによって還流比を調節できる機能を具
備した蒸留装置。 【効果】 本発明によれば、往復動式の留出液分割器な
ど可動部を有する還流器、ポンプ、自動開閉弁等の可動
部を含む機器を用いることなく、静的接液部のみからな
る、金属溶出とパーティクルの発生が少なく、安全且つ
安定運転が可能であり、更に装置の保守の手間が非常に
小さい蒸留装置が実現できる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は還流機構に可動部を持た
ない蒸留装置に関する。より詳細には可動部をなくすこ
とにより、可動部から発生する微粒子、溶出物の量を低
減した高純度の液体を得るための蒸留装置に関する。ま
た、可動部を設置しないことにより、装置の故障を減少
させた長期的に信頼性の高い蒸留装置に関する。
【0002】
【従来技術】電子工業界では、半導体や液晶デバイス等
の製造ラインにおいて、多種類の洗浄液や処理液(以
下、液体と略す)が使用されているが、金属分やパーテ
ィクル等の不純物を所定量以上に含む液体を使用する
と、製品に所望の品質基準を期待できない結果となるこ
とがある。例えば、ウエハー表面上に汚染物質として金
属が存在すると、半導体デバイス特性を著しく損なうこ
ととなり、結晶欠陥やP−N接合電流リークが生じた
り、酸化膜耐圧やライフタイムが低下することが知られ
ている。
【0003】使用される液体中の金属分やパーティクル
数低減を目的とした液体の精製法として、蒸留または蒸
発(これらをまとめて以下、蒸留と呼ぶ)は有効な方法
であり、例えば、特開昭58−211000に示されて
いる。蒸留装置の主要な構成材料としては、耐衝撃性、
耐圧、耐熱、自立保持強度の観点から、金属材料が好ん
で用いられている。また、一部、シール面や摩擦面にフ
ッ素含有樹脂等の高分子材料が使用される場合もある。
【0004】これら一般的な蒸留装置の接液部は、大別
すると、器壁内面や管壁内面等の静的接液部分と、凝縮
液を還流液と留出液に分割するための往復動式凝縮液分
割器内面あるいは留出ライン及び/または還流ラインに
設置された自動開閉弁または制御弁のダイヤフラムや動
的部分がぶつかるバルブシート、さらにポンプ軸受け部
等の動的接液部分に分けることができる。
【0005】動的接液部分からは金属溶出や金属や高分
子材料のパーティクル発生があり、その程度は静的接液
部分からのそれに比べて当然のことながら一般に著しく
大きい。こうした理由から、精製された凝縮液を還流す
るに際し、動的接液部を有する装置を使用することは、
精製液中の金属分やパーティクル数を低レベルに維持す
る目的上好ましくない。
【0006】更に、動的接液部を有する装置では、可動
部分において消耗部品が当然のことながら発生するし、
また故障の原因になりやすいため、長期にわたり高度な
信頼性を得ることが難しく、その保守にはかなりの労力
が必要とされている。
【0007】
【発明が解決しようとする課題】本発明は、上記事情に
鑑みなされたものであり、その目的は、静的接液部のみ
を用いて、金属溶出及びパーティクルの発生を抑制し、
更に、長期にわたり高度な信頼性を与えることを可能と
した蒸留装置を提供することにある。
【0008】
【課題を解決するための手段】即ち、本発明の要旨は、
缶液加熱蒸発機能を備えた缶部、缶部より上部に位置す
る塔部、及び塔部より上部に位置する凝縮器部の3主要
部分から構成され、凝縮器部内に蒸気冷却凝縮機能をも
った冷却面を二系統内包し、それぞれの該冷却面に通ず
る冷却液は別個の流入口を有し、一方の該冷却面で凝縮
した凝縮液を塔部へ流下させて還流液とし、他方の該冷
却面で凝縮した凝縮液を器外へ流出させて留出液とする
ことができ、該二系統各々の冷却面を冷却するための冷
却液流量を増減し、且つ/または冷却液供給温度を上下
させ、且つ/または冷却面面積を増減させることによっ
て還流比を調節できる機能を具備したことを特徴とする
蒸留装置に存する。
【0009】本発明における缶部とは、缶液加熱蒸発機
能を備えた構造であれば良く、通常、スチームなどの熱
媒体による加熱方式または電気ヒーター加熱方式等の加
