JP3028449B2 - Control method of power supply device for electrodeposition - Google Patents

Control method of power supply device for electrodeposition

Info

Publication number
JP3028449B2
JP3028449B2 JP5141298A JP14129893A JP3028449B2 JP 3028449 B2 JP3028449 B2 JP 3028449B2 JP 5141298 A JP5141298 A JP 5141298A JP 14129893 A JP14129893 A JP 14129893A JP 3028449 B2 JP3028449 B2 JP 3028449B2
Authority
JP
Japan
Prior art keywords
electrodeposition
voltage
film
current
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5141298A
Other languages
Japanese (ja)
Other versions
JPH06330399A (en
Inventor
彰 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Ltd
Original Assignee
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Ltd filed Critical Takasago Ltd
Priority to JP5141298A priority Critical patent/JP3028449B2/en
Publication of JPH06330399A publication Critical patent/JPH06330399A/en
Application granted granted Critical
Publication of JP3028449B2 publication Critical patent/JP3028449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】メッキや分散めっき、電解着色、
電着塗装、酸化皮膜生成などのような電析や陽極酸化を
利用した膜生成装置において、処理面積の変化に対して
影響がない安定な皮膜や着色、陽極酸化を得る方法であ
る。
[Industrial applications] plating, dispersion plating, electrolytic coloring,
This is a method for obtaining a stable film, coloration, and anodic oxidation which are not affected by changes in the processing area in a film forming apparatus utilizing electrodeposition or anodic oxidation such as electrodeposition coating or oxide film formation.

【0002】[0002]

【従来の技術】金属イオンの電析を利用した電気メッキ
や金属イオンとともにコロイドや界面活性剤で価電され
た粒子を共析する分散メッキ、酸化皮膜の微細孔中に金
属を電析して着色する電解着色、コロイドや界面活性剤
などで帯電された塗料粒子を電気泳動によって電着して
塗膜を生成する電着塗装、金属表面に陽極酸化によって
酸化皮膜を生成する電析や電着、陽極酸化による膜生成
などの多くの電気的な電析には処理する面積に応じて電
源の電圧や電流の設定を変えたり、処理時間を変化する
必要があった。この設定変更はわずわらしく誤設定をす
る可能性があったり、処理される部分の形状が複雑な場
合は面積計算が煩雑であったりして安定で歩留まりの良
い皮膜を生成するには多くの困難をともなった。
2. Description of the Related Art Electroplating utilizing electrodeposition of metal ions, dispersion plating in which particles charged with colloids and surfactants are co-deposited with metal ions, and metal is deposited in fine pores of an oxide film. Electroplating for coloring, electrodeposition coating to form a coating film by electrophoretically depositing paint particles charged with colloids and surfactants, electrodeposition and electrodeposition to form an oxide film by anodic oxidation on metal surfaces For many electric depositions such as film formation by anodic oxidation, it is necessary to change the setting of the voltage or current of the power supply or to change the processing time depending on the area to be processed. This setting change can be misleading and erroneous, or if the shape of the part to be processed is complicated, the area calculation is complicated and it is often necessary to generate a stable and high-yield film. With difficulties.

【0003】[0003]

【発明が解決しようとする課題】発明者は処理部分の面
積の変化に対しても自動的に電流を追従し、常に安定な
電析膜や酸化皮膜を生成することを課題として電析装置
の設計を試みた、この方法は処理面積の変化によって生
じるインピーダンスの変化などの電気的パラメータの変
化を検出し、この変化から適合する電流や電圧を演算す
るなどの手法であるが電析の様子はそれぞれ異なり、全
ての装置に共用できるようなシステムの設計は非常に困
難であった。
SUMMARY OF THE INVENTION The inventor of the present invention has an object to automatically follow a current even when the area of a processing portion changes, and to always generate a stable electrodeposition film or oxide film. This method, which tried to design, detects changes in electrical parameters such as changes in impedance caused by changes in processing area, and calculates appropriate currents and voltages from these changes. Differently, it was very difficult to design a system that could be shared by all devices.

【0004】[0004]

【作用】このような課題を実現する方法として、希望の
膜を生成した場合の電極間電圧をそのままデジタル的に
記録した後これを再生し、この条件で再び電圧を発生さ
せて電極間電圧として電析膜を生成すると処理面積が変
化しても電流は正確に処理面積に比例して流れ、処理面
積に影響されない安定な膜生成が可能となることを発案
し実験でも確かめた。
As a method of realizing such a problem, a voltage between electrodes when a desired film is generated is digitally recorded as it is, and then reproduced, and a voltage is again generated under this condition to obtain a voltage between electrodes. Even when the deposition area was changed, the current flowed accurately in proportion to the processing area even when the deposition area was changed, and it was invented that the film could be formed stably without being affected by the processing area.

