JPH0739640B2 - Coloring control method for electrolytic coloring power supply - Google Patents

Coloring control method for electrolytic coloring power supply

Info

Publication number
JPH0739640B2
JPH0739640B2 JP7825291A JP7825291A JPH0739640B2 JP H0739640 B2 JPH0739640 B2 JP H0739640B2 JP 7825291 A JP7825291 A JP 7825291A JP 7825291 A JP7825291 A JP 7825291A JP H0739640 B2 JPH0739640 B2 JP H0739640B2
Authority
JP
Japan
Prior art keywords
coloring
voltage
current
power supply
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7825291A
Other languages
Japanese (ja)
Other versions
JPH05239693A (en
Inventor
谷 川 彰 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Ltd
Original Assignee
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Ltd filed Critical Takasago Ltd
Priority to JP7825291A priority Critical patent/JPH0739640B2/en
Publication of JPH05239693A publication Critical patent/JPH05239693A/en
Publication of JPH0739640B2 publication Critical patent/JPH0739640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解着色用電源の着色制
御方法に関し、特にアルミニウム等の酸化皮膜を交流電
源で着色する場合に、この着色皮膜を安定に着色するこ
とを可能にしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling coloration of a power source for electrolytic coloring, and in particular, when an oxide film of aluminum or the like is colored with an AC power source, the colored film can be stably colored. is there.

【0002】[0002]

【従来の技術】アルミニウム等に陽極酸化皮膜を形成し
たものを金属塩を含む溶液を満たした槽に入れ、同じ槽
に入れた他方の電極との間に交流電圧を加えて陽極酸化
皮膜を着色する無機着色方法は特許第310401号
(特公昭38−1715)として良くしられている。し
かし、これでは工業的に安定な着色を生産することは極
めて難しく、着色の歩留まりはアルミニウム製品を生産
する企業の存亡に係わるほど重要な問題であったので、
この着色の歩留まりを良くするため、溶液の成分や通電
方法に多くの努力がなされている。即ち通電方法に関し
ては交流電源の正と負の比を変えたり、直流を重畳させ
る方法が着色速度を向上させることはよく知られている
が、定量的な制御が不可能であった。更に着色速度が向
上しても、逆に電源の変動や酸化皮膜のばらつきで歩留
まりが低下する場合もあった。
2. Description of the Related Art An anodized film formed on aluminum or the like is placed in a tank filled with a solution containing a metal salt, and an alternating voltage is applied between the other electrode in the same tank to color the anodized film. The inorganic coloring method is well known as Japanese Patent No. 310401 (Japanese Patent Publication No. 38-1715). However, it is extremely difficult to produce an industrially stable coloring with this, and the yield of coloring has been an important issue that affects the survival of companies that produce aluminum products.
In order to improve the yield of this coloring, many efforts have been made on the components of the solution and the method of energization. That is, regarding the energizing method, it is well known that the method of changing the positive and negative ratios of the AC power source or the method of superimposing DC current improves the coloring speed, but quantitative control was impossible. Even if the coloring speed is further improved, on the contrary, the yield may be reduced due to the fluctuation of the power supply or the variation of the oxide film.

【0003】[0003]

【発明が解決しようとする課題】先にも述べたように着
色用電源の正と負の比を変えたり直流を重畳させること
で着色速度を変化させることは良く知られているが、こ
の値を制御して希望の着色速度を得ることが困難であっ
た。このため希望の着色速度を得るには、上記方法が着
色速度に影響を与える原因を明確にする必要があり、更
に着色が進行している様子をモニタする必要がある。
As described above, it is well known that the coloring speed can be changed by changing the positive / negative ratio of the coloring power source or by superimposing a direct current. It was difficult to control the temperature to obtain the desired coloring speed. Therefore, in order to obtain the desired coloring speed, it is necessary to clarify the reason why the above method affects the coloring speed, and it is necessary to monitor the progress of coloring.

【0004】既に発表されている資料によると、着色中
の電圧と電流波形のリサージュ図を観察して着色状態を
知る方法や、互いの電極間のインピーダンスを測定する
等の方法も提案されているが、工業化するには多くの困
難を伴い、着色状態をモニタするのにもっと有効な方法
が必要となる。更に、着色速度がかりに制御できても、
付き回り性が劣化する等の問題もあり、この問題も同時
に解決する必要がある。
According to the materials already published, a method of observing a Lissajous figure of voltage and current waveforms during coloring to know a coloring state, a method of measuring impedance between electrodes of each other, and the like have been proposed. However, industrialization involves many difficulties, and a more effective method for monitoring the coloring state is needed. Furthermore, even if you can control the coloring speed,
There is also a problem that the throwing power deteriorates, and this problem also needs to be solved at the same time.