熱器が適宜使用される。本発明の塔部とは、気液間物質
移動を効果的に行ない、かつ/あるいは缶部で発生して
塔部に進むミストを捕捉して液状にして缶部へ流下させ
て戻すのに必要とされる充填物あるいは棚段を有するカ
ラム部のことである。
【0010】また、当該蒸留装置の凝縮器部には蒸気冷
却凝縮機能をもった冷却面を二系統内包し、一方の該冷
却面で凝縮した凝縮液を塔部へ流下させて還流液とし、
他方の該冷却面で凝縮した凝縮液を器外へ流出させて留
出液とすることができる。ここで、冷却面とは、基本的
にはその一方の側に特定の流量と供給温度を有する冷却
液を流通し、他方の側において蒸気の冷却と凝縮を行な
うことのできる金属面を言う。
【0011】二系統とは、冷却液の流量及び/または温
度をその供給口において各々独立に設定できる冷却面
が、還流液及び留出液の観点からみて二種類あることを
意味し、具体的には、二系列の冷却液を凝縮器の冷却液
管に供給する方法が用いられる。 また、これら二系統
の冷却面に通ずる冷却液はそれぞれ別個の流入口を有す
る。
【0012】該冷却面は、冷却液流量を増減し、且つ/
または冷却液供給温度を上下させ、且つ/または冷却面
面積を増減させることによって還流比を調節できる機能
を具備している。例えば、一方の系列の冷却液を、その
冷却面を形成する冷却液流路を流れ出た後分岐させ、一
部の液のみを他方の系統の冷却面に対応する冷却液管に
冷却液として、必要に応じて加熱または冷却した後に供
給する方法、あるいは、一方の系統の冷却面を冷却液側
から見て分割することにより複数の冷却液流路を設け、
それらの冷却液流路のうちのいくつかに自動開閉弁等を
設置することにより実効的な冷却面積を増減させ、冷却
凝縮液量を変化させる方法などが用いられる。
【0013】本発明の一つの態様では、二系統の冷却面
は、内部に冷却液を流通させ、外面で蒸気を凝縮させる
二つのコイルからなる。凝縮器内部に隔壁を設ける場合
には、一方のコイルのコイル径は隔壁外径よりも大き
く、且つ凝縮器外壁内径よりも小さく、また、他方のコ
イル径は隔壁内径よりも小さい。コイルの形状は、円
形、三角形、多角形、楕円形、あるいはその組み合わせ
等を適用することができる。
【0014】また、それら二つのコイルの軸は好ましく
は実質的に鉛直に設置される。これは、コイル軸を鉛直
に設置することにより、凝縮液が上のコイル要素配管か
ら下のコイルの要素配管へと落下移動するため、下方に
なればなる程コイル表面が液膜で覆われる割合が大きく
なり、その結果、このような伝熱表面上では蒸気の凝縮
が促進され、熱交換の効率を高めることができるからで
ある。
【0015】二つのコイルに冷却液を通じる方法として
は、一方のコイルの出口からの冷却液の少なくとも一部
を他方のコイルの入口に導入する方法、あるいは、各々
独立に冷却液を通じる方法が用いられるが、上述の還流
比をきめ細かく調節する上では後者の方法がより好適で
ある。また、凝縮器内部には、留出液となる凝縮液と、
還流液となる凝縮液の混合をより十分に防止するために
仕切る、隔壁を設けることができる。この隔壁は、留出
液となるべき凝縮液を塔部へ混入させることなく、該凝
縮液を全て留出液として凝縮器外へ流出させるような構
造であれば良い。その形状は特に限定されるものではな
いが、水平断面の形状が、円形、三角形、多角形、楕円
形、あるいはその組み合わせ等を適用することができ
る。また、隔壁の高さとしては通常20mm以上、好まし
くは50mm以上、更に好ましくは100mm 以上とする
のが良い。
【0016】本発明の一つの態様においては、このよう
な隔壁を設けることにより、隔壁と凝縮器外壁との間に
液溜まりを生成させる。この液溜まりの液温は、蒸気凝
縮温度よりも低いため、液溜まり表面で相当量の蒸気凝
縮が起こり、その結果、凝縮液が生成される。該凝縮液
は、金属表面上で直接生成されたものではないことから
溶存金属濃度が小さく、きわめて不純物の少ない精製液
となる。
【0017】また、凝縮器は少なくとも凝縮器内面の接
液部が電解研磨あるいは複合電解研磨で処理されたオー
ステナイトクロムニッケル鋼で製作され、例えば、SU