【0005】電析膜の厚みや着色の濃度は電極間に流れ
た電気量(直流に交流を重畳した場合は電極間に流れた
正の電流成分と負の電流成分の積分値の差)と最も強い
相関がある。この電気量がそれぞれ異なる状態で電気量
に対する電極間電圧の離散データを取り、中間の電気量
に対してはその近傍の電気量で電析した場合の電極間電
圧の補完データを演算で求め、この結果で電析を行うと
実際にサンプルをしていない中間値の電気量に対しても
膜生成が可能となる。
The thickness of the electrodeposited film and the concentration of coloring are determined by the amount of electricity flowing between the electrodes (the difference between the integral of the positive and negative current components flowing between the electrodes when alternating current is superimposed on direct current). There is the strongest correlation. In the state where the electric quantities are different from each other, discrete data of the interelectrode voltage with respect to the electric quantity is taken, and for the intermediate electric quantity, complementary data of the interelectrode voltage when electrodeposition is performed with the electric quantity in the vicinity is obtained by calculation, When electrodeposition is performed based on this result, a film can be formed even for an intermediate amount of electricity that is not actually sampled.

【0006】[0006]

【実施例】電析膜の厚みや着色の濃度は電極間に流れた
電気量(直流に交流を重畳した場合は電極間に流れた正
の電流成分と負の電流成分の積分値の差)に対して最も
相関が高い。電析する電流に交流を重畳した場合も電流
の流れた電流の積分値に対し高い相関を示す場合が多
い。交流を重畳したり極正が反転したりして電流に負の
期間がある場合は正方向の電流値から負方向の積分値を
減算するような積分をする。ここで説明する正方向電流
とは電析が進行する方向を正と仮定する。したがって、
電源装置と電極間に電流検出器を挿入し、この検出信号
を積分器に加えると膜生成過程の電気量をモニタでき
る。一方、希望した膜生成速度に相当するパターン(電
極電流の積分値の時間的変化を示す)をアナログまたは
デジタル的に発生する。このパターンでは時間的に変化
のないフラットな状態では電極間に流れる電流の平均値
は零となり、時間的な信号の立ち上がりが急峻であれば
電極間に流れる電流密度が高く、その勾配は電流の積分
値の極正を意味し、正であれば膜が生成する方向を示
す。したがって、この信号パターンと電極に流れた電流
の積分値のパターンを比較して、この差が最小になるよ
うに電極間に流す電流または電圧を自動制御すると希望
の速度で膜を生成することが可能となり、膜生成の電気
量も正確に計測することが可能となる。この場合の電源
は定電流電源でも定電圧電源でも適用が可能であり直流
分に任意波形の交流を重畳した場合にも適用できる。こ
の方法は既に電解着色電源の制御方法としてすでに出願
済みであり、CLCC法と呼ばれている。
[Example] The thickness of the electrodeposited film and the concentration of the color are determined by the amount of electricity flowing between the electrodes (the difference between the integral of the positive and negative current components flowing between the electrodes when alternating current is superimposed on direct current). Has the highest correlation to Even when an alternating current is superimposed on the current to be deposited, a high correlation is often exhibited with respect to the integral value of the current flowing. If the current has a negative period due to the superposition of the alternating current or the inversion of the polarity, the integration is performed such that the integration value in the negative direction is subtracted from the current value in the positive direction. The positive direction current described here is assumed to be positive in the direction in which electrodeposition proceeds. Therefore,
By inserting a current detector between the power supply device and the electrodes and applying this detection signal to an integrator, the amount of electricity during the film formation process can be monitored. On the other hand, a pattern (indicating a temporal change in the integral value of the electrode current) corresponding to a desired film formation speed is generated in an analog or digital manner. In this pattern, the average value of the current flowing between the electrodes is zero in a flat state where there is no change with time, and the density of the current flowing between the electrodes is high if the temporal signal rises steeply, and the gradient of the current is It means the absolute value of the integral, and if it is positive, it indicates the direction in which the film is generated. Therefore, by comparing this signal pattern with the pattern of the integral value of the current flowing through the electrodes and automatically controlling the current or voltage flowing between the electrodes so as to minimize the difference, a film can be formed at a desired speed. This makes it possible to accurately measure the amount of electricity generated in the film. In this case, the power supply may be a constant current power supply or a constant voltage power supply, and may be applied to a case where an alternating waveform of an arbitrary waveform is superimposed on a DC component. This method has already been filed as a method for controlling an electrolytic coloring power supply, and is called the CLCC method.

