JPS6326567A - Method and instrument for measuring current density in various positions of electrode in electrolytic cell - Google Patents

Method and instrument for measuring current density in various positions of electrode in electrolytic cell

Info

Publication number
JPS6326567A
JPS6326567A JP61169826A JP16982686A JPS6326567A JP S6326567 A JPS6326567 A JP S6326567A JP 61169826 A JP61169826 A JP 61169826A JP 16982686 A JP16982686 A JP 16982686A JP S6326567 A JPS6326567 A JP S6326567A
Authority
JP
Japan
Prior art keywords
current density
electrolytic cell
electrode
voltage detection
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61169826A
Other languages
Japanese (ja)
Inventor
Sadataka Kato
加藤 禎孝
Toshiharu Nakai
俊晴 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61169826A priority Critical patent/JPS6326567A/en
Publication of JPS6326567A publication Critical patent/JPS6326567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To easily detect the current densities in the various positions of a treating object by bringing two voltage detecting parts near to the surface of the treating object during an electrolytic operation and measuring the potential difference therebetween by a voltmeter. CONSTITUTION:The electrodes 2 are hung down on both sides in an electrolytic cell 1 and the treating object 3 is hung down from a cathode bar at approximately the middle thereof. The potential difference corresponding to the voltage drop generated by the electrolytic current and liquid resistance is generated between the two voltage detecting parts A, B when said detecting parts A, B are brought near to the surface of the material 3 under specified conditions during the electrolytic operation. The generated potential difference is indicated by the voltmeter 7. The voltmeter 7 eventually indicates the current density in said position of the material 3. The current densities in the various positions of the material 3 are thus easily known.

Description

【発明の詳細な説明】 この発明は、電解、特にめっき・ア孕マイト・電解研磨
等の表面処理に用いられている電解槽に於ける電極(%
に処理物)各位置に於ける電流密度の測定方法及び装置
に関する。
[Detailed Description of the Invention] This invention relates to an electrode (%
This invention relates to a method and apparatus for measuring current density at each location (processed object).

(従来の技術) 電解、%にめっき・アルマイト等の表面処理に於て、電
極(%に処理物)の各位置へ平均した電流゛密度の処理
電流を流すことは表面処理に於ける品質管理の第1歩で
あシ、その重要性は周知である。この故に処理物への電
流密度を知る為Km々の試みがなされている。例えば数
個の処理物をセットし九治具のつ)平部にてトータル電
流を測定し、その値を処理物の個数と表面積で除して計
算で電流密度を知る方法。或いは、めっきに於ては処理
後に処理物各位置に於けるめっき厚みを測定し、逆算で
電流密度がどの様であったかを推測する方法。或いは一
定表面積の電流検出具を電解槽内に浸漬して処理物と大
体同じ状態として、そこに分流する心理電流の値を電流
計で計測し、これから電流密度を知る方法、等である。
(Prior technology) In surface treatments such as electrolysis, plating, alumite, etc., passing a processing current with an average current density to each position of the electrode (processed object) is a quality control method in surface treatment. This is the first step, and its importance is well known. For this reason, numerous attempts have been made to find out the current density to be processed. For example, a method of setting several objects to be treated and measuring the total current at the flat part of the jig, dividing that value by the number of objects to be treated and the surface area, and calculating the current density. Alternatively, in the case of plating, after processing, the plating thickness at each location of the processed object is measured and the current density is estimated by back calculation. Alternatively, a current detection device with a constant surface area is immersed in an electrolytic bath so that the condition is roughly the same as that of the object to be treated, and the value of the psychological current flowing therein is measured with an ammeter, and the current density can be determined from this.

(発明が解決しようとする問題点) しかしながら、この様な従来の方法では電解中の電極(
特に処理物)各位置に於ける電流密度を知る事は出来な
かった。従って、電解中に同一処理物の位置の違いKよ
る電流密度のアンバランスを発見するとか、或いはこれ
を修正する為の対策処置等を行う事が出来なかった。
(Problem to be solved by the invention) However, in such conventional methods, the electrode (
In particular, it was not possible to know the current density at each location (particularly the processed material). Therefore, it has not been possible to discover an imbalance in current density due to a difference in the position of the same object to be treated during electrolysis, or to take countermeasures to correct this.