S316L等が好ましく使用される。これは、表面に電
解研磨、複合電解研磨処理が施されると、表面が平滑化
されるため液体との接触面積が小さくなる等の理由によ
り、金属が溶出しにくくなるので好ましい。
【0018】本発明の蒸留装置の一態様では、凝縮器部
から器外へ取り出した凝縮液取り出しラインを、留出液
冷却器を経て精製液貯槽と結合し、凝縮器空間部と精製
液貯槽とを管路で結合する。缶部には缶部へ原料を送入
する管路、及び缶部から缶液を間欠的に抜き出す機能を
備えた管路を有する。そして、凝縮器部では、凝縮器空
間部から取り出した管路を不活性気体が流れている管路
に合流させる。ここで、不活性気体とは、ヘリウム、窒
素、アルゴン、二酸化炭素、空気あるいはこれらのうち
の2種以上の混合物である。
【0019】本発明においてはこのような蒸留装置を用
いることにより、塩分、イオン性化合物、遊離金属等微
粒子など、実質的に不揮発性の不純物を含有する液体を
精製し、これらの不純物の含有量を極めて微量にするこ
とが可能である。。例えば、クロム0.01ppb(重
量基準、以下全て同じ)以下、鉄0.05ppb以下、
ニッケル0.05ppb以下、及び粒径0.5ミクロン
以上のパーティクルを4個/ml以下の有機溶媒を製造
することが本発明の蒸留装置を使用することによって達
成される。
【0020】有機溶媒としては、特に限定はなく、メタ
ノール、イソプロピルアルコール等のアルコール類、ベ
ンゼン、メチレンクロライドなどのハロゲン化炭化水
素、アセトン、N−メチル−2−ピロリドン、ジメチル
スルホキシド、ジクロルベンゼンなどの通常の有機溶媒
が使用できる。中でも、イソプロピルアルコール、メチ
レンクロライド、N−メチル−2−ピロリドンが好まし
く、特にはイソプロピルアルコールが好適に用いられ
る。
【0021】ここで不純物とは、液体に可溶性あるいは
不溶性の粒子状あるいはフロック状の、塩分、イオン性
化合物、微粒子状の金属単体や合金、該液体の主成分に
比べて沸点の高い有機化合物(オリゴマー、ポリマーを
含む)を指す。該液体の主成分が正常沸点が82.3°
Cのイソプロピルアルコールの場合には、正常沸点がイ
ソプロピルアルコールよりも50度以上も高いキシレン
類、ジクロルベンゼン類も不純物に含まれる。
【0022】以下、図面に従って本発明を更に詳細に説
明するが、本発明はこれらの図面に限定されるものでは
ない。まず、図1で示される蒸留装置について説明す
る。原料供給ライン11より、不純物を含む蒸留原料を
蒸留塔缶部1に導入する。本発明の蒸留装置は、蒸留原
料を連続的に供給して連続蒸留を行なうこともできる
し、また、回分で運転することも可能である。このよう
な缶部1には缶部から缶液を間欠的に抜き出す機能を備
えた管路(缶液パージライン)12が結合されている。
当該原料は缶部内で加熱器2により加熱され、蒸気とな
って円筒竪型の塔部3内部の充填層4を上昇し、精製蒸
気となって、円筒竪型の凝縮器5に至る。加熱器2とし
てはスチーム加熱式、または、電気ヒーター加熱式のど
ちらを使用しても良い。
【0023】精製蒸気は、凝縮器内の外側冷却凝縮用コ
イル8a及び内側冷却凝縮用コイル8bで凝縮される。外
側冷却凝縮用コイル8aで凝縮された凝縮液は、凝縮器
内底部の凝縮液溜り部分に落下して、凝縮器溜り液7と
なる。この際、外側冷却凝縮コイルのコイル径を、隔壁
6の径よりも大きくとってあれば、該コイル上で凝縮し
た凝縮液が直接、充填塔内部に落下することはない。
【0024】液溜り部分の凝縮液は、凝縮液取り出しラ
イン16によって留出液として、器外へと取り出され
る。一方、内側冷却凝縮用コイル8bで凝縮された凝縮
液は、塔部へと落下して還流液となる。これら外側冷却
凝縮用コイル8a及び内側冷却凝縮用コイル8bで凝縮さ
れる各々の凝縮液量は、各コイルに通ずる冷却液流量、
冷却液温度、冷却面面積のそれぞれ、又はそれらの組み
合わせによって変化させることができる。
【0025】留出液は留出液冷却器9によって冷却され
た後、精製液貯槽10に送入する。これは、留出液を冷
却しないでそのまま精製液貯槽10へ送入すると、精製