【0007】電析用電源が定電流電源の場合はそのまま
定電流を電極間に流し、膜生成速度を時間的に変化した
い場合は定電流の値をその速度に比例するように変化さ
せる簡単な方法で同様な効果を得ることができ、電流の
積分器や補正回路を省略しても全く同じ動作をすること
が可能である。
When the power source for electrodeposition is a constant current power source, a constant current is passed between the electrodes as it is, and when it is desired to change the film formation speed with time, the value of the constant current is changed in proportion to the speed. The same effect can be obtained by the method, and the same operation can be performed even if the current integrator and the correction circuit are omitted.

【0008】このような方法で電極に流れる電気量を制
御しながら膜を生成する。この膜を生成している途中の
電極間電圧を直接または分圧器を通じてA−Dコンバー
タに取り込む。このデジタルデータはそのまま、または
圧縮処理をして半導体メモリーやハードデスク、磁気テ
ープ、光デスクまたはそれに準ずるデジタル記録装置に
デシタル記録をする。A−Dコンバータのサンプルレー
トは直流による電気メッキの場合は比較的に低くても可
能である。しかし、電解着色や特殊なメッキのように直
流に交流を重畳した電源ではその交流成分に応じた帯域
になるようにサンプルレートを選ぶ必要がある。サンプ
ルレートが高い場合に記録容量の増大を防ぐため、音声
信号の圧縮に使用されるADPCMの手法によるデータ
圧縮方法を使用しても良い結果が得られる。このデータ
圧縮方法は人の耳で感ずる音を損なわないように開発さ
れた圧縮方法であるが、電気化学反応にも良い整合性が
得られる。
In this manner, a film is formed while controlling the amount of electricity flowing through the electrodes. The voltage between the electrodes during the formation of this film is taken into the AD converter directly or through a voltage divider. This digital data is directly or subjected to compression processing, and is digitally recorded on a semiconductor memory, a hard disk, a magnetic tape, an optical disk or a digital recording device equivalent thereto. The sample rate of the A / D converter can be relatively low in the case of DC electroplating. However, in a power supply in which an alternating current is superimposed on a direct current, such as electrolytic coloring or special plating, it is necessary to select a sample rate so as to have a band corresponding to the alternating current component. In order to prevent an increase in recording capacity when the sample rate is high, a good result can be obtained by using a data compression method based on the ADPCM technique used for compressing audio signals. This data compression method is a compression method developed so as not to impair the sound perceived by human ears, but also provides good consistency in electrochemical reactions.

【0009】 電解液中に入れた電極の両端間に流れる
電流の積分値の時間的変化の最適値は単純でない場合が
多く、電解着色では初期にその変化を負にする必要もあ
る。電解着色の最も単純な例で説明すると電解の初期に
は電極の両端間に流れる電流の積分値を負になるように
設定し、数十秒から数分後この積分値を正に設定する必
要がある。これは横軸の時間に対して電極の両端間に流
れる電流の積分値を縦軸としたグラフにすると歪んだV
字状のパターンとなる。このパターンは請求項にある基
準パターンと同じ意味を持つ。この最適パターンは計算
で算出することは難しく、大抵は経験や勘に頼るところ
が大きく、最初はこのパターンを得るには思考錯誤を必
要とする場合もある。このような結果から最適と思われ
る基準パターンを作り、このパターンを満足するように
電解液中に入れた電極の両端間に流れる電流の積分値の
時間的変化がこの基準パターンと一致するように電析用
電源を制御する。すなわち、電解液中に入れた電極の両
端間に流れる電流を電流検出器で検出し、この値を積分
器に加える。この積分器の出力と基準パターンが一致す
るように制御することになるが、制御そのものは、市販
されている安定化電源のフイードバックの制御方法と同
じ原理で行う。このような方法で希望の電析が得られる
まで基準パターンを変更して最適な基準パターンを得
る。その後、この基準パターンで電析を行い、この電析
を行っている過程の電極間電圧をデジタルまたはアナロ
グ的に記録する。記録がデジタルデータの場合はこのデ
ータをD−Aコンバータによってアナログ信号に変換し
これを基準電圧として電源装置に加える。電析用電源装
置はこの基準電圧をもとにして、取り込んだ電圧と等し
い電圧を電極間に加えるようにする。基準電圧をこのよ
うに希望の電極間電圧に変換する方法も市販の安定化電
源のフイードバック技術を採用すると容易に実現可能で
ある。D−Aコンバータの出力回路には適当なローパス
・フイルタを挿入しノイズの発生を極力少なくする。基
準信号がローパス・フイルタの帯域の制限で劣化するの
を防ぐには、オーバサンプリングの技法とデジタル・ロ
ーパスフイルタを利用すると良い結果が得られる。
[0009] In many cases, the optimal value of the temporal change of the integrated value of the current flowing between both ends of the electrode placed in the electrolytic solution is not simple. In the case of electrolytic coloring, it is necessary to initially make the change negative. To explain with the simplest example of electrolytic coloring, it is necessary to set the integral value of the current flowing between both ends of the electrode to be negative at the beginning of electrolysis, and to set this integral value to be positive after several tens of seconds to several minutes There is. This is a distorted V when plotted on the vertical axis with the integrated value of the current flowing between both ends of the electrode with respect to the time on the horizontal axis.
It becomes a character-like pattern. This pattern has the same meaning as the reference pattern in the claims. This optimal pattern is difficult to calculate by calculation, and usually relies heavily on experience and intuition, and in order to obtain this pattern at first, thought and error may be required. From such a result, a reference pattern considered to be optimal is created, and the temporal change of the integrated value of the current flowing between both ends of the electrode placed in the electrolytic solution so as to satisfy this pattern is made to match this reference pattern. Controls the power source for electrodeposition. That is, the current flowing between both ends of the electrode placed in the electrolytic solution is detected by the current detector, and this value is added to the integrator. The control is performed so that the output of the integrator matches the reference pattern, but the control itself is performed according to the same principle as the feedback control method of a commercially available stabilized power supply. The reference pattern is changed by such a method until a desired electrodeposition is obtained, thereby obtaining an optimum reference pattern. Thereafter, electrodeposition is performed using this reference pattern, and the inter-electrode voltage in the process of performing the electrodeposition is digitally or analogously recorded. When recording is digital data, the data is converted into an analog signal by a DA converter, and this signal is applied to a power supply device as a reference voltage. The power source for electrodeposition applies a voltage equal to the voltage taken in between the electrodes based on the reference voltage. The method of converting the reference voltage into the desired voltage between the electrodes can be easily realized by employing a feedback technology of a commercially available stabilized power supply. An appropriate low-pass filter is inserted in the output circuit of the DA converter to minimize noise generation. In order to prevent the reference signal from deteriorating due to the limitation of the band of the low-pass filter, good results can be obtained by using an oversampling technique and a digital low-pass filter.