【0005】[0005]

【課題を解決するための手段】このような点を考慮し
て、本発明人は先ず、交流定電流波形を電極間に加えた
状態で電圧波形を観察し、電極間の電気的な等価回路を
類推した。コンピュータによるシミュレーションの結果
この等価回路は3個のコンデンサと3個の抵抗,夫々逆
極性に直列接続された定電圧ダイオードで単純化され、
個々の部品の値も実用的な精度で類推できた。しかもこ
の等価回路は実際のものと全く等価な電流電圧特性を示
した。
In consideration of such a point, the present inventor first observes a voltage waveform in a state in which an AC constant current waveform is applied between electrodes, and an electrical equivalent circuit between the electrodes is observed. By analogy. As a result of computer simulation, this equivalent circuit is simplified by three capacitors, three resistors, and constant voltage diodes connected in series with opposite polarities.
The values of individual parts could be inferred with practical accuracy. Moreover, this equivalent circuit exhibited a current-voltage characteristic that was completely equivalent to the actual one.

【0006】3個のコンデンサは酸化皮膜と溶液の界面
に存在する電気二重槽によるCと、酸化皮膜付近の容
量によるC、酸化皮膜と金属間の容量Cであると推
測されるがこの仮定が実際と異なっても本発明に影響を
与えるものではない。Cに並列に入った定電圧ダイオ
ードDは正の電圧を決定し、Cに並列に入った定電
圧ダイオードDは負の電圧を決定する方向に接続され
ている。アルミニウムの酸化皮膜をブロンズ系電解液を
用い、交流定電流で着色している場合のある瞬間の電圧
波形の例では、Cの静電容量を1とすると、Cは約
300倍,Cは数十分の一と類推され、夫々の定電圧
ダイオードの等価直列抵抗も商用周波数ではCのイン
ピーダンスの絶対値の1/20に近いと推定される。
The three capacitors are presumed to be C 1 due to the electric double tank existing at the interface between the oxide film and the solution, C 2 due to the capacitance near the oxide film, and C 3 between the oxide film and the metal. However, even if this assumption is different from the actual one, it does not affect the present invention. The constant voltage diode D 1 in parallel with C 2 determines a positive voltage, and the constant voltage diode D 2 in parallel with C 3 is connected in a direction to determine a negative voltage. In an example of a voltage waveform at a certain moment when the aluminum oxide film is colored with a constant alternating current using a bronze-based electrolyte, assuming that the capacitance of C 2 is 1, C 1 is about 300 times, C 1 3 is estimated to be several tenths, and the equivalent series resistance of each constant voltage diode is also estimated to be close to 1/20 of the absolute value of the impedance of C 2 at the commercial frequency.

【0007】又定常状態ではCに加わる電圧のリプル
電圧は0.9V以下と推定され、電気二重層の耐圧以下
となりこの層間では電解液が分解されないものと推測さ
れる。この等価回路は本発明を説明するために単純化し
たものであり、更に電流や、周波数を変化させた場合の
電圧波形をFFTによって解析すればより正確な情報を
得ることが可能であり、着色の初期状態から終了までの
変化を観測すれば、酸化皮膜の近傍で起きている現象を
より深く理解することも可能である。この等価回路では
前記したDの降伏電圧がDの降伏電圧よりも高い場
合が一般的である。この等価回路に交流を加えた場合、
電気化学者が従来予測していなかった特異的な動作をす
る。例えばこの回路に定電圧を加えると定常値における
の電圧は倍電圧整流回路と類似の作用で電源電圧の
ピーク値をはるかに越えることである。この電圧の極性
はD,Dそれぞれの降伏電圧をVD・VDとす
るとVD>VDの場合は負となり、VD<VD
の場合は正となる。
In the steady state, the ripple voltage of the voltage applied to C 1 is estimated to be 0.9 V or less, which is lower than the withstand voltage of the electric double layer, and it is presumed that the electrolytic solution is not decomposed between the layers. This equivalent circuit is simplified to explain the present invention, and more accurate information can be obtained by analyzing the voltage waveform when the current or the frequency is changed by FFT. By observing the change from the initial state to the end of, it is possible to deeply understand the phenomenon occurring near the oxide film. In this equivalent circuit, the breakdown voltage of D 1 is generally higher than the breakdown voltage of D 2 . When alternating current is applied to this equivalent circuit,
It behaves in a unique way that electrochemists have not previously predicted. For example, when a constant voltage is applied to this circuit, the voltage of C 1 at a steady value greatly exceeds the peak value of the power supply voltage by an action similar to that of the voltage doubler rectifier circuit. When the breakdown voltage of each of D 1 and D 2 is VD 1 · VD 2 , the polarity of this voltage becomes negative when VD 1 > VD 2 , and VD 1 <VD 2
Is positive.

【0008】又Cに加わる電圧値は入力電圧のピーク
値と両者のダイオードの降伏電圧の差で決定される。後
に述べるようにVDとVDの電圧差は定電圧の交流
電源で着色する場合の着色速度に大きく影響を与える。
又交流定電流を加えた場合のCの初期電圧は、電圧投
入時の位相角で決定される電圧が加わり、定常状態での
直流分は電極と溶液の起電力まで減衰し、わずかな交流
成分だけとなる。尚投入位相を固定して、着色の歩留ま
りをよくする方法は既に別に特許出願をしてある。
The voltage value applied to C 1 is determined by the difference between the peak value of the input voltage and the breakdown voltage of both diodes. As will be described later, the voltage difference between VD 1 and VD 2 has a great influence on the coloring speed in the case of coloring with a constant voltage AC power source.
Also, the initial voltage of C 1 when an AC constant current is applied is the voltage determined by the phase angle at the time of voltage application, and the DC component in the steady state is attenuated to the electromotive force of the electrode and solution, and a slight AC Only ingredients. A patent application has already been filed separately for a method of fixing the charging phase and improving the yield of coloring.