液貯槽10の中の留出液の温度が高ければ高いほど、精
製液貯槽10の器壁から材料の金属の溶出が促進される
ことがわかったため、留出液冷却器9を設置することに
よりこれを解決したものである。図1の精製液貯槽10
では液体への精製液貯槽壁面からの溶出をより一層抑制
するために、精製液貯槽10にジャケットを備え付け、
そこに冷却液を流すことができるようにしてある。ま
た、精製液貯槽10と凝縮器5間は均圧ライン17で結
合されている。
【0026】なお、凝縮液取り出しライン16のうち、
凝縮器5の出口部分の形状は通常は下に凸となってお
り、この部分には常に液が存在し、たとえ凝縮器溜り液
7が液涸れしても、蒸留塔の加熱された蒸気が直接精製
液貯槽10側へと流入することのない構造となってい
る。凝縮器部では、凝縮器空間部からの結合ライン14
を不活性気体が流れ、パージライン15につながる管路
13に合流させる。この結合ライン14は、蒸留の運転
を安定して続けるために必要であり、さらに、消防法に
言う危険物を蒸留原料とする場合には特に安全運転上有
用である。これらのラインが結合されていない場合に
は、塔内圧に数秒の周期で圧力変動が生じ、安定した留
出液流量を維持できなくなるとともに、缶液量を一定に
保つための制御機器(図1には示していない)の動作が
不完全になり、装置運転上危険となる。従って、結合ラ
イン14を不活性気体の流れている管路13に合流さ
せ、塔内圧の圧力変動すなわち発生蒸気量の増減を、不
活性気体の流れに吸収させることにより、留出液と缶出
液の安定した流量を維持させることができたものであ
る。また、なんらかの原因で凝縮器5の蒸気の一部が不
活性気体の流れている管路に流出した場合においても、
該蒸気は不活性気体によって希釈されるため、安全性は
確保される。
【0027】次に、図2で示される隔壁について説明す
る。当該装置は下部のおねじ19を用いて、凝縮器底部
即ち塔部最上部に固定することができる。固定方式とし
ては、隔壁の下部より凝縮液が漏洩して充填物の入った
塔部の方に入ることのないように、ねじ込み、ボルト止
め、溶接止め、削り出し等の方法が使用されるが、中で
もねじ込みによる方法がコスト面では好ましい場合が多
い。より詳細には、ねじ込み方法では、ガスケット20
を用いて凝縮液のシールを行う。また、ガスケット20
の材質としては、多くの種類の液体に対して金属等の溶
出量の少ないフッ素樹脂を好適に用いることができる。
【0028】図2に示した様なねじ込み装置の場合、上
部外壁にノブ21を設ける。このようなノブを利用すれ
ば特別な金属製工具や治具を用いることなく人の手の力
で直接ねじ込むこともできるため、接液部を有する隔壁
表面に傷がつかず、傷からの金属溶出を避けることがで
きる。
【0029】
【実施例】以下、本発明を実施例及び比較例により説明
するが、本発明はこれらの実施例に限定されるものでは
ない。なお、以下の諸例において、各測定は次の方法に
よって行った。 (1)還流比 外側冷却凝縮用コイルに冷却液を通じ、内側冷却凝縮用
コイルに冷却液を通じないで、凝縮液を全て留出液とす
るいわゆる全留出の場合の留出液流量(液体容積換算の
蒸気焚き上げ速度に相当)V(Kg/hr)及び缶部への供給
熱量(加熱に使用されるスチーム消費量)を定常状態に
て実測し、この留出液流量Vと供給熱量との関係をあら
かじめ求めておく。この関係を用いることにより、スチ
ーム消費量から全蒸気焚き上げ量Vが求められる。
【0030】還流がある場合には、全蒸気焚き上げ量V
は還流液流量Q(Kg/hr)と留出液流量D(Kg/hr)の和に等
しいことから、留出液流量を測定することにより還流液
流量Qを下記式で求め、
【0031】
【数1】 Q=V−D 更に、蒸留塔の還流比Rは下記式で求めることができ
る。
【0032】
【数2】 R=Q/D (2)金属濃度 (i)Ni,Fe,Ca,K,Naの濃度は、グラファ
イトファーネスの原子吸光分析法を用いて測定した。 (ii)Ni,Fe,Ca,K,Na以外の金属の濃度
は、ICP−発光分析法を用いて測定した。 (3)パーティクル量 液中パーティクルカウンター(HIAC ROYCO社