【0010】着色の色や膜厚を幅広く変化させようとす
ると、それぞれ希望の色のデータを得ようとするには、
上記基準パターンを得るための作業がおおいに手間のか
かる仕事である。したがって、基準パターンを得る作業
を電極の両端間に流れる電流の積分値の総量に対してス
テップ的な値でデータを取り、基準パターンを実測値か
ら得る作業量を低減させる必要がある。この結果、電極
の両端間に流れる電流の積分値の総量に対するデータは
離散的になり、この値が実際に実験していない値では電
析を行うことができない。ここで、例えば電極の両端間
に流れる電流の積分値の総量が1の場合と、2(この数
字は説明のためのもので実際の単位はアンペア×時間と
なる)の場合の二つの総量に対して基準パターンを得た
とすると、それぞれのパターンを使用して実際の電析を
行い、それぞれの値で電析を行っている場合の電極間電
圧を時間的に記録する。電流の積分値の総量が1.5の
場合を得ようとするには、電流の積分値の総量が1の場
合と、2の場合のそれぞれの時間に対する瞬時値を加え
て2で割れば電流の積分値の総量が1.5の場合の近似
的な電圧の時間的な補間値が得られる。この補間した電
圧データを電極間に加えるとことにより、電流の積分値
の総量が1.5の場合の実測データを取らずに、近似的
な電析が可能となる。この近似は電流の積分値の総量と
得られる結果が比例する場合に有効である。しかし、実
際の条件では、電流の積分値の総量と得られた結果(着
色の程度や膜圧)が比例するとは限らない。この場合は
電流の積分値の総量と得られる結果をプロットし、積分
値の総量をx、得られた結果をyとしてxとyの関係を
べき乗、指数、対数などの関係式に対応させると更に良
い近似が得られる。xとyの関係がどの式に対応する
か、またこの係数がどうなるかは、回帰計算によって可
能となる。回帰計算については周知の計算方法なのでこ
こではその説明を省略する。補間の値を計算するには記
録装置に記録されたデータからデジタル演算によって計
算すると便利であるが、デジタルデータをアナログデー
タに戻してからアナログ演算器によって演算しても同様
の目的を達成できる。
In order to widely change the color or thickness of the coloring, in order to obtain data of desired colors,
The operation for obtaining the reference pattern is a time-consuming operation. Therefore, it is necessary to reduce the amount of work required to obtain the reference pattern from actual measured values by collecting data in steps with respect to the total amount of the integrated value of the current flowing between both ends of the electrode. As a result, the data for the total amount of the integrated value of the current flowing between both ends of the electrode becomes discrete. Electrodeposition cannot be performed if this value is not actually tested. Here, for example, the total amount of the integrated value of the current flowing between both ends of the electrode is 1 and the total amount is 2 (this number is for explanation and the actual unit is ampere × time). On the other hand, if a reference pattern is obtained, an actual electrodeposition is performed using each pattern, and the voltage between the electrodes when the electrodeposition is performed at each value is temporally recorded. In order to obtain the case where the total amount of the integrated value of the current is 1.5, the instantaneous value for each time in the case where the total amount of the integrated value of the current is 1 and the case where the total amount of the current is 2 is added and divided by 2. When the total amount of the integral values is 1.5, an approximate temporal interpolation value of the voltage is obtained. By adding the interpolated voltage data between the electrodes, it is possible to perform an approximate electrodeposition without obtaining actual measurement data when the total amount of the integrated value of the current is 1.5. This approximation is effective when the total amount of the integrated value of the current is proportional to the obtained result. However, under actual conditions, the total amount of the integrated value of the current is not always proportional to the obtained result (the degree of coloring or the film pressure). In this case, the total amount of the integrated value of the current and the obtained result are plotted, and the total amount of the integrated value is x, and the obtained result is y, so that the relation between x and y corresponds to a relational expression such as a power, an exponent, and a logarithm. A better approximation is obtained. Which equation corresponds to the relationship between x and y, and what the coefficients are, can be determined by regression calculation. Since the regression calculation is a well-known calculation method, its description is omitted here. It is convenient to calculate the value of the interpolation by digital calculation from the data recorded in the recording device. However, the same purpose can be achieved by converting the digital data back to analog data and then performing the calculation by an analog calculator.