(問題を解決する為の手段) 2、2がつシ下げてある。そのi1y中間に処理物3が
セットしてある。電解作業中に処理物3の表面近くに電
圧検出部A5と電圧検出部B6を近ずけて、両者の間の
電位差ぐ電圧)を電圧計7で測定する。
(Means to solve the problem) 2.2 has been lowered. The object to be processed 3 is set in the middle of i1y. During the electrolytic work, the voltage detection section A5 and the voltage detection section B6 are brought close to the surface of the object 3 to be treated, and the potential difference between them is measured with the voltmeter 7.

第2図は電圧検出部A5と電圧検出部B6の測定時に於
ける保持状態でおる。電圧検出部A5と電圧検出部B6
は、その間隔、即ち検出部間隔10が或る一定間隔に2
となる様にあらかしめ一体に保持しておくと便利である
。これら両電圧検出部から電圧計7へ結線してある。電
圧検出部A5と電圧検出部B6とを結んだ検出方向線1
1と平行方向に、この線上を避けて一方の電圧検出部(
図では電圧検出部A5)の外側に接近距離9が或る一定
距離に1となる間隔部8を必要とあれば設ける。間隔部
8は電線の絶縁材或いは耐蝕処理材等を利用しても差し
つかえない。両電圧検出部の測定時に於ける保持条件は
次の通シである。
FIG. 2 shows the voltage detection section A5 and voltage detection section B6 in a holding state during measurement. Voltage detection section A5 and voltage detection section B6
is, the interval, that is, the detection part interval 10 is 2 at a certain constant interval.
It is convenient to hold it together so that it becomes . Both voltage detection sections are connected to a voltmeter 7. Detection direction line 1 connecting voltage detection section A5 and voltage detection section B6
1, avoid being on this line, and connect one voltage detection part (
In the figure, a spacing part 8 in which the approach distance 9 becomes 1 at a certain constant distance is provided outside the voltage detection part A5) if necessary. The space portion 8 may be made of an electrical wire insulating material or a corrosion-resistant material. The holding conditions for both voltage detection sections during measurement are as follows.

(イ)検出方向線11の方向は処理物ヰの表面に対して
ほソ垂直であること。
(a) The direction of the detection direction line 11 is perpendicular to the surface of the object to be treated.

(ロ)接近距離に1及び検出部間隔に2は測定時には一
定であること。
(b) 1 for the approach distance and 2 for the detection part interval shall be constant during measurement.

(ハ)検出方向線ll上のに1及びに2の位置には電解
液以にの障害となるものが介在しない様配慮することで
ある。又、、電圧検出具等も出来るだけ小型に製作して
、処理電流の流れを計測によって乱さない様にあらかじ
め配慮しておく。
(c) Care must be taken to ensure that there is no obstacle other than the electrolyte at positions 1 and 2 on the detection direction line ll. Also, make sure that the voltage detector etc. are made as small as possible so that the flow of processing current is not disturbed by measurement.

(作用) 電解作業中に両電圧検出部を一定保持条件(前記イ、口
、ノ・)にて処理物30表面に近づけると、両者の間に
は液抵抗による電圧降下分の電位差が生じ、これが電圧
計7によって表示される。この場合、測定中に電圧検出
部の材質が電 変化すると単位轡極の違いによる変化量が測定に入シ込
んで来るので、この影響の少ない材質の率のをえらぶ。
(Function) When both voltage detecting parts are brought close to the surface of the workpiece 30 under constant holding conditions (A, A, N) during electrolysis work, a potential difference corresponding to the voltage drop due to liquid resistance is generated between them. This is displayed by the voltmeter 7. In this case, if the voltage of the material of the voltage detection section changes during measurement, the amount of change due to the difference in unit voltage will enter the measurement, so a material with a low influence is selected.