製 MODEL 346BCL)を用いて測定した。
【0033】実施例1 高さ416mm、内径310mmの缶部、高さ610mm、内
径203mmの塔部、高さ572mm、内径306mmの凝縮
器部、また、高さ106mm、内径203mm、板厚3mmの
隔壁、コイル径270mm、内径16.7mm、外径21.7m
m(コイルパイプ)、巻数13の外側冷却凝縮用コイル
及びコイル径180mm、内径16.7mm、外径21.7mm
(コイルパイプ)、巻数13の内側冷却凝縮用コイルを
有する蒸留装置を用いてイソプロピルアルコールの蒸留
精製を行なった。
【0034】塔部の充填物としては高さ300mm 、直
径203mmに成型された細かな網目状の材料(材質はSU
S316L)を使用した。蒸留装置は、缶部と充填物を除き
他は全ての接液部、接蒸気部に電解研磨処理を行なった
SUS316Lを使用し、缶部は内面をバフ400番研磨したS
US316L製とした。缶部の加熱はコイルを用いて、ゲージ
圧力0.5Kg/cm2のスチームで行なった。管路13
には、不活性気体としての圧力200mm水柱の窒素を毎
分3.5リットル流した。原料供給流量Fを一定とし
て、外側冷却凝縮用コイルの冷却水流量A、及び内側冷
却凝縮用コイルの冷却水流量Bを変化させて、定常運転
状態になったところで、留出液流量D、缶出液流量W、
冷却水の入口と出口における温度の差を測定した。
【0035】 缶出液流量Wは原料供給流量Fの1容量%
を設定値とし、実測値はこれと一致した。缶出液の抜き
だしは、缶出液ライン12にオンオフ作動する自動弁を
設置して、間欠的ながら平均的には定流量抜きだしを行
なった。ここでは原料供給流量が21.5l/hrの場合、
30分間に1回、8.2秒間自動弁を開とした。 原料供
給流量が21.5l/hr、外側冷却凝縮コイルの冷却水流
量を5.0l/分、内側冷却凝縮コイルの冷却水流量を
2.0l/分とした場合、還流比は0.48であった。こ
の際、外側冷却凝縮コイルの冷却水の入口と出口の温度
差は8.6°C、内側冷却凝縮コイルの冷却水の入口と
出口の温度差は10.3°Cであった。
【0036】また、原料供給流量を同じく21.5l/h
r、外側冷却凝縮コイルの冷却水流量を5.0l/分、
内側冷却凝縮コイルの冷却水流量を5.0l/分とした
場合の還流比は0.56であり、外側冷却凝縮コイルの
冷却水の入口と出口の温度差は8.0°C、内側冷却凝
縮コイルの冷却水の入口と出口の温度差は4.5°Cで
あった。このように、二系統のコイルの冷却液流量およ
び冷却液供給温度を変化させることにより、還流比が容
易に調節できる。
【0037】実施例2 次に、実施例1の蒸留装置を用い、表1の金属を微少量
含有させたイソプロピルアルコール溶液A,B,C,D
をそれぞれ蒸留原料として、蒸留精製を行なった。運転
条件は実施例1に記述された2つのケースのうち還流比
が0.48の条件である。得られた留出液は、クリーン
度100以下の環境下でサンプリングし、金属分析及び
パーティクル量の分析を行い、その結果を表1、表2に
示す。
【0038】比較例1 実施例1の装置において、内側冷却凝縮用コイルには冷
却水を通じないで、該コイルでの蒸気の凝縮を抑制し、
塔部への還流を起こさないようにした。また、その内面
接液部がSUS316Lで電解研磨処理されたスプリングリタ
ーン式の留出液分割器を付加設置し、還流液を塔部上部
部分において、充填物の直上から塔部断面に対して均一
に流下するように塔部の加工を行った。
【0039】該留出液分割器の運転は還流液が還流比
0.48で流入するようにタイマーを設定し、外側冷却
凝縮コイルへの冷却水流量が8.0l/分とした以外
は、実施例1の還流比0.48の場合と同様の原料条件
と運転条件でイソプロピルアルコールの蒸留精製を行な
った。得られた留出液はクリーン度100以下の環境下
でサンプリングし、金属分析の結果を表1に示し、パー
ティクル量の分析結果を表2に示す。
【0040】比較例2 蒸留装置の接液部がSUS316Lで、電解研磨処理を施して
いない装置を用いた以外は、全て実施例1の還流比0.