【0011】さらに、溶液の温度、濃度、pH、妨害物
質の濃度、電解着色のように酸化皮膜に着色する場合は
酸化皮膜の厚みなどのパラメータ変動に対する電析の能
率と電極間電圧の関係を入手できる場合は、それぞれの
パラメータの補正値を[0010]で得られた補間デー
タ値に加える。例えば、溶液温度が10℃上昇した場
合、電極間電圧に−0.2Vを加えると温度上昇前と同
じ電析能率が得られるとしたデータがある場合は、補間
データで得られた電圧値に−0.2Vを加えれば良い。
パラメータの多い場合の具体的なデータの収集方法は多
変量解析の手法を採用すると良い。この手法は例えばパ
ソコン統計解析ハンドブックII多変量解析 田中豊、
垂水共之、脇本和昌編 1884年共立出版株式会社発
行に詳しく記載されているので省略するが、溶液の温
度、濃度、pH、妨害物質の濃度、酸化皮膜の厚みなど
のバラメータを独立変数とし、これに対する電析の能率
を従属変数としてそれぞれ独立変数を変えたときの従属
変数の値を取る。この結果を多変量解析の手法を用いて
数式化する。次ぎに電極間電圧と電析の能率データも実
験で得ておき、このデータから多変量解析で得た数式を
電極間電圧に換算する。この換算した電圧値を補間デー
タに補正を加え、この電圧で膜の生成を行うと変動要因
による歩留まりを防ぐことができる。
Further, when the oxide film is colored, such as the temperature, concentration, pH, concentration of interfering substances, and electrolytic coloring of the solution, the relationship between the electrodeposition efficiency and the electrode voltage with respect to parameter fluctuations such as the thickness of the oxide film is determined. If available, add the correction value of each parameter to the interpolated data value obtained in [0010]. For example, when the solution temperature rises by 10 ° C., if there is data indicating that the same electrodeposition efficiency as before the temperature rise can be obtained by applying −0.2 V to the electrode voltage, the voltage value obtained by the interpolation data is What is necessary is just to apply -0.2V.
As a specific data collection method when there are many parameters, a method of multivariate analysis may be adopted. This method is described in, for example, Personal Computer Statistical Analysis Handbook II Multivariate Analysis Yutaka Tanaka,
Tatsumi Tarumi, Wakimoto Kazumasa 1884 Kyoritsu Shuppan Co., Ltd. issued a detailed description, but omitted the parameters such as temperature, concentration, pH, concentration of interfering substances, thickness of oxide film, etc. as independent variables. The value of the dependent variable when the independent variable is changed with the efficiency of electrodeposition for this as the dependent variable. The result is expressed as a mathematical expression using a multivariate analysis technique. Next, the inter-electrode voltage and the efficiency data of electrodeposition are also obtained by experiments, and a mathematical expression obtained by multivariate analysis is converted from the data into the inter-electrode voltage. If the converted voltage value is corrected to the interpolation data and the film is generated at this voltage, the yield due to the fluctuation factor can be prevented.