【0009】発明者の類推によると、着色の速度はこの
に加わる電圧によって大きく影響を受けると考え
た。正と負の積分値が完全に対称な定電流電源を着色電
源を用いて電源投入時の過渡現象が少ないように電源を
投入すると着色は僅かしか進行しない。これは電極と溶
液の起電力を無視するとCの直流電圧がゼロで電気二
重層には直流電流が流れず結果的に着色が進行しないた
めと考えられる。従って電流を増加してCにかかる電
圧が電気二重層の耐圧を越えると予想されるような大電
流を流すか、過渡的な外乱を与えてCの電圧を上昇さ
せないと着色速度は大幅に遅くなりアノードが正の期間
にアノード分極が起き陽極酸化が進みインピーダンスが
上昇する結果、電極間の正側電圧が上昇するだけであ
る。この電圧上昇は着色の付け回り性を良好にする作用
はあるが、程度を越えるとスポーリングの原因となった
り、電源の大型化やコストの増加を招くだけである。
According to the analogy of the inventor, it was considered that the coloring speed is greatly affected by the voltage applied to C 1 . When a constant current power supply whose positive and negative integral values are completely symmetrical is used and a power supply is turned on so that a transient phenomenon at the time of turning on the power is small using a coloring power supply, coloring proceeds only slightly. It is considered that this is because if the electromotive force of the electrode and the solution is ignored, the DC voltage of C 1 is zero and no DC current flows in the electric double layer, and as a result, coloring does not proceed. Therefore, unless the current is increased so that the voltage applied to C 1 exceeds the withstand voltage of the electric double layer, or a large current is applied or a transient disturbance is applied to increase the voltage of C 1 , the coloring speed is significantly increased. As a result, anodic polarization occurs during the positive period of the anode and anodic oxidation progresses to increase the impedance, so that the positive voltage between the electrodes only increases. This increase in voltage has the effect of improving the colorability, but if it exceeds the limit, it causes spalling, increases the size of the power supply, and increases the cost.

【0010】着色用電源が定電圧の場合、定電流の場合
よりも低い電流値で着色が一時的に進行する。これは前
記したVDとVDの差によってCに負電圧が発生
しアノード電極側のカソード分極が強くなるためであ
る。しかし電圧が正の期間に作用するアノード反応で陽
極酸化が進行するため、等価的に正の期間の抵抗が上昇
し電流の絶対値も低下して正負の電圧比が高くなるにも
係わらず着色速度は低下する。このようにCの電圧は
複雑で外部から簡単に制御することは困難であった。本
発明人は定電流電源のような比較的高いインピーダンス
の着色用交流電源において、電極間の電圧を検出器で検
出して、この電圧でオフセット電流を調整することでC
の電圧を調整する方法を既に別の特許出願としている
が、本発明では更に電極に流れる電流を積分し、この値
をフィードバックすることにより、着色速度又は着色停
止時間を制御することにより、安定した着色又は電析を
得るものである。
When the coloring power source has a constant voltage, the coloring temporarily progresses with a lower current value than when the coloring current is a constant current. This is because a negative voltage is generated in C 1 due to the difference between VD 1 and VD 2 , and the cathode polarization on the anode electrode side becomes stronger. However, since the anodic oxidation progresses due to the anodic reaction that acts during the positive voltage period, the resistance equivalently increases during the positive period, the absolute value of the current also decreases, and the positive / negative voltage ratio increases, but coloring occurs. The speed decreases. As described above, the voltage of C 1 is complicated and it is difficult to easily control it from the outside. The present inventor detects a voltage between electrodes with a detector in an alternating current power supply for coloring having a relatively high impedance such as a constant current power supply, and adjusts the offset current with this voltage to adjust the C
Although the method of adjusting the voltage of No. 1 has already been filed as another patent application, the present invention further stabilizes by controlling the coloring speed or the coloring stop time by integrating the current flowing through the electrode and feeding back this value. To obtain colored or electrodeposited.