48の場合と同様の方法で蒸留精製を行なった。得られ
た留出液はクリーン度100以下の環境下でサンプリン
グし、金属分析の結果を表1に示し、パーティクル量の
分析結果を表2に示す。
【0041】
【表1】
【0042】
【表2】
【0043】
【発明の効果】本発明によれば、往復動式の留出液分割
器など可動部を有する還流器、ポンプ、自動開閉弁等の
可動部を含む機器を用いることなく、静的接液部のみか
らなる、金属溶出とパーティクルの発生が少なく、安全
且つ安定運転が可能であり、更に装置の保守の手間が非
常に小さい蒸留装置が実現できる。
【図面の簡単な説明】
【図1】蒸留装置の説明図である。
【図2】蒸留装置に装備された隔壁の図である。
【符号の説明】
1:蒸留塔缶部 2:加熱器 3:塔部 4:充填物 5:凝縮器 6:隔壁 7:凝縮液溜まり液 8a:外側冷却凝縮用コイル 8b:内側冷却凝縮用コイル 9:留出液冷却器 10:精製液貯槽 11:原料供給ライン 12:缶液パージライン 13:不活性気体が流れている管路 14:凝縮器空間部と不活性気体が流れている管路との
結合ライン 15:ガスパージライン 16:凝縮液取り出しライン 17:凝縮器と精製液貯槽間の均圧ライン 18:凝縮液溜り部分の気液界面レベル 19:おねじ 20:ガスケット 21:ノブ

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】缶液加熱蒸発機能を備えた缶部、缶部より
    上部に位置する塔部、及び塔部より上部に位置する凝縮
    器部の3主要部分から構成される蒸留装置であって、凝
    縮器部内に蒸気冷却凝縮機能をもった冷却面を二系統内
    包し、該二系統の冷却面に通ずる冷却液はそれぞれ別個
    の流入口を有し、一方の冷却面で凝縮した凝縮液を塔部
    へ流下させて還流液とし、他方の冷却面で凝縮した凝縮
    液を器外へ流出させて留出液とすることができ、該二系
    統各々の冷却面を冷却するための冷却液流量を増減し、
    且つ/または冷却液供給温度を上下させ、且つ/または
    冷却面面積を増減させることによって還流比を調節でき
    る機能を具備したことを特徴とする蒸留装置。
  2. 【請求項2】凝縮器内部に留出液となる凝縮液と、還流
    液となる凝縮液を仕切る隔壁を設けたことを特徴とする
    請求項1記載の蒸留装置。
  3. 【請求項3】二系統の冷却面が、冷却液を内部に流通さ
    せ、外面で蒸気を凝縮させる二つのコイルであり、一方
    のコイルのコイル径は隔壁外径よりも大きく、且つ凝縮
    器外壁内径よりも小さく、また、他方のコイル径は隔壁
    内径よりも小さく、それら二つのコイルの軸が実質的に
    鉛直に設置されたことを特徴とした請求項1または請求
    項2記載の蒸留装置。
  4. 【請求項4】塩分、イオン性化合物、遊離金属等微粒子
    など、実質的に不揮発性の不純物を含有する液体を精製
    することを目的とする請求項1ないし請求項3いずれか
    に記載の蒸留装置。
  5. 【請求項5】凝縮液取り出しラインを、留出液冷却器を
    経て精製液貯槽と結合し、凝縮器空間部と精製液貯槽と
    を管路で結合し、缶部には缶部へ原料を送入する管路及
    び缶部から缶液を間欠的に抜き出す機能を備えた管路を
    有し、凝縮器部では凝縮器空間部から取り出した管路を
    不活性気体が流れている管路に合流させることを特徴と
    する請求項1記載の蒸留装置。
  6. 【請求項6】少なくとも凝縮器内面の接液部が電解研磨
    あるいは複合電解研磨で処理されているオーステナイト
    クロムニッケル鋼で製作されていることを特徴とする、
    請求項1ないし請求項5いずれかに記載の蒸留装置。
  7. 【請求項7】請求項1ないし請求項6いずれかに記載の
    蒸留装置を用いたクロム0.01ppb(重量基準、以
    下全て同じ)以下、鉄0.05ppb以下、ニッケル
    0.05ppb以下、及び粒径が0.5ミクロン以上の
    パーティクルが4個/ml以下の有機溶媒の精製方法。
  8. 【請求項8】有機溶媒がイソプロピルアルコールである
    ことを特徴とする請求項7記載の精製方法。
  9. 【請求項9】缶液加熱蒸発機能を備えた缶部、缶部より
    上部に位置する塔部、及び塔部より上部に位置する凝縮
    器部の3主要部分から構成され、該凝縮器部内に蒸気冷
    却凝縮機能をもつ冷却面を二系統内包し、該二系統の冷
    却面に通ずる冷却液がそれぞれ別個の流入口を有し、一
    方の冷却面で凝縮した凝縮液を塔部へ流下させて還流液
    とし、他方の冷却面で凝縮した凝縮液を器外へ流出させ
    て留出液とすることができる蒸留装置を用いた蒸留方法
    において、該二系統各々の冷却面を冷却するための冷却
    液流量を増減し、且つ/または冷却液供給温度を上下さ
    せ、且つ/または冷却面面積を増減させることによって
    還流比を調節することを特徴とする蒸留方法。