例えば、アルミニウム又はその合金の陽極酸化に於ては
白金、又はチタン或いはステンレススチールに白金めっ
きしたものを用い、銅めっきには銅を、ニッケルめっき
にはニッケルをめっきしたものを用いる等である。めっ
きの例に於ては、素材がステンレススチールである場合
、他めっきに使用する為にめっきをはくシする必要があ
る時に、通常めっき工場に設備してある治具はくシ用の
電解はくシ槽を使用する事によシ索材を傷めずに容易に
目的を達成する事が出来る。
For example, in anodizing aluminum or its alloy, platinum, titanium, or stainless steel plated with platinum is used, copper is used for copper plating, and nickel is used for nickel plating. In the example of plating, when the material is stainless steel, when it is necessary to remove the plating for use in other plating, an electrolytic tool for removing the plating, which is usually installed in a plating factory, is used. By using a foil tank, the purpose can be easily achieved without damaging the cable material.

接近距離9であるに1及び検出部間隔10であるに2の
値を電解槽1の極間距離或いは処理物3の大きさ等に応
じて適切にえらぶと、処理物3各位置に於ける検出電圧
の比は、当該位置に於ける電流密度の比とはソ一致する
If the values of 1 for the approach distance 9 and 2 for the detection part interval 10 are appropriately selected depending on the distance between the poles of the electrolytic cell 1 or the size of the object 3 to be processed, the The ratio of detected voltages is the same as the ratio of current densities at the position.

第3図及び表1はニッケルめっきに於ける実測例である
。めっき厚みの比を電流密度の比とすると(を流密度測
定の主要目的はめっきに於てはめっき厚みのコントロー
ルにあるから)各位置に於ける検出電圧の比とめっき厚
さこの比がはソ一致している事がわかる。
FIG. 3 and Table 1 are actual measurement examples in nickel plating. If the ratio of the plating thickness is the ratio of the current density (because the main purpose of current density measurement is to control the plating thickness in plating), then the ratio of the detection voltage at each position to the plating thickness is It can be seen that they match.

(実施例) 第4図に於て、処理作業中に処理物3の処理板17から
電流計15、可変抵抗16をそれぞれ経て処理極棒へ結
線する。
(Embodiment) In FIG. 4, during the processing operation, wires are connected from the processing plate 17 of the processing object 3 to the processing pole via the ammeter 15 and variable resistor 16, respectively.

処理作業中には処理電流の一部が標準板17を経て分流
する。標準板17の面を処理電流の流れの方向にはソ垂
直となる様に向け(同一条件で最大電流を指示する方向
に向け)、可変抵抗16を調整して適宜な標準電流密度
となる様に電流を調節する。例えば、処理物3をトータ
ル的に3.5 A /1trn”の電流密度でニッケル
めっきしている場合に、表面積1−8の検出板を浸漬し
た場合に3Aに電流を調節して標準電流密度を3 A 
/ebbとする、等である。
During the processing operation, a part of the processing current is diverted through the standard plate 17. Orient the surface of the standard plate 17 so that it is perpendicular to the direction of flow of the processing current (direction that indicates the maximum current under the same conditions), and adjust the variable resistor 16 to obtain an appropriate standard current density. Adjust the current to. For example, when processing object 3 is being nickel plated at a total current density of 3.5 A/1 trn, and a detection plate with a surface area of 1-8 is immersed, the current is adjusted to 3 A and the standard current density is 3 A
/ebb, etc.

この状態の標準板17近くに電圧検出部A5と電圧検出
部B6とを所定・の条件通りに近づけて保持する。この
時検出された電圧は倍率器18を経て電圧計7にインプ
ットされる。倍率器18を調整して検出電圧を一適宜分
圧或いは増幅して電圧計7の表示が3となる様にする。
The voltage detection section A5 and the voltage detection section B6 are held close to each other near the standard plate 17 in this state under predetermined conditions. The voltage detected at this time is input to the voltmeter 7 via the multiplier 18. The multiplier 18 is adjusted to appropriately divide or amplify the detected voltage so that the display on the voltmeter 7 becomes 3.

倍率器18の調整はそのま\にしておいて、電圧検出部
A5と電圧検出部B6とを所定の条件通シ処理物3に近
づけて保持すると電圧計7は処理物3のその位置に於け
る電流密度(A/dyyc”)を指示する事になる。
When the voltage detection section A5 and the voltage detection section B6 are held close to the workpiece 3 under predetermined conditions while the adjustment of the multiplier 18 is left as is, the voltmeter 7 will be at that position on the workpiece 3. This will indicate the current density (A/dyyc") to be applied.