【0012】電極間電流が直流に交流を重畳した場合
は、それぞれのデータを得るための交流信号はビートに
よる障害を防ぐため同期を正確に取る必要がある。これ
を満足するには、重畳する交流の周波数をA−Dコンバ
ータのサンブリング周波数に同期させる。この手法はサ
ンプリング周波数を重畳交流成分の周波数の整数倍にす
るか、PLL回路による同期回路が必要であり、電源投
時の位相も一致させる必要がある。
When the alternating current is superimposed on the direct current, it is necessary to accurately synchronize the alternating current signal for obtaining the respective data in order to prevent a failure due to the beat. To satisfy this, the frequency of the AC to be superimposed is synchronized with the sampling frequency of the AD converter. This method requires that the sampling frequency be an integral multiple of the frequency of the superimposed AC component, or that a synchronous circuit using a PLL circuit be used, and that the phases when power is turned on be matched.

【0013】[0013]

【発明の効果】本発明により処理面積の変化に対して変
化の少ない処理が可能となるだけでなく、自動化が容易
であり省力化には極めて有効な手法である。とくに処理
する材料の形状が複雑であったり面積が一定していない
ような、多種少量生産の場合には極めて優れた効果が発
揮できる。
According to the present invention, not only a process with a small change with respect to a change in the processing area can be performed, but also automation is easy and it is a very effective method for labor saving. In particular, in the case of small-lot production of various kinds in which the shape of the material to be processed is complicated or the area is not constant, an extremely excellent effect can be exhibited.

【0014】膜の生成速度を任意に設定できる場合の効
果を酸化皮膜の微細孔に金属を析出する電解着色を例に
説明すると、電解着色では着色溶液に陽極酸化された試
料と対極を設け、この電極間に電流を流し、酸化皮膜の
微細孔に金属を電析させて着色を行う。この場合電極間
に電圧を印加した直後、付き回り性を改善する目的でア
ルミニウムの酸化皮膜側が平均的にアノード分極する方
向に制御する。これは前記した電極電流の積分値を示す
パターンでは負の勾配を持つパターンに相当し、定電流
電源では電流の直流成分が酸化皮膜側をアノード分極に
する方向の直流定電流成分を交流に重畳する。このよう
な状態を着色の初期に行うと付き回り性を大幅に改善可
能である。この理由は、着色溶液中で酸化皮膜側を平均
的にアノード分極すると電極反応にって生じた負のイオ
ンである水酸基や硫酸基などが生じ(硫酸アンモニウム
が着色溶液中に添加された場合はアミノ基)これがアル
ミニウムイオンと反応し、電気伝導度の比較的に高いコ
ロイド膜を作り、電極に近い部分ほど表面の電気抵抗が
高くなり着色しにくくなる。このような状態で酸化皮膜
側をカソード分極の成分が大きくなるように正の勾配パ
ターン(交流電流に酸化皮膜側をカソード分極にする方
向の直流成分の定電流を重畳する)にすると着色が進行
する。前記の処理の行われていない場合は電極に近い方
向が強く着色されて付き回り性が劣化する。しかし、前
記した処理によって電極に近いほど表面の電気抵抗が高
くなり着色が抑制され、電極から離れた部分はその影響
が少なくなって着色の抑制も少なくなり、電極近傍が強
く着色することが低減されて付き回り性が改善される。
また、電極間に流れる平均電流が正の場合(酸化皮膜側
が平均的にカソード分極される方向)では着色が進行す
るが、前処理によって電気抵抗の高くなった過渡的な膜
も時間とともに減少する。この電気抵抗を大きくする物
質が水酸化アルミニウムである場合を考えると、この電
極付近で生じた水酸化アルミニウムは粘性のある正コロ
イドとして振る舞いイオン電導を妨げて等価的表面抵抗
が増大する。この正コロイドは酸化皮膜側がカソード分
極された時に電荷を放電して酸化皮膜に吸着したり逆の
極正のときは溶液中に拡散する、したがって、前処理を
終了してから着色を開始した直後の着色速度も付き回り
に影響し、前処理を効果的に発揮するにはこの抵抗の高
い膜の存在している期間に全面に金属を析出させること
がポイントとなる。さらに、中性や弱酸の着色溶液と比
較してアルミと反応の速い錫浴のような強酸の着色溶液
やアミノ基を含む着色溶液ではこの処理時間や分極レベ
ルは極めて少なくても目的を達成できる。このように電
解着色では、電流の平均値の極性や値を時間に対して最
適に変化させる必要があり、この最適な条件を量産現場
で得るにはコストと時間がかかる。しかし、本発明では
実験室レベルの少ない面積の試料で最適値を求め、この
データを蓄積し大規模な量産ではこの結果を再生するか
補完データによって着色を行い、量産工場の立ち上げも
容易に行うことが可能となる。
The effect of the case where the film formation rate can be arbitrarily set will be described by taking, as an example, electrolytic coloring in which a metal is deposited in the fine pores of an oxide film. In electrolytic coloring, a colored solution is provided with an anodized sample and a counter electrode. An electric current is applied between the electrodes to deposit a metal in the fine pores of the oxide film to perform coloring. In this case, immediately after the voltage is applied between the electrodes, the aluminum oxide film side is controlled to averagely anodize in order to improve the throwing power. This corresponds to a pattern having a negative gradient in the pattern indicating the integral value of the electrode current described above. In the constant current power supply, the DC component of the current is superimposed on the AC by the DC constant current component in the direction of making the oxide film side anodically polarized. I do. When such a state is performed at the beginning of coloring, the throwing power can be significantly improved. The reason for this is that if the oxide film side is averagely anodically polarized in the coloring solution, negative ions such as hydroxyl groups and sulfate groups generated by the electrode reaction are generated (when ammonium sulfate is added to the coloring solution, This reacts with the aluminum ions to form a colloid film having a relatively high electric conductivity, and the closer to the electrode, the higher the electric resistance of the surface becomes, and the more difficult it is to color. In such a state, when the oxide film side is formed into a positive gradient pattern (a constant current of a direct current component in a direction in which the oxide film side is converted to the cathode polarization is superimposed on the alternating current, the coloring proceeds) so that the cathode polarization component is increased. I do. If the above treatment is not performed, the direction close to the electrode is strongly colored, and the throwing power is deteriorated. However, due to the above-described treatment, the electric resistance of the surface becomes higher as the electrode is closer to the electrode and coloring is suppressed, and the influence of the portion far from the electrode is reduced and the suppression of coloring is reduced, and the strong coloring near the electrode is reduced. As a result, the throwing power is improved.
In the case where the average current flowing between the electrodes is positive (in the direction in which the oxide film side is cathode-polarized on average), the coloring proceeds, but the transient film whose electric resistance has been increased by the pretreatment also decreases with time. . Considering the case where the substance that increases the electric resistance is aluminum hydroxide, the aluminum hydroxide generated near this electrode acts as a viscous positive colloid, hinders ion conduction, and increases equivalent surface resistance. This positive colloid discharges electric charge when the oxide film side is cathodically polarized and adsorbs on the oxide film, or diffuses into the solution when the polarity is extremely positive.Therefore, immediately after coloring is started after pretreatment is completed The coloring speed also has an effect on the surroundings, and the key to effectively performing the pretreatment is to deposit a metal on the entire surface during the period in which the film having a high resistance exists. Furthermore, in a coloring solution of a strong acid such as a tin bath which reacts faster with aluminum compared to a coloring solution of a neutral or weak acid or a coloring solution containing an amino group, the objective can be achieved even if the treatment time and the polarization level are extremely small. . As described above, in the electrolytic coloring, it is necessary to optimally change the polarity and value of the average value of the current with respect to time, and it takes time and cost to obtain these optimal conditions in a mass production site. However, in the present invention, an optimum value is obtained for a sample having a small area at the laboratory level, this data is accumulated, and in a large-scale mass production, this result is reproduced or colored by supplementary data. It is possible to do.