JP19239393A 1993-08-03 1993-08-03 蒸留装置及びそれを用いた有機溶媒の精製方法 Pending JPH0739701A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19239393A JPH0739701A (ja) 1993-08-03 1993-08-03 蒸留装置及びそれを用いた有機溶媒の精製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19239393A JPH0739701A (ja) 1993-08-03 1993-08-03 蒸留装置及びそれを用いた有機溶媒の精製方法

Publications (1)

Publication Number Publication Date
JPH0739701A true JPH0739701A (ja) 1995-02-10

Family

ID=16290565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19239393A Pending JPH0739701A (ja) 1993-08-03 1993-08-03 蒸留装置及びそれを用いた有機溶媒の精製方法

Country Status (1)

Country Link
JP (1) JPH0739701A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085192A (ja) * 2002-08-23 2004-03-18 Boc Group Inc:The 精製液体を製造する方法及び装置
WO2017188209A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 精製装置、精製方法、製造装置、薬液の製造方法、容器、及び薬液収容体
KR20200100201A (ko) 2018-03-02 2020-08-25 가부시키가이샤 도쿠야마 스테인리스강 부재 및 그 제조 방법
US11079677B2 (en) 2017-02-20 2021-08-03 Fujifilm Corporation Chemical liquid, chemical liquid storage body, and pattern forming method
CN114681944A (zh) * 2022-01-20 2022-07-01 济宁福顺化工有限公司 氯乙酸甲酯生产中降低氯乙酸消耗的强制冷凝系统及方法
US11573489B2 (en) * 2016-09-02 2023-02-07 Fujifilm Corporation Solution, solution storage body, actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method, and manufacturing method of semiconductor device
US11747727B2 (en) 2016-11-18 2023-09-05 Fujifilm Corporation Chemical liquid, chemical liquid storage body, pattern forming method, and kit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085192A (ja) * 2002-08-23 2004-03-18 Boc Group Inc:The 精製液体を製造する方法及び装置
JP4694116B2 (ja) * 2002-08-23 2011-06-08 ザ・ビーオーシー・グループ・インコーポレーテッド 精製液体を製造する方法及び装置
TWI775751B (zh) * 2016-04-28 2022-09-01 日商富士軟片股份有限公司 精製裝置、精製方法、製造裝置、藥液的製造方法、容器及藥液收容體
CN109069944A (zh) * 2016-04-28 2018-12-21 富士胶片株式会社 纯化装置、纯化方法、制造装置、药液的制造方法、容器及药液容纳体
JPWO2017188209A1 (ja) * 2016-04-28 2019-02-14 富士フイルム株式会社 精製装置、精製方法、製造装置、薬液の製造方法、容器、及び薬液収容体
WO2017188209A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 精製装置、精製方法、製造装置、薬液の製造方法、容器、及び薬液収容体
US11573489B2 (en) * 2016-09-02 2023-02-07 Fujifilm Corporation Solution, solution storage body, actinic ray-sensitive or radiation-sensitive resin composition, pattern forming method, and manufacturing method of semiconductor device