コイル状処理物の連続表面処理、例えばフープ材めっき
装置、或いは7−プ材プルマイト処理装置、等に於ては
コイルはガイドローラー或いは給電ローラーによって電
解槽1内の一定場所を通過する様になっている。この様
な場合は、電圧検出部A5と電圧検出部B6とを或る一
定間隔に2となる様に保持したものを数組或いは数十組
設け、これらが常時或いは必要に応じて、電極表面に所
定の一定条件になる様に保持される様にする。これら両
電極を組合せた各組よりの配線がそれぞれ、或いは切替
える事によ#)!圧計7に結線される様にしておく。こ
の様にしておくと電解作業中に電解槽1内の特定位置に
於ける電流密度の比或いは電流密度を、常時或いは必要
に応じて、同時に或いは切替えによって知る事が出来る
。この場合、各電圧検出部の組合せたものは、取シ外し
移動等が容易である様配慮しておくとメンテナンス上、
又、コイルを電解槽にセットする場合に有効であシ、作
業性も良くなる。
In continuous surface treatment of coil-shaped products, such as hoop material plating equipment or 7-ply material purumite processing equipment, the coil is passed through a fixed location in the electrolytic cell 1 by a guide roller or a power supply roller. ing. In such a case, several or tens of sets of voltage detecting parts A5 and B6 held at a certain regular interval are provided, and these are constantly or as necessary connected to the electrode surface. is maintained under a predetermined constant condition. Wiring from each set of these two electrodes can be done individually or by switching them! Make sure that it is connected to pressure gauge 7. By doing so, it is possible to know the current density ratio or the current density at a specific position in the electrolytic cell 1 during electrolysis work, all the time or as needed, simultaneously or by switching. In this case, care should be taken to ensure that the combination of voltage detection parts can be easily removed and moved, etc. for maintenance purposes.
Further, it is effective when setting the coil in the electrolytic cell, and the workability is improved.

(発明の効果) 本発明によって、従来困難であった処理物各位置に於け
る電流密度を作業中に容易に知る事が出来る。これKよ
・て、従門、電解作業中に電流密度が測定出来ない為に
充分に品質管理が行えなかった各種表面処理に非常に強
力な管理手段を提供する事になる。
(Effects of the Invention) According to the present invention, it is possible to easily know the current density at each position of the workpiece during work, which has been difficult in the past. As a result, it provides a very powerful control means for various surface treatments, which previously could not be adequately controlled due to the inability to measure current density during electrolytic work.

特に次の用途に於ける効果は大である。It is particularly effective in the following applications.

(,1)  長さが数mにも及ぶサツシ等のアルミニウ
ム建材のアルマイト処理、並びに電解着色処理。
(,1) Alumite treatment and electrolytic coloring treatment of aluminum building materials such as sash that are several meters long.

Φ)数−にも及ぶ平板のめっき、電解研磨等の処理。Φ) Treatments such as plate plating and electrolytic polishing of up to several plates.