【0011】この方法は、前記した等価回路の特性か
ら、Cに加わる電圧はCに流れる直流成分とC
洩れ電流による等価並列抵抗で決定されることに着目
し、Cに流れる直流分を積分器により検出し、C
加わる電圧の概略値をモニタしようとするものである。
電気二重層によると推測されるCの電圧電流特性は非
線形であり、(尚この等価回路の考えから、交流で着色
状態にある電気二重層の電圧電流特性の概略値も測定可
能であるが、この方法は直接本発明と関係がないので省
略する)直流電流からCの電圧を定量的にモニタする
ことは困難であるが、Cに流れる直流電流成分即ち電
極に流れる電流の積分値をモニタする方法でアノードと
溶液の界面を流れたアニオンとカチオンの収支をモニタ
することが可能であることに着目した。この電極に流れ
る直流成分の積分値と着色の程度は期待どうり重要な情
報を与えてくれた。この積分値が正に増加する場合即ち
アノードをアノード分極が強い方向にすると着色は殆ど
進行せず、主に正側の等価直列抵抗が増加した。逆に電
極電流の積分値が負に増大する場合即ちアノードをカソ
ード分極が強い方向にすると、着色が進行しこの積分値
の増加と着色の濃さは完全に相関関係が成立した。アノ
ードをカソード分極が強い方向にすると、着色が進行し
この積分値の増加と着色の濃さは完全に相関関係が成立
した。アノード分極が強い場合に着色が進行しない実験
結果は着色はカチオンだけでなくアニオンでも起きると
する説を否定することになるが、実験に用いた溶液の特
性によるものかどうか、又電極を流れる電流の収支のう
ちすべてが着色に関係しているのかどうかも不明であ
る。しかしこの理由を問わず、着色の進行具合をリアル
タイムで監視できることが、簡単な積分器で可能となっ
た。
[0011] The method, the characteristics of the equivalent circuit described above, the voltage applied to the C 1 is focused to be determined by the equivalent parallel resistance by the direct current component and C 1 of the leakage current flowing in the C 1, flows through the C 1 The direct current component is detected by an integrator to monitor the approximate value of the voltage applied to C 1 .
The voltage-current characteristic of C 1 which is presumed to be due to the electric double layer is non-linear, and (from the idea of this equivalent circuit, the approximate value of the voltage-current characteristic of the electric double layer which is colored by alternating current can also be measured. (This method is omitted because it is not directly related to the present invention.) It is difficult to quantitatively monitor the voltage of C 1 from the direct current, but the direct current component flowing in C 1 , that is, the integrated value of the current flowing through the electrodes. We paid attention to the fact that it is possible to monitor the balance of anions and cations flowing at the interface between the anode and the solution. The integral value of the DC component flowing through this electrode and the degree of coloring provided important information as expected. When this integrated value increased positively, that is, when the anode was oriented in a direction in which the anodic polarization was strong, coloring hardly progressed, and the equivalent series resistance on the positive side increased mainly. On the contrary, when the integral value of the electrode current increases negatively, that is, when the anode is oriented in the direction of strong cathodic polarization, coloring progresses, and the increase in the integral value and the color depth are completely correlated. When the anode was oriented in the direction of strong cathodic polarization, coloring proceeded, and the increase of this integral value and the coloring density were completely correlated. The experimental result that the coloring does not proceed when the anodic polarization is strong negates the theory that the coloring occurs not only in the cation but also in the anion, but whether it depends on the characteristics of the solution used in the experiment or the current flowing through the electrode. It is also unclear whether all of the balance of money is related to coloring. However, regardless of this reason, it is possible to monitor the progress of coloring in real time with a simple integrator.

【0012】この方法が可能になると、積分器の出力レ
ベルが規定値になった瞬間に着色を停止すると希望の着
色が得られることになる。この効果は絶大で、例えば干
渉色を利用しない着色膜では、酸化被膜の厚さを50%
変化させても目視する限り同等の着色が得られた。更に
交流定電流にオフセットを付けた電源を使用した場合、
交流定電流の値を大幅に下げると同時に周波数も下げ
て、電圧波形の電圧時間積分値を同等にすれば交流電流
が1/2になったにもかかわらず同等の着色が得られ
た。これは電源装置を大幅に小型化できることを意味す
る。更に直流による着色でも付き回り性が悪くなるので
比較が困難であるが交流の場合とさほど違わない着色が
えられた。従ってこの方法で酸化皮膜の厚みのばらつき
や、電源の変動による歩留まりの低下を防ぐことが可能
であることが証明できた。
When this method becomes possible, the desired coloring can be obtained by stopping the coloring at the moment when the output level of the integrator reaches the specified value. This effect is tremendous. For example, in the case of a colored film that does not use interference colors, the thickness of the oxide film is 50%.
Even if changed, the same color was obtained as long as it was visually observed. Furthermore, when using a power supply with an AC constant offset,
When the value of the AC constant current was significantly decreased and the frequency was also decreased to make the voltage-time integrated value of the voltage waveform equal, the same coloring was obtained although the AC current was reduced to 1/2. This means that the power supply can be significantly downsized. Furthermore, it is difficult to compare even when colored with direct current because the throwing power deteriorates, but coloring that is not so different from that with alternating current was obtained. Therefore, it has been proved that this method can prevent the variation in the thickness of the oxide film and the reduction in the yield due to the fluctuation of the power supply.