US11747727B2 (en) 2016-11-18 2023-09-05 Fujifilm Corporation Chemical liquid, chemical liquid storage body, pattern forming method, and kit
US11079677B2 (en) 2017-02-20 2021-08-03 Fujifilm Corporation Chemical liquid, chemical liquid storage body, and pattern forming method
KR20200100201A (ko) 2018-03-02 2020-08-25 가부시키가이샤 도쿠야마 스테인리스강 부재 및 그 제조 방법
US10906021B2 (en) 2018-03-02 2021-02-02 Tokuyama Corporation Stainless steel member and production method thereof
CN114681944A (zh) * 2022-01-20 2022-07-01 济宁福顺化工有限公司 氯乙酸甲酯生产中降低氯乙酸消耗的强制冷凝系统及方法
CN114681944B (zh) * 2022-01-20 2023-05-23 济宁福顺化工有限公司 氯乙酸甲酯生产中降低氯乙酸消耗的强制冷凝系统及方法

Similar Documents

Publication Publication Date Title
US4980032A (en) Distillation method and apparatus for reprocessing sulfuric acid
US5354428A (en) Apparatus for the continuous on-site chemical reprocessing of ultrapure liquids
KR100587865B1 (ko) 사용 지점에 증기상 생성물을 송출하기 위한 시스템 및 방법
US5164049A (en) Method for making ultrapure sulfuric acid
US5330624A (en) Fractionator-reboiler sludge removal system and method
US6283066B1 (en) Continuous gas saturation system and method
US5673562A (en) Bulk delivery of ultra-high purity gases at high flow rates
US5644921A (en) Ultra high purity delivery system for liquefied compressed gases
US5500096A (en) Method of concentrating less volatile liquids
US7232504B2 (en) Apparatus and method for distilling waste liquids
US20120085640A1 (en) Fluorine Gas Generation Device
JPH0739701A (ja) 蒸留装置及びそれを用いた有機溶媒の精製方法
KR100983721B1 (ko) 정제된 액체를 제조하기 위한 방법 및 장치
US20110097253A1 (en) Fluorine purification
JPH0760002A (ja) 蒸留装置及びそれを用いた有機溶媒の精製方法
US5061348A (en) Sulfuric acid reprocessor with continuous purge of second distillation vessel
US4084944A (en) Pure distillate recovery system
US6477323B2 (en) System and method for continuously reprocessing waste sulfuric acid liquid, and heater supporting structure for heating a vessel made of glass
US3454491A (en) Apparatus and process for high purity deionized water
JPH0569773B2 (ja)
JPH0891811A (ja) 廃硫酸精製装置及び精製方法
US10807017B2 (en) Heating flash-on-oil vapor section
WO2019187322A1 (ja) If7精製ガスの製造方法および保管容器
WO2018181295A1 (ja) 精留装置
KR102505203B1 (ko) 질산정제폐열 재활용 효율이 우수하고, 금속이온 용출이 적은 탄탈륨 소재 리보일러를 이용한 초고순도 질산정제시스템