(C)  コイル状の処理物の連続表面処理。例えばフ
ープめっき、フープアルマイト等の処理更らに特筆すべ
き効果は、測定によって処理電流の状態を変化させる事
が非常に少ない事、即ち、測定による表面処理への影響
が極値である事である。これは電流を検出していた従来
の電流密度の測定法に比較して格段に有利表ものである
。又、検出源は液抵抗によって生ずる電圧降下(電圧)
であるので、処理電流を波形が殆んど歪まない状態で検
出できる事になる。交直流重畳波形、矢巨形波パルス波
形、PRパルス波形、位相制御波形等の変調波形電流を
用いて電解している場合に、この検出源から電流波形、
ピーク値、真の実効値等を計測する事ができる事も本発
明の優れた効果の一つである。
(C) Continuous surface treatment of coiled objects. For example, a further noteworthy effect of hoop plating, hoop alumite, etc. is that the state of the processing current changes very little due to measurement, that is, the influence of measurement on surface treatment is extreme. be. This is much more advantageous than the conventional current density measurement method, which detects current. In addition, the detection source is the voltage drop (voltage) caused by liquid resistance.
Therefore, the processing current can be detected with almost no waveform distortion. When electrolysis is performed using a modulated waveform current such as an AC/DC superimposed waveform, an arrow-shaped pulse waveform, a PR pulse waveform, or a phase control waveform, the current waveform,
One of the excellent effects of the present invention is that peak values, true effective values, etc. can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図 第2図は測定状態の概念図 第3図は一’−yケルめっきに於ける測定例、第4図は
実施例の概念図であ)、図中符号は1:電解槽    
 2.2:i極(陽極)3:処理物     4:電解
液 5:電圧検出部A  6:電圧検出部B7:電圧計  
   8=間隔部 9:接近距離   10:検出部間隔 11:検出部方向線 12:銅板 13:ニッケルめっき部 14−a:測定点a 14−b:測定点b 14−C:測定点C 14−d:測定点d 14−1:測定点e 15:電流計    16=可変抵抗 17:標準板    18二倍率器、をそれぞれ示す。
Fig. 1 is a conceptual diagram of the present invention. Fig. 2 is a conceptual diagram of the measurement state. Fig. 3 is a measurement example of 1'-y Kel plating. Fig. 4 is a conceptual diagram of an example. 1: Electrolytic cell
2.2: i-electrode (anode) 3: treated object 4: electrolyte 5: voltage detection section A 6: voltage detection section B7: voltmeter
8 = Interval part 9: Approach distance 10: Detection part interval 11: Detection part direction line 12: Copper plate 13: Nickel plated part 14-a: Measurement point a 14-b: Measurement point B 14-C: Measurement point C 14- d: Measuring point d 14-1: Measuring point e 15: Ammeter 16 = Variable resistor 17: Standard plate 18 Double multiplier.

Claims (1)

【特許請求の範囲】 1)電解作業中に電解槽中の電極表面近くの液抵抗によ
る電圧降下量を一定条件にて計測し、同様に同一条件に
て測定した電極各位置に於ける電圧降下(電圧)量の比
を以て、当該電極各位置に於ける電流密度の比とする事
を特徴とする電解槽中の電極各位置に於ける電流密度の
測定方法。 2)電解作業中に電極近くに一定表面積の標準板を電極
と殆んど同じ状態に浸漬し、この標準板に標準電流密度
となる電流を通じ、この状態にて、電極表面近くの液抵
抗による電圧降下量を測定するのと同一条件にて、標準
板表面近くの電圧降下量を測定し、これを以て標準電流
密度と見なす事を特徴とする特許請求の範囲第1項記載
の電解槽中の電極各位置に於ける電流密度の測定方法。 3)電圧検出部A(5)と電圧検出部B(6)とを、或
る一定間隔K2となる様に保持し、これら両電圧検出部
から電圧計(7)へ結線してある事を特徴とする電解槽
中の電極各位置に於ける電流密度の測定装置。 4)電圧検出部A(5)及び電圧検出部B(6)から電
圧計(7)へ至る間に倍率器(18)を介在して結線す
る事を特徴とする特許請求の範囲第3項記載の電解槽中
の電極各位置に於ける電流密度の測定装置。 5)電解槽(1)内に電圧検出部A(5)と電圧検出部
B(6)とを或る一定間隔K2となる様に保持したもの
を数組或いは数十組設け、これらが常時或いは必要に応
じて電極表面に一定条件になる様保持され、且つ各組よ
りの配線がそれぞれ或いは切替えにて電圧計(7)に結
線されている事を特徴とする特許請求の範囲第3項又は
第4項記載の電解槽中の電極各位置に於ける電流密度の
測定装置。
[Claims] 1) Measure the amount of voltage drop due to liquid resistance near the electrode surface in the electrolytic cell under certain conditions during electrolysis work, and measure the voltage drop at each electrode position similarly measured under the same conditions. A method for measuring current density at each electrode position in an electrolytic cell, characterized in that the ratio of (voltage) amount is used as the ratio of current density at each electrode position. 2) During electrolysis work, a standard plate with a constant surface area is immersed near the electrode in almost the same state as the electrode, and a current with a standard current density is passed through this standard plate, and in this state, the liquid resistance near the electrode surface is In the electrolytic cell according to claim 1, the voltage drop near the surface of the standard plate is measured under the same conditions as when measuring the voltage drop, and this is regarded as the standard current density. Method for measuring current density at each electrode position. 3) Make sure that voltage detection section A (5) and voltage detection section B (6) are maintained at a certain constant interval K2, and that both voltage detection sections are connected to the voltmeter (7). A device for measuring current density at each electrode position in an electrolytic cell. 4) Claim 3, characterized in that a multiplier (18) is interposed between the voltage detection unit A (5) and the voltage detection unit B (6) to the voltmeter (7). A device for measuring current density at each electrode position in the electrolytic cell described above. 5) Several or tens of sets of voltage detection part A (5) and voltage detection part B (6) held at a certain constant interval K2 are provided in the electrolytic cell (1), and these are constantly Alternatively, the electrodes are maintained on the surface of the electrodes in a constant condition as required, and the wiring from each set is connected to the voltmeter (7) individually or by switching. Or a device for measuring current density at each electrode position in an electrolytic cell according to item 4.
JP61169826A 1986-07-21 1986-07-21 Method and instrument for measuring current density in various positions of electrode in electrolytic cell Pending JPS6326567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61169826A JPS6326567A (en) 1986-07-21 1986-07-21 Method and instrument for measuring current density in various positions of electrode in electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61169826A JPS6326567A (en) 1986-07-21 1986-07-21 Method and instrument for measuring current density in various positions of electrode in electrolytic cell

Publications (1)

Publication Number Publication Date
JPS6326567A true JPS6326567A (en) 1988-02-04

Family

ID=15893621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61169826A Pending JPS6326567A (en) 1986-07-21 1986-07-21 Method and instrument for measuring current density in various positions of electrode in electrolytic cell

Country Status (1)

Country Link
JP (1) JPS6326567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342403A (en) * 2005-06-09 2006-12-21 Sharp Corp Plating device, plating treatment controller, plating method, and plating treatment control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342403A (en) * 2005-06-09 2006-12-21 Sharp Corp Plating device, plating treatment controller, plating method, and plating treatment control method
JP4667968B2 (en) * 2005-06-09 2011-04-13 シャープ株式会社 Plating apparatus, plating process management apparatus, plating method, and plating process management method

Similar Documents

Publication Publication Date Title
Dymond Characteristics of the metal-tissue interface of stimulation electrodes
CN100385231C (en) Electrochemical noise technique for corrosion
Oltra et al. Application of EIS to localized corrosion
JPH075002A (en) Method and device for measuring electrolyte flow
JP2922766B2 (en) Monitoring method of plating bath components
JPS6326567A (en) Method and instrument for measuring current density in various positions of electrode in electrolytic cell
GB1580229A (en) Method and means for determining the immersed surface area of an electrode of an electrochemical bath
US5298131A (en) Method of monitoring metal ion content in plating baths
EP0597475A1 (en) Method of monitoring major constituents in plating baths containing codepositing constituents
Moussavi et al. Harmonic distorition caused by electrode polarisation
UHLIG et al. Potentials Set Up by Thermal Gradients In Iron Immersed in NaCI Solutions
JPH04172241A (en) Apparatus for measuring corrosion underneath paint film
EP0630426B1 (en) Process for mantaining a cathodic protection against corrosion and device for carrying out said process
JPH11270860A (en) Floor heater with function for detecting deterioration of antifreeze
JP3632877B2 (en) AC corrosion degree measuring method and apparatus under natural potential and cathodic protection
JPS6097247A (en) Continuous liquid-concentration measuring device
JPS62185900A (en) Apparatus for observing waveform of treating current in cell for surface treatment
SU1548275A1 (en) Electroplating apparatus
JPS61182568A (en) Method for measuring local current in electrolytic cell
CA2058473A1 (en) Method and apparatus for checking the state of electrical insulation of an electrically conducting work
JPH0335932A (en) Machining state reporting device
JPS5924198B2 (en) Electrolytic coloring treatment method for aluminum materials
JPH0544099A (en) Power unit for electroplating
JPS6227655A (en) Device for measuring current density of liquid contact surface
RU2501003C1 (en) Method for identification of metals and alloys and device for its implementation