【0013】上記方法でも従来よりも着色の歩留まりを
向上することが可能であるが、更に付き回り性を良くし
たり、皮膜の質を制御したり或は実際のラインに於いて
他の工程と同期をとるために、着色の濃さだけでなく着
色時間や着色の途中でアノード分極を更に進行させる必
要性がある場合もある。この場合は、理想的に着色した
ときの積分器の出力に相当する時間対電圧データを基準
データとして関数発生器或はコンピュータのテーブルデ
ータとして予め用意し、この値と上記で説明した積分器
の出力を比較し、この値が常に同一の割合になるよう
に、着色用交流電源の正又は負の成分或は重畳する直流
成分を制御すると、理想とする着色と同等の着色を得る
ことが可能である。かくて本発明は、陽極酸化皮膜を形
成した金属を金属塩等を含む溶液の槽に入れ、同じ槽に
入れた他方の電極との間に交流電流を流し、電解着色又
は金属の電析を得る交流電源の制御方法に於いて、電極
に流れる交流電流が加えられる積分器手段と、該積分器
手段の出力を予め用意された信号と比較する比較手段
と、該比較出力の差で交流電圧の正と負の比又は重畳す
る直流分又は通電時間を制御する制御手段とを備えるこ
とにより、希望する着色を得ることを特徴とするもので
ある。
The above method can also improve the yield of coloring as compared with the conventional method, but further improve the throwing power, control the quality of the coating, or use other processes in the actual line. In order to achieve the synchronization, it may be necessary to further advance the anode polarization not only in the coloring density but also in the coloring time or in the middle of coloring. In this case, time-voltage data corresponding to the output of the integrator when ideally colored is prepared in advance as reference data as a function generator or table data of a computer, and this value and the integrator described above are used. By comparing the outputs and controlling the positive or negative component of the AC power supply for coloring or the superimposed DC component so that this value will always be the same ratio, it is possible to obtain the same coloring as the ideal coloring. Is. Thus, the present invention puts a metal having an anodic oxide film formed in a bath of a solution containing a metal salt or the like, and applies an alternating current between the other electrode placed in the same bath to cause electrolytic coloring or metal deposition. In the method of controlling an alternating current power supply to be obtained, an integrator means to which an alternating current flowing through an electrode is applied, a comparing means for comparing an output of the integrator means with a signal prepared in advance, and an alternating voltage by a difference between the comparison outputs. By providing a control means for controlling the positive / negative ratio of or the superposed DC component or energization time, desired coloring can be obtained.

【0014】[0014]

【作用】かくて、電極に流れる電流を積分器で積分し、
この電流の積分値を得る。この電流の積分値は着色の状
態と相関関係があるので、この積分値が規定値になった
場合に着色を停止すると、酸化皮膜の膜厚のばらつきや
電源変動等による歩留まりの低下を防ぐことが可能とな
る。更に着色過程までを制御する必要のある場合は、基
準となる着色過程で得られると同等な時間対電圧データ
と上記積分値の出力を常に一定に保つように電源の正と
負の成分の割合を変化させると、基準の着色と同等の着
色過程を経た着色が可能となり、付き回り性の向上やラ
インの同期が容易になる。
[Operation] Thus, the current flowing through the electrodes is integrated by the integrator,
Obtain the integrated value of this current. Since the integrated value of this current correlates with the state of coloring, stopping coloring when this integrated value reaches the specified value prevents the yield from decreasing due to variations in the thickness of the oxide film and power supply fluctuations. Is possible. When it is necessary to further control the coloring process, the ratio of the positive and negative components of the power supply should be kept constant so that the voltage vs. time data and the output of the above integrated value, which are equivalent to those obtained in the reference coloring process, are always kept constant. Is changed, it becomes possible to carry out coloring through a coloring process equivalent to the standard coloring, which facilitates throwing power and facilitates line synchronization.

【0015】[0015]

【実施例】次に本発明について実施例をもって具体的に
説明する。先ず金属塩等を含む溶液を入れた槽にアノー
ド電極(着色時にはこの電極はカソード分極が強く働く
が慣例としてアノード電極と呼ぶ。従って文中にある正
電圧とはこのアノード電極側が正のことを意味する。)
として既に陽極酸化された着色を目的とする電極を入
れ、対極としてカソード電極を入れる。次に着色用電源
装置として、制御信号によって正側と負側の電圧又は電
流の比を変化できる交流電源を用意する。この時の波形
は前記した商用周波数の近傍ではCの平滑化作用が働
くので、あまり問題はなく、電圧又は電流の積分値に対
する値が重要となるので正と負の振幅やパルス値を変化
させてもよい。要するに、定電圧では電圧の正の期間の
積分値と負の期間の積分値に対する比を変化でき、定電
流では同様の電流の直流成分が制御できる交流電源を用
意する。更に上記電源を電流検出器を通じて槽に入れた
電極に接続する。電流検出器は抵抗器によるか、直流成
分も同時に検出可能な温度係数の低いトランスジューサ
を使用し、この電流検出器の出力を積分器に加える。こ
の積分器は波アナログ積分器でも、ディジタル技術を使
用した積分器でもよく、ドリフトとオフセット電圧が少
なく、且つ正と負のリニアリテイが対称なのが要求され
る。又積分器の代わりとして、交流減衰特性の優れたフ
ィルタを使用し、交流成分を除き直流分だけを取り出し
た信号を使用してもよい。積分の期間は1サイクル以上
積分すれば、原理的には動作可能であるが、着色の全期
間を累積して積分すると制御が簡単になる。又純粋な直
流を重畳する場合はこの電流を積分してもよいが、電源
装置の性能による変動や電圧や電流の制限等が働くと誤
差が多くなる欠点がある。この積分器は電源のオフ時又
は投入の瞬間等にリセットして電源を電極に加えた瞬間
から積分を開始するようにする。この積分値の出力を比
較器に加える。希望の着色濃度に相当する電圧で電源を
遮断し、着色を中止する場合はこの比較器は単なる直流
レベルの比較器で良い。この比較器で積分器の出力が予
め設定した基準電圧に達したかどうかを検出し、この信
号で電源を遮断するように回路を設けるのである。
EXAMPLES Next, the present invention will be specifically described with reference to Examples. First, an anode electrode is placed in a bath containing a solution containing a metal salt, etc. (When coloring, this electrode has a strong cathode polarization, but it is conventionally called the anode electrode. Therefore, the positive voltage in the text means that this anode electrode side is positive. Yes.)
As the above, an electrode for coloring which has already been anodized is put in, and a cathode electrode is put in as a counter electrode. Next, as a coloring power supply device, an AC power supply that can change the ratio of the positive or negative voltage or current by a control signal is prepared. Since the smoothing action of C 1 works near the commercial frequency in the waveform at this time, there is not much problem and the value for the integrated value of the voltage or current is important. Therefore, the positive and negative amplitudes and pulse values are changed. You may let me. In short, an AC power supply that can change the ratio of the integral value of the voltage in the positive period and the integral value of the negative period in the constant voltage, and can control the DC component of the same current in the constant current is prepared. Further, the power source is connected to the electrodes contained in the bath through a current detector. The current detector uses a resistor or a low temperature coefficient transducer capable of simultaneously detecting a DC component, and the output of this current detector is applied to an integrator. This integrator may be a wave analog integrator or an integrator using digital technology, and it is required that drift and offset voltage are small and positive and negative linearity are symmetrical. Further, instead of the integrator, a filter having an excellent AC attenuation characteristic may be used, and a signal obtained by extracting only the DC component from the AC component may be used. If the integration period is integrated for one cycle or more, it is possible to operate in principle, but if the entire coloring period is accumulated and integrated, the control becomes simple. Further, when a pure direct current is superposed, this current may be integrated, but there is a drawback that the error increases if the fluctuation due to the performance of the power supply device or the limitation of the voltage or the current works. This integrator is reset when the power is turned off or when it is turned on so that the integration is started from the moment when the power is applied to the electrodes. The output of this integrated value is added to the comparator. When the power supply is cut off at the voltage corresponding to the desired coloring density and the coloring is stopped, this comparator may be a dc level comparator. A circuit is provided so that this comparator detects whether the output of the integrator has reached a preset reference voltage and shuts off the power supply with this signal.

【0016】付き回り性の改善や、着色膜の質の改善或
はラインの流れに同期する等の目的で着色の経過とアノ
ード電極に於けるカソード分極やアノード分極の強さま
で制御する必要のある場合は、比較器の基準電圧は電圧
発生器等で理想の着色が得られた場合と同等の時間対電
圧を発生させる。この電圧発生器も着色電源が投入され
たと同時にスタートするようにし、比較器はこの基準電
圧と上記積分器の出力を比較する。もし積分器の出力が
基準電圧よりも早く変化し、着色速度が早すぎると判定
した場合は、この比較器の出力で電源の電圧又は電流の
正の成分が負の成分よりも増加する方向に電源装置にフ
ィードバックをかけしかも積分器の出力が規走値に達し
た場合は電源を遮断するようにする。同様な動作は関数
発生器を使用せず、目標とする時間対着色パターンをコ
ンピュータのテーブルデータとして用意し、このデータ
と積分器の出力を比較し同様な動作をさせることも可能
である。
For the purpose of improving throwing power, improving the quality of the colored film, or synchronizing with the flow of the line, it is necessary to control the course of coloring and the degree of cathodic polarization or anodic polarization of the anode electrode. In this case, the reference voltage of the comparator generates a voltage with respect to time equivalent to the case where the ideal coloring is obtained by a voltage generator or the like. The voltage generator is also started at the same time when the coloring power source is turned on, and the comparator compares the reference voltage with the output of the integrator. If the output of the integrator changes faster than the reference voltage and it is judged that the coloring speed is too fast, the positive component of the voltage or current of the power supply increases in the output of this comparator in the direction of increasing the negative component. The power supply is fed back and the power is shut off when the output of the integrator reaches the reference value. For the same operation, it is possible to prepare a target time vs. coloring pattern as computer table data without using the function generator and compare this data with the output of the integrator to perform the same operation.