【0015】本発明は半年の小規模テストの後、工業化
レベルのテストとして平成5年3月6日株式会社パイロ
ットの軽金属事業部で同事業部水沢氏立ち会いのもとで
行われ、その有効性が実証された。
The present invention was carried out as a test at the industrialization level on March 6, 1993 in the light metal business division of Pilot Co., Ltd. in the presence of Mr. Mizusawa, the same department, after a half-year small-scale test. Has been demonstrated.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 メッキや分散メッキなどによる皮膜生
成、電解着色による着色、電解による酸化皮膜生成、電
気泳動と電着を利用した電着塗装(微細孔中の析出も含
む)などの電析膜や酸化皮膜を得る方法において、電解
液中に入れた電極の両端間に流れる電流の積分値の時間
的変化を基準パターンと一致するようにするか、または
プログラムされた定電流電源によって電流設定値を制御
することにより、異なる電流の積分値で膜を生成し、膜
生成過程の電極間電圧をモニタし、このモニタ信号をデ
ジタル信号に変換し記録し、電極に流れた電流の積分値
の総量に対する膜生成過程の離散的電極間電圧データを
収集し、任意の電流の積分値に対する電圧データをこの
近傍に於ける条件の実測データからデジタルまたはアナ
ログ的な演算によって補間データを得て、この補間デー
タから得た電圧を利用して皮膜や着色を得る方法。
1. Deposition films such as film formation by plating or dispersion plating, coloring by electrolytic coloring, oxide film formation by electrolysis, electrodeposition coating using electrophoresis and electrodeposition (including deposition in micropores). Or a method of obtaining an oxide film, the time change of the integrated value of the current flowing between both ends of the electrode put in the electrolytic solution should be made to match the reference pattern, or the current set value by the programmed constant current power supply By controlling the voltage, a film is generated with the integrated values of the different currents, the voltage between the electrodes during the film formation process is monitored, this monitor signal is converted into a digital signal and recorded, and the total amount of the integrated value of the current flowing through the electrodes is calculated. The voltage data for the integrated value of an arbitrary current is collected from the measured data of the conditions in the vicinity of this by digital or analog calculation. A method of obtaining interpolation data and obtaining a film or coloring by using a voltage obtained from the interpolation data.
【請求項2】 請求項1記載の補間データに対して、溶
液の温度、濃度、妨害物質濃度、pH、または酸化皮膜
の膜圧データなどの電析に変化を与えるパラメータによ
り補正値を与えた電圧によって膜を生成する電析用電源
の制御方法。
2. A correction value is given to the interpolation data according to claim 1 by a parameter that changes the electrodeposition, such as temperature, concentration of a solution, concentration of an interfering substance, pH, or film pressure data of an oxide film. A method for controlling a power source for electrodeposition that generates a film by a voltage.
JP5141298A 1993-05-21 1993-05-21 Control method of power supply device for electrodeposition Expired - Fee Related JP3028449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5141298A JP3028449B2 (en) 1993-05-21 1993-05-21 Control method of power supply device for electrodeposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5141298A JP3028449B2 (en) 1993-05-21 1993-05-21 Control method of power supply device for electrodeposition