【0017】自動生産ラインで着色する対称物の形状や
数が変化する場合は、夫々の状態に応じて着色パターン
や積分器の時定数又は利得等を切り替え、同様な目的を
達成することも可能である。しかし、この方法の欠点を
解決するには自動的に着色面積を判定してこの結果で積
分器の係数を変更する必要がある。この方法は着色電源
に定電流電源を使用し、しかもこの電流値を電極間に加
わる電圧が規定値になるように自動制御することであ
る。このときの電流は着色面積に比例するのでこの値を
利用すると便利である。この場合、電極間の電圧の正又
は負の電圧の積分値が理想とする電流値の場合と等しく
なるように電流値を制御することが理想的であるが、ピ
ーク値や平均値で代用してもよい。但し着色電源を投入
した直後は電極間の電圧上昇が早く、目的を達成するこ
とは困難であるので、時間に対するテーブルデータを使
用したり、面積測定時に電流値を下げたり周波数を上げ
電極間の電圧を前記したVD十VD以下になるよう
にすると、この期間は皮膜の電気的特性の変化は少な
く、測定時間を十分にとることができる。この方法で概
略の面積を知ってから、上記方法を行うと制御を速く目
標値に近ずけることが可能となる。勿論この測定期間中
は着色が進行しないように正と負の電流波形は対称にし
ておき、電流値が最適になった時点から着色を開始する
と良い結果が得られる。
When the shape or number of symmetrical objects to be colored changes in the automatic production line, the coloring pattern, the time constant or gain of the integrator, etc. can be switched according to the respective states to achieve the same purpose. Is. However, in order to solve the drawback of this method, it is necessary to automatically determine the coloring area and change the coefficient of the integrator based on this result. In this method, a constant current power source is used as the coloring power source, and this current value is automatically controlled so that the voltage applied between the electrodes becomes a specified value. Since the current at this time is proportional to the colored area, it is convenient to use this value. In this case, it is ideal to control the current value so that the integrated value of the positive or negative voltage between the electrodes becomes equal to the ideal current value, but a peak value or average value may be used instead. May be. However, immediately after turning on the coloring power supply, the voltage rise between the electrodes is fast and it is difficult to achieve the purpose.Therefore, use table data for time, decrease the current value during area measurement, raise the frequency, and increase the frequency between the electrodes. When the voltage is set to VD 1 to 10 VD 2 or less, the change in the electrical characteristics of the film is small during this period, and the measurement time can be sufficiently taken. If the above method is performed after the approximate area is known by this method, the control can be quickly approached to the target value. Of course, during this measurement period, positive and negative current waveforms are made symmetrical so that coloring does not proceed, and good results can be obtained by starting coloring from the time when the current value becomes optimum.

【0018】[0018]

【発明の効果】本発明は着色の経過をリアルタイムで監
視することが可能となり、酸化皮膜の厚みや着色用電源
のドリフトや波形の歪み等による着色の歩留まりの低下
を格段に改良することが可能であり、更にアノード電極
の反応をカソード分極を強くすることも自由にできる。
しかも、この分極の強さの時間的な経過も自由にプログ
ラムでき、且つ一定の時間で着色を完了できるのであ
る。この結果実験で最良の結果を得たそのままの過程を
自由にプログラムができ、付き回り性や着色膜の質まで
を常に最良に実現が可能である。又ラインに於ける他の
工程との同期も簡単に取ることもでき、この工業的価値
は非常に大きい。また、本発明方法は従来の着色方法と
異なり、前記した定電圧ダイオードの降伏電圧のVD
やVDに関係なく着色を得ることができるので高電圧
で陽極酸化した皮膜にも着色が可能であり、従来にない
色相の着色を得ることも可能となったり、溶液に対する
自由度も高く、従来着色が困難とされていた、例えばニ
ッケル塩やコバルト塩などの単浴でも安定な電析が可能
であるので、着色だけでなく磁性薄膜の析出としても利
用が可能であり、磁気記録用媒体や高分解能の位置検出
器用薄膜などの製造に利用できる可能性もある。更に本
発明を着想するにあたった等価回路による分析や、アノ
ード電極のアノード分極とカソード分極の強さを自由に
コントロールできたり、交流成分は付き回り性以外は殆
ど着色に関係せず、直流分による等の結果は従来解析が
困難とされていた着色理論を更に発展させたり、着色用
電源装置を更に小型化するものである。
According to the present invention, it is possible to monitor the progress of coloring in real time, and it is possible to remarkably improve the reduction of the yield of coloring due to the thickness of the oxide film, the drift of the coloring power source, the distortion of the waveform, and the like. Further, the reaction of the anode electrode can be freely made to strengthen the cathode polarization.
Moreover, the time course of this polarization intensity can be freely programmed, and coloring can be completed in a fixed time. As a result, it is possible to freely program the process in which the best result is obtained in the experiment, and it is always possible to realize the best throwing power and the quality of the colored film. Also, it can be easily synchronized with other processes in the line, and its industrial value is very large. Further, the method of the present invention is different from the conventional coloring method in that the breakdown voltage VD 1 of the above-mentioned constant voltage diode is
Since it is possible to obtain coloring regardless of VD 2 and VD 2 , it is possible to color even anodized film at a high voltage, it is also possible to obtain a coloring of a hue that has not been hitherto, and there is a high degree of freedom for a solution. Stable electrodeposition is possible even with a single bath of nickel salt or cobalt salt, which has been considered difficult to color conventionally, so it can be used not only for coloring but also for deposition of magnetic thin film, and is a magnetic recording medium. There is also a possibility that it can be used to manufacture thin films for high-resolution position detectors and the like. Furthermore, the analysis by an equivalent circuit, which is the idea of the present invention, the strength of the anode polarization and the cathode polarization of the anode electrode can be freely controlled, and the AC component has almost no relation to coloring except for throwing power, and the DC component The results of (1) and (3) further develop the coloring theory, which has been difficult to analyze in the past, and further downsize the coloring power supply device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陽極酸化皮膜を形成した金属を金属塩等を
含む溶液の槽に入れ、同じ槽に入れた他方の電極との間
に交流電流を流し電解着色または金属の電析を得る交流
電源の着色制御方法であって、該電極に流れる交流電流
を加える積分器手段と、該積分器手段の出力を予め用意
された信号と比較する比較手段と、該比較手段による出
力差が常にゼロになるように交流電圧の正と負の比、或
は重畳する直流分又は通電時間を制御する制御手段と、
を備えることにより希望する着色を得ることを特徴とす
る電解着色用電源の着色制御方法。
1. An alternating current for electrolytically coloring or depositing a metal by placing a metal having an anodized film in a bath of a solution containing a metal salt or the like and passing an alternating current between the electrode and the other electrode in the same bath. A method of controlling coloration of a power supply, comprising integrator means for applying an alternating current flowing through the electrode, comparing means for comparing an output of the integrator means with a signal prepared in advance, and an output difference by the comparing means is always zero. Control means for controlling the positive-negative ratio of the AC voltage, or the superimposed DC component or energization time so that
A method for controlling coloration of a power source for electrolytic coloration, characterized in that a desired color is obtained by including the above.
JP7825291A 1991-03-19 1991-03-19 Coloring control method for electrolytic coloring power supply Expired - Lifetime JPH0739640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7825291A JPH0739640B2 (en) 1991-03-19 1991-03-19 Coloring control method for electrolytic coloring power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7825291A JPH0739640B2 (en) 1991-03-19 1991-03-19 Coloring control method for electrolytic coloring power supply

Publications (2)

Publication Number Publication Date
JPH05239693A JPH05239693A (en) 1993-09-17
JPH0739640B2 true JPH0739640B2 (en) 1995-05-01

Family

ID=13656809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7825291A Expired - Lifetime JPH0739640B2 (en) 1991-03-19 1991-03-19 Coloring control method for electrolytic coloring power supply

Country Status (1)

Country Link
JP (1) JPH0739640B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165696A (en) * 1995-12-14 1997-06-24 Toyama Keikinzoku Kogyo Kk Method for electrolytically coloring aluminum or aluminum alloy
AU8751598A (en) * 1998-07-31 2000-02-21 Reynolds Aluminium Holland B.V. Method and apparatus for galvanizing a surface

Also Published As

Publication number Publication date
JPH05239693A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US4496436A (en) Pulse electrodepositing method
EP0787056B1 (en) Method of electrochemical machining by bipolar pulses
US6231748B1 (en) Method of and arrangement for electrochemical machining
Parfenov et al. Frequency response studies for the plasma electrolytic oxidation process
JP2019529708A (en) System for generating complex electric fields with high reliability and high throughput, and method for producing films thereby
FI103674B (en) A method of electrochemically depositing a surface of a machine part
US5324400A (en) Electrode preconditioning method for a plating bath monitoring process
JPH0739640B2 (en) Coloring control method for electrolytic coloring power supply
GB1580229A (en) Method and means for determining the immersed surface area of an electrode of an electrochemical bath
EP0035878A2 (en) Method and apparatus for measuring interfacial electrokinetic phenomena
US4011152A (en) System for autocontrolling and regulating the average value of the voltage applied to processes for the electrolytic coloring of anodized aluminum
US3669855A (en) Control of integral color anodizing process
US4102771A (en) Measuring device and process for recording on electrodeposition parameters of throwing power
DE19833454C2 (en) Method for reducing drift behavior in resistive high-temperature gas sensors and device for carrying out the method
JP3028449B2 (en) Control method of power supply device for electrodeposition
US4060461A (en) Method and apparatus for correcting error in corrosion rate measurements
JPS6234840B2 (en)
CN101942691B (en) Method and device for controlling electrolysis current density
SU738815A1 (en) Method and apparatus for controlling interelectrode gap during electrochemical machining
RU2807242C1 (en) Method for monitoring and controlling micro-arc oxidation process using acoustic emission method
SU1458446A1 (en) Apparatus for measuring the surface area of articles in electroplating baths
SU1216255A1 (en) Method of checking back electromotive force of aluminium electrolyzer
JPS6326567A (en) Method and instrument for measuring current density in various positions of electrode in electrolytic cell
SU623730A1 (en) Method of stabilizing electroplating processes
RU1801989C (en) Method of controlling and stabilizing average current density in electroplating bath