Publications (2)

Publication Number Publication Date
JPH06330399A JPH06330399A (en) 1994-11-29
JP3028449B2 true JP3028449B2 (en) 2000-04-04

Family

ID=15288636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5141298A Expired - Fee Related JP3028449B2 (en) 1993-05-21 1993-05-21 Control method of power supply device for electrodeposition

Country Status (1)

Country Link
JP (1) JP3028449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806718A (en) * 2019-11-28 2020-02-18 石河子众金电极箔有限公司 Electric control system of formation production line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806718A (en) * 2019-11-28 2020-02-18 石河子众金电极箔有限公司 Electric control system of formation production line

Also Published As

Publication number Publication date
JPH06330399A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
Parfenov et al. Frequency response studies for the plasma electrolytic oxidation process
Conway et al. Determination of the adsorption behaviour of ‘overpotential-deposited’hydrogen-atom species in the cathodic hydrogen-evolution reaction by analysis of potential-relaxation transients
Vidal et al. Copper electropolishing in concentrated phosphoric acid: I. Experimental findings
CN101975545B (en) Method and electrolytic oxidation device for detecting film layer on surface of metal
Bai et al. Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. Part 1.—Basis for distinction between capacitance of the double layer and the pseudocapacitance due to adsorbed H in the H2 evolution reaction at Pt
US7427346B2 (en) Electrochemical drive circuitry and method
JP3028449B2 (en) Control method of power supply device for electrodeposition
Yao et al. State and parameter estimation in Hall-Héroult cells using iterated extended Kalman filter
JP2002506531A (en) Method for measuring additives in electroplating baths
EP0598380B1 (en) Method of monitoring constituents in plating baths
Ruffoni et al. Pulse-plating of Au Cu Cd alloys—II. Theoretical modelling of alloy composition
JPH0812165B2 (en) Conductivity meter and method for manufacturing pole material of its electrode
Kireev et al. Methods to determine the current efficiency in AC electrolysis
Barradas et al. Studies in electrocrystallization: Part IV. Experimental investigation of two-dimensional nucleation-growth processes in terms of surface coverages derived from transient measurements
JPH05239693A (en) Coloration control method for power source for electrolytic coloration
WO2014095129A1 (en) Fundamental frequency stability and harmonic analysis
Bond et al. Spectroscopic and microelectrode techniques applied to the oxidation of equilibrium and nonequilibrium mixtures of cis-and trans-tetracarbonylbis (trimethyl phosphite) chromium (0): deceptively simple electrochemical responses
RU2106620C1 (en) Method for measuring potential of live main electrode of electrochemical cell
SU738815A1 (en) Method and apparatus for controlling interelectrode gap during electrochemical machining
JPS60218500A (en) Electrolytic chemical formation of many valve metal bodies used in condenser
Khorasani et al. Optimal pulse shapes for periodic reverse electroplating
US4840708A (en) Process for the precise determination of the surface area of an electrically conducting shaped body
Steponavicčius et al. Copper UPD on selenium-modified polycrystalline Pt electrode
Arvia et al. An inversion method based on information theory applied to quantitative analysis of complex H-adatom electrodesorption voltammograms
SU1044964A1 (en) Electroconductive object surface area determination method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees