JPH073914B2 - Circuit board cooling body and circuit board cooling structure - Google Patents
Circuit board cooling body and circuit board cooling structureInfo
- Publication number
- JPH073914B2 JPH073914B2 JP18572190A JP18572190A JPH073914B2 JP H073914 B2 JPH073914 B2 JP H073914B2 JP 18572190 A JP18572190 A JP 18572190A JP 18572190 A JP18572190 A JP 18572190A JP H073914 B2 JPH073914 B2 JP H073914B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- cooling body
- cooling
- metal plates
- coolant passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、各種OA機器やFA機器などにおける回路基板の
過熱を防ぐための冷却体および冷却構造に関する。TECHNICAL FIELD The present invention relates to a cooling body and a cooling structure for preventing overheating of a circuit board in various OA equipments, FA equipments and the like.
「従来の技術」 上記OA機器、FA機器における素子の高集積度化の要望は
年々高まっており、機器内部での回路基板の配置スペー
スも縮小される傾向にある。同時に、比較的大電力を制
御する発熱量の大きいパワー素子の配置密度を高める要
望も高まりつつある。このため、各回路基板の素子温度
を適正範囲に保つには、効率の良い冷却手段を設ける必
要がある。“Prior Art” The demand for higher integration of elements in the above-mentioned OA equipment and FA equipment is increasing year by year, and the layout space of the circuit board inside the equipment tends to be reduced. At the same time, there is an increasing demand to increase the arrangement density of power elements that control a relatively large amount of power and generate a large amount of heat. Therefore, in order to keep the element temperature of each circuit board within an appropriate range, it is necessary to provide efficient cooling means.
従来は、この種の冷却手段として、回路基板の裏面に金
属板等のヒートシンクを一体固定し、回路基板の放熱を
高めたり、冷却ファンにより機器内の空気を強制的に循
環させ、回路基板を強制的に空冷する等の方法が採られ
ている。Conventionally, as this type of cooling means, a heat sink such as a metal plate is integrally fixed to the back surface of the circuit board to enhance the heat dissipation of the circuit board, or the air inside the equipment is forcedly circulated by a cooling fan to cool the circuit board. Methods such as forced air cooling are adopted.
そして従来の機器等では、上記の手段を用いることによ
り、多数の回路基板を20〜30mm程度の間隔で配置してい
るのが一般的である。In a conventional device or the like, a large number of circuit boards are generally arranged at intervals of about 20 to 30 mm by using the above means.
「発明が解決しようとする課題」 しかし、上記の冷却手段では、回路基板の配置密度があ
る程度以上(例えば配置間隔20mm以下)になると、冷却
効果が急激に低下することが避けられず、環境温度が上
がった場合に素子の加熱により誤動作を生じるおそれが
生じ、機器の小形化・高密度化に対応しきれない問題が
あった。[Problems to be solved by the invention] However, in the above cooling means, when the arrangement density of the circuit boards exceeds a certain level (for example, the arrangement interval is 20 mm or less), it is inevitable that the cooling effect sharply decreases, and the ambient temperature When the temperature rises, a malfunction may occur due to heating of the element, and there has been a problem that the device cannot be downsized and the density is increased.
また、ファンで強制空冷する方法では、風の当たる箇所
と当たらない箇所で冷却能力が不均一になるうえ、ファ
ン自体の発熱や漏れ磁気による回路基板への影響、およ
び振動や騒音による環境悪化等の問題も無視できなかっ
た。Also, in the method of forced air cooling with a fan, the cooling capacity becomes uneven at the place where the wind hits and the place where the wind does not hit, and the heat generation and leakage magnetism of the fan itself affect the circuit board, and the environment deteriorates due to vibration and noise. I could not ignore the problem.
そこで本発明者らは、実願昭63-104712号において、水
冷式の薄板型冷却体を各回路基板に隣接して配置し、回
路基板を強制的に冷却する構造を発案した。冷却体とし
ては、一対の金属板を張り合わせ、これらの間に中空の
冷却材通路を形成したものを使用する。In view of this, the present inventors have proposed in Japanese Patent Application No. 63-104712 a structure in which a water-cooled thin plate type cooling body is arranged adjacent to each circuit board to forcibly cool the circuit board. As the cooling body, one in which a pair of metal plates are laminated and a hollow coolant passage is formed between them is used.
ところが、本発明者らが実際に純銅等の材質でこのよう
な冷却体を試作し、実験を行なったところ、冷却体と回
路基板との間に介装した伝熱スプリングの付勢力を受け
て冷却体に撓みが生じ、平面性が悪化して回路基板との
間隔を適正に維持できず、冷却効果にむらが生じるだけ
でなく、場合によっては回路基板に冷却体が接触して悪
影響を与えるおそれもあった。したがって、回路基板の
間隔をある程度以下に狭めることは困難だった。However, when the present inventors actually made a prototype of such a cooling body using a material such as pure copper, and conducted an experiment, they received the biasing force of the heat transfer spring interposed between the cooling body and the circuit board. The cooling body bends, the flatness is deteriorated, the gap between the circuit board and the circuit board cannot be properly maintained, and not only the cooling effect becomes uneven, but in some cases, the cooling body comes into contact with the circuit board and adversely affects it. There was a fear. Therefore, it is difficult to reduce the distance between the circuit boards to a certain extent or less.
そこで、本発明者らは種々の合金を用いて冷却体を多数
試作し、それぞれの特性を測定して最適な材質を検討し
た。なお、冷却体の材質として望まれる特性をまとめる
と以下の通りである。Therefore, the present inventors made many prototypes of cooling bodies using various alloys, measured the characteristics of each, and examined the optimum material. The characteristics desired as the material of the cooling body are summarized as follows.
熱伝導性が高い 成形容易でコストが安い 冷却水に対する耐食性に優れる 剛性が高く、平坦度が保たれる。 High thermal conductivity Easy to mold and low cost Excellent corrosion resistance to cooling water High rigidity and flatness maintained.
このような検討を行なった場合、本発明者らは、Cu-Fe
系合金を用いて冷却体を成形した場合に、前記〜の
要求特性がいずれも十分に満たされ、回路基板用冷却体
として極めて良好な特性が得られるという新規な知見を
得るに至った。When such an examination was conducted, the present inventors found that Cu-Fe
When a cooling body is formed by using a system alloy, all of the above-mentioned required characteristics are sufficiently satisfied, and new knowledge has been obtained that extremely excellent characteristics can be obtained as a cooling body for circuit boards.
「課題を解決するための手段」 本発明は上記知見に基づいてなされたもので、まず請求
項1記載の回路基板用冷却体は、一対の金属板を張り合
わせ、これら金属板の間に中空の冷却材通路を形成して
なり、前記金属板はいずれも、Fe:0.05〜3wt%、P:0.01
〜0.15wt%、残部Cuの組成を有する銅合金で成形されて
いることを特徴とする。"Means for Solving the Problem" The present invention has been made based on the above findings. First, the circuit board cooling body according to claim 1 is configured by laminating a pair of metal plates, and a hollow coolant between the metal plates. A passage is formed, and each of the metal plates has Fe: 0.05 to 3 wt% and P: 0.01.
It is characterized by being formed of a copper alloy having a composition of 0.15 wt% and the balance of Cu.
また、請求項2記載の回路基板用冷却体は、金属板の一
方をFe:0.05〜3wt%、P:0.01〜0.15wt%、残部Cuの組成
を有する銅合金で成形するとともに、金属板の他方は純
銅で成形したことを特徴とする。In addition, in the cooling body for a circuit board according to claim 2, one of the metal plates is formed of a copper alloy having a composition of Fe: 0.05 to 3 wt%, P: 0.01 to 0.15 wt%, and the balance of Cu. The other is characterized by being molded with pure copper.
なお、冷却材通路は、金属板のいずれか一方を断面半円
状に膨出させて成形されていてもよい。The coolant passage may be formed by bulging one of the metal plates in a semicircular cross section.
また、膨出側の金属板の厚さは0.3〜2.0mm、前記冷却材
通路の断面の幅は6〜15mm、冷却材通路の断面の高さは
0.5〜3.0mmとされる一方、他方の金属板の厚さは0.3〜
5.0mmとされていることが望ましい。Further, the thickness of the metal plate on the bulge side is 0.3 to 2.0 mm, the width of the cross section of the coolant passage is 6 to 15 mm, and the height of the cross section of the coolant passage is
0.5 ~ 3.0mm, while the thickness of the other metal plate is 0.3 ~
It is desirable that it is 5.0 mm.
一方、本発明の回路基板の冷却構造は、前記の回路基板
用冷却体を、互いに間隔を空けて平行に配置された複数
の回路基板の間に平行に配置したことを特徴としてい
る。On the other hand, the circuit board cooling structure of the present invention is characterized in that the above-mentioned circuit board cooling body is arranged in parallel between a plurality of circuit boards arranged in parallel at a distance from each other.
なお、回路基板用冷却体は、伝熱部材を介して隣接する
回路基板に連結されていてもよい。The circuit board cooling body may be connected to an adjacent circuit board via a heat transfer member.
また、回路基板と冷却体との離間距離は0.5mm以下とさ
れていてもよい。Further, the distance between the circuit board and the cooling body may be 0.5 mm or less.
「作用」 本発明の回路基板用冷却体においては、金属板の材質を
前記のように限定したことにより、冷却体の剛性が純銅
等の通常の伝熱材料より格段に大きい。したがって、自
重や冷却材圧力、および伝熱部材の付勢力等により冷却
体の平面性が悪化することが防止でき、隣接する回路基
板と冷却体の距離が変化して冷却効率が不均一になった
り、回路基板に冷却体が接触して悪影響を及ぼす等の問
題が生じない。[Operation] In the circuit board cooling body of the present invention, the rigidity of the cooling body is remarkably higher than that of a general heat transfer material such as pure copper by limiting the material of the metal plate as described above. Therefore, it is possible to prevent the flatness of the cooling body from being deteriorated due to its own weight, the coolant pressure, the biasing force of the heat transfer member, and the like, and the distance between the adjacent circuit board and the cooling body is changed to make the cooling efficiency uneven. There is no problem that the cooling body comes into contact with the circuit board and adversely affects it.
また、本発明の回路基板の冷却構造では、前記のように
冷却体に変形が生じない分、回路基板の配置間隔を小さ
くすることができ、冷却体による冷却効果が向上できる
とともに、回路基板の集積密度を高めて装置の小形化が
図れる。Further, in the circuit board cooling structure of the present invention, since the cooling body is not deformed as described above, the circuit board arrangement interval can be reduced, the cooling effect of the cooling body can be improved, and the circuit board The device can be downsized by increasing the integration density.
「実施例」 第1図は本発明に係わる回路基板の冷却構造の一実施例
を示し、図号符号1は、図示しないケーシングの内部で
多数枚間隔を空けて平行に配置された回路基板、2は各
回路基板1の間に互いに間隔を空けて平行に配置された
冷却体である。[Embodiment] FIG. 1 shows an embodiment of a cooling structure for a circuit board according to the present invention. Reference numeral 1 denotes a circuit board arranged in parallel at a plurality of intervals inside a casing (not shown), Reference numeral 2 denotes a cooling body arranged in parallel between the circuit boards 1 with a space therebetween.
この冷却体2は、第2図および第3図に示すように、2
枚の金属板3A,3Bを接合し、一方の金属板3Bを連続した
断面半円状に膨出させ、その内部に冷却材通路4を形成
したもので、図示の例では冷却材通路4が互いに平行な
直線部を有する蛇行形状に形成されている。This cooling body 2 is, as shown in FIGS.
Metal plates 3A and 3B are joined together, one metal plate 3B is bulged in a continuous semicircular cross section, and a coolant passage 4 is formed therein. In the illustrated example, the coolant passage 4 is It is formed in a meandering shape having straight portions parallel to each other.
冷却材通路4の平面形状は、回路基板1の熱分布や必要
とされる冷却効率、冷却材種を考慮して決定すべきであ
り、例えば発熱量の大きな大電力素子の周囲では冷却材
通路4の配置密度を高め、冷却効率を高めるとよい。The planar shape of the coolant passage 4 should be determined in consideration of the heat distribution of the circuit board 1, the required cooling efficiency, and the type of coolant, and for example, the coolant passage may be provided around a large power element that generates a large amount of heat. It is preferable to increase the arrangement density of No. 4 and increase the cooling efficiency.
なお、前記のような冷却材通路4を形成するには、一方
の金属板3Bに冷却材通路4の形状をなす凸部を予めプレ
ス成形したうえ、これに他方の金属板3Aを拡散接合また
はろう付けする方法や、あるいはいずれか一方の金属板
3A(3B)にカーボン,インク,塗料等の圧力防止剤の皮
膜を冷却材通路4の形状にプリントした後、この上に他
方の金属板3B(3A)を圧延接合し、この接合板を、形成
すべき冷却材通路4と同形状の凹部を有する金型(図示
略)にセットし、前記圧着防止剤皮膜に沿って接合板の
端部から圧力空気を吹き込む膨管加工等が採られる。In order to form the coolant passage 4 as described above, a convex portion having the shape of the coolant passage 4 is press-formed on one metal plate 3B in advance, and then the other metal plate 3A is diffusion bonded or Brazing method and / or either metal plate
After printing a film of a pressure preventive agent such as carbon, ink or paint on 3A (3B) in the shape of the coolant passage 4, the other metal plate 3B (3A) is roll-bonded onto this, and this bonded plate is It is set in a mold (not shown) having a recess having the same shape as that of the coolant passage 4 to be formed, and expansion tube processing or the like in which pressurized air is blown from the end portion of the joint plate along the pressure-bonding preventive agent film is adopted.
各金属板3A,3Bのうち、少なくとも平坦な側の金属板3A
は、Fe:0.05〜3wt%、P:0.01〜0.15wt%、残部Cuの組成
を有する銅合金で成形されている。ただしZn,B,Mg,Al,S
i,Pb,Mn,Co,Ni,Ag,Zr,Sn等の元素を一種または複数種を
0.5wt%以下含有した場合にも、本発明の冷却体2の性
能に本質的な悪影響を及ぼさない。Of the metal plates 3A, 3B, at least the metal plate 3A on the flat side
Is formed of a copper alloy having a composition of Fe: 0.05 to 3 wt%, P: 0.01 to 0.15 wt% and the balance of Cu. However, Zn, B, Mg, Al, S
One or more elements such as i, Pb, Mn, Co, Ni, Ag, Zr and Sn
Even when the content is 0.5 wt% or less, the performance of the cooling body 2 of the present invention is not adversely affected.
前記組成のうち、Feは金属板の強度を高めてばね性を向
上するために添加されており、その含有量が0.05wt%未
満では十分な効果は得られない。また3wt%未満では冷
却体2の熱伝導性を低下させる。In the above composition, Fe is added to increase the strength of the metal plate and improve the spring property, and if its content is less than 0.05 wt%, a sufficient effect cannot be obtained. If it is less than 3 wt%, the thermal conductivity of the cooling body 2 is lowered.
Pは素材を製造する過程での脱酸剤として使用され、含
有量0.01wt%未満では効果が得られず、0.15wt%より大
では効果が飽和するうえ熱伝導性を低下させる。P is used as a deoxidizing agent in the process of manufacturing the raw material, and if the content is less than 0.01 wt%, the effect cannot be obtained, and if it exceeds 0.15 wt%, the effect is saturated and the thermal conductivity is lowered.
金属板の一方3Aのみを上記銅合金で成形することも可能
であり、この場合、他方の金属板3Bは熱伝導性および成
形性の良好な純銅で成形されることが望ましい。ここで
いう純銅とは、Cu含有量が99.9wt%以上の銅材を示す。
純銅製の金属板3Bは膨管等の加工が容易である一方、前
記Fe-Cu系合金製の金属板3Aにより冷却材2全体として
の剛性が向上される。It is also possible to form only one of the metal plates 3A from the above copper alloy, and in this case, it is desirable that the other metal plate 3B be formed from pure copper having good thermal conductivity and formability. Pure copper as used herein refers to a copper material having a Cu content of 99.9 wt% or more.
While the metal plate 3B made of pure copper can be easily processed into a swelling tube or the like, the metal plate 3A made of the Fe—Cu alloy improves the rigidity of the coolant 2 as a whole.
第3図に示すように、膨出側の金属板3Bの厚さT2は0.3
〜2.0mm、望ましくは0.3〜1.0mmとされる。0.3mm未満で
は剛性が低下し、平面度が維持できない。また2.0mmよ
り大では膨出加工が困難になる。他方の金属板3Aの厚さ
T1は0.3〜5.0mm、望ましくは0.5〜2.0mmとされる。0.3m
m未満では剛性が低下して平面度が維持できない。また
5.0mmより大では膨出加工が困難になる。As shown in FIG. 3, the thickness T2 of the metal plate 3B on the bulging side is 0.3.
~ 2.0 mm, preferably 0.3-1.0 mm. If it is less than 0.3 mm, the rigidity is lowered and the flatness cannot be maintained. If it is larger than 2.0 mm, bulging becomes difficult. Thickness of the other metal plate 3A
T1 is 0.3 to 5.0 mm, preferably 0.5 to 2.0 mm. 0.3m
If it is less than m, the rigidity is lowered and the flatness cannot be maintained. Also
If it is larger than 5.0 mm, the bulging process becomes difficult.
また、各板厚が上記範囲に設定された場合には、冷却材
通路4の断面の幅Wは6〜15mm、断面の高さHは0.5〜
3.0mmとされることが望ましい。断面の幅Wが6m未満で
は膨管加工の高さが小さくなる問題が生じ、15mmより大
では膨管加工しない側の金属板3Aの平面度が維持できな
い問題を生じる。When each plate thickness is set within the above range, the width W of the cross section of the coolant passage 4 is 6 to 15 mm and the height H of the cross section is 0.5 to
It is desirable to set it to 3.0 mm. If the width W of the cross section is less than 6 m, the height of the inflated tube becomes small, and if it is larger than 15 mm, the flatness of the metal plate 3A on the non-inflated side cannot be maintained.
上記寸法の冷却体2によれば、回路基板1同士の配置間
隔が従来の空冷手段では20〜30mmであったのに対し、本
発明者らの実験によれば、冷却材として冷却水を循環使
用した場合、効果的に冷却が行なえる回路基板1と冷却
体2の配置間隔は0.5mm以下であることが判明した。し
たがって、回路基板1の配置密度は2倍程度にまで高め
られることになる。According to the cooling body 2 having the above size, the arrangement interval between the circuit boards 1 is 20 to 30 mm in the conventional air cooling means, whereas according to the experiments by the present inventors, cooling water is circulated as the cooling material. It was found that the arrangement interval between the circuit board 1 and the cooling body 2 which can be effectively cooled when used is 0.5 mm or less. Therefore, the arrangement density of the circuit board 1 can be increased to about double.
なお、冷却体2の冷却材通路4の両端開口部のみは断面
円形に膨管加工されており、その内部にそれぞれ銅製等
の接続パイプ6が差し込まれ、銀ろう等によりろう付け
されている。これら接続パイプ6にはそれぞれチューブ
5が接続され、これらチューブ5を介して、機器外の図
示しない冷媒供給機構からフロンガスや水、各種液体等
が循環供給されるようになっている。It should be noted that only the openings at both ends of the cooling medium passage 4 of the cooling body 2 are swelled to have a circular cross section, and the connection pipes 6 made of copper or the like are inserted therein and brazed with silver brazing or the like. A tube 5 is connected to each of these connection pipes 6, and a chlorofluorocarbon gas, water, various liquids, etc. are circulated and supplied from a refrigerant supply mechanism (not shown) outside the device via these tubes 5.
供給する冷却材の種類,温度,流量は、回路基板1が素
子の適正温度範囲に保たれるように、かつ冷却体2およ
びチューブ5等に結露が生じないように考慮して決定さ
れる。The type, temperature, and flow rate of the coolant to be supplied are determined in consideration of keeping the circuit board 1 in the proper temperature range of the element and preventing condensation on the cooling body 2 and the tubes 5.
なお、結露を防止するには、冷却体2に結露センサーを
取り付け、結露を検出すると冷媒流量を低減または停止
する流量制御機構を設けたり、あるいは温度センサーを
冷却体2に取り付け、環境温度が変わっても冷却体2の
温度を一定に保つ温度制御機構を設けてもよい。In order to prevent condensation, a condensation sensor is attached to the cooling body 2 and a flow rate control mechanism that reduces or stops the flow rate of the refrigerant when the condensation is detected is provided, or a temperature sensor is attached to the cooling body 2 to change the ambient temperature. However, a temperature control mechanism for keeping the temperature of the cooling body 2 constant may be provided.
上記構成によれば、冷却体2を構成する金属板の少なく
とも一方が前記組成からなるので、長期使用後にも冷却
体2全体としてのばね性が低下せず、剛性が純銅等の通
常の伝熱材料を用いた場合よりも大きいため、長期使用
後にも、自重や冷却材圧力による冷却体2の平面性悪化
が生じにくい。したがって、回路基板1と冷却体2の距
離が変化して冷却効率が不均一になったり、回路基板1
に冷却体2が接触して悪影響を及ぼす等の問題が生じに
くく、信頼性を向上することができる。According to the above configuration, since at least one of the metal plates constituting the cooling body 2 is made of the above composition, the spring property of the cooling body 2 as a whole does not deteriorate even after long-term use, and the rigidity is normal heat transfer such as pure copper. Since it is larger than the case where the material is used, the flatness of the cooling body 2 is less likely to deteriorate due to its own weight or the coolant pressure even after long-term use. Therefore, the distance between the circuit board 1 and the cooling body 2 changes, and the cooling efficiency becomes non-uniform.
The problem that the cooling body 2 comes into contact with the above and adversely affects is unlikely to occur, and the reliability can be improved.
また、冷却体2に変形が生じない分、回路基板1の配置
間隔を小さくすることができ、冷却体2による冷却効果
が向上できるとともに、回路基板1の集積密度を高めて
装置の小形化が図れる。Further, since the cooling body 2 is not deformed, the arrangement interval of the circuit boards 1 can be reduced, the cooling effect by the cooling body 2 can be improved, and the integration density of the circuit boards 1 can be increased to reduce the size of the device. Can be achieved.
また、ファン等で機器内を冷却する構造と異なり、騒音
や磁気影響のおそれがないうえ、冷却体2の配置や冷却
材通路4の平面形状(密度)等を調節することにより、
例えば発熱量の大きい素子の近傍では冷却効率を高め、
発熱量の小さい部分では冷却効率を下げる等の対応が容
易であり、回路基板1の局部的な過熱や冷却しすぎによ
る誤動作を低減するとともに、温度補正が困難な素子
も、素子の温度をより狭い一定範囲に保つことが容易
で、機器の動作安定性を格段に向上できる。Further, unlike a structure in which the inside of the device is cooled by a fan or the like, there is no fear of noise or magnetic influence, and by adjusting the arrangement of the cooling body 2 or the planar shape (density) of the coolant passage 4,
For example, increase the cooling efficiency near the element that generates a large amount of heat,
It is easy to take measures such as lowering the cooling efficiency in the part where the heat generation amount is small, and it is possible to reduce malfunctions due to local overheating and overcooling of the circuit board 1. It is easy to maintain a narrow fixed range, and the operational stability of the device can be greatly improved.
なお、上記実施例では冷却材通路4を蛇行形状に形成し
ていたが、第4図に示すように複数の流路4Bを並列に形
成した形状も実施可能である。この場合、冷却材の通過
距離および時間が短くなるため、冷却体2の温度分布が
より均一になる利点を有する。Although the coolant passage 4 is formed in a meandering shape in the above-described embodiment, a shape in which a plurality of flow passages 4B are formed in parallel as shown in FIG. 4 can also be implemented. In this case, since the passage distance and time of the coolant are shortened, there is an advantage that the temperature distribution of the cooling body 2 becomes more uniform.
また、空気の流通性を向上するために、冷却体2の冷却
材通路4以外の部分に、多数の通孔を形成してもよい。
さらに、冷却体2に小さなフィンを多数固定し、空気と
の熱交換を促進してもよい。Further, in order to improve the flowability of air, a large number of through holes may be formed in a portion other than the coolant passage 4 of the cooling body 2.
Further, a large number of small fins may be fixed to the cooling body 2 to promote heat exchange with air.
次に、第5図は冷却体2の異なる固定構造を示し、この
例では回路基板1の裏面にヒートシンク7を固定したう
え、このヒートシンク7に直接、冷却体2を固定してい
る。この例によれば、回路基板1のヒートシンク7を通
じて回路基板1の全面を直接効率良く冷却することがで
き、特に発熱量の大きい回路基板1に対して効果的に冷
却が行なえる。Next, FIG. 5 shows a different fixing structure of the cooling body 2. In this example, the heat sink 7 is fixed to the back surface of the circuit board 1, and the cooling body 2 is directly fixed to the heat sink 7. According to this example, the entire surface of the circuit board 1 can be directly and efficiently cooled through the heat sink 7 of the circuit board 1, and the circuit board 1 having a particularly large heat generation amount can be effectively cooled.
また、第6図に示す実施例では、各回路基板1に固定さ
れた比較的突出量の大きい素子8と、冷却体2の冷却材
通路4との干渉を防ぐために、素子8と対向する箇所の
冷却材通路4を、冷却体2の反対面側に突出させたこと
を特徴とする。このような冷却体2も、前述した製造方
法によって容易に製造できる。Further, in the embodiment shown in FIG. 6, in order to prevent interference between the element 8 fixed to each circuit board 1 and having a relatively large protrusion amount, and the coolant passage 4 of the cooling body 2, a portion facing the element 8 is provided. The cooling medium passage 4 is formed so as to project to the opposite surface side of the cooling body 2. Such a cooling body 2 can also be easily manufactured by the manufacturing method described above.
次に、第7図に示す実施例では、冷却体2を直接、回路
基板1に固定する代わりに、冷却体2の裏面に伝熱板10
を固定し、この伝熱板10を介して回路基板1上の素子9
を冷却するようにしたことを特徴とする。Next, in the embodiment shown in FIG. 7, instead of directly fixing the cooling body 2 to the circuit board 1, the heat transfer plate 10 is provided on the back surface of the cooling body 2.
And the element 9 on the circuit board 1 via this heat transfer plate 10.
Is characterized by being cooled.
前記伝熱10には、等間隔毎に多数のコ字状をなす切り込
み12が打ち抜き加工あるいはレーザー加工等により形成
され、これら切り込み12の内部の舌片11が曲げられ突出
したもので、熱導電性の良好な材質で成形されている。
そして、各舌片11の先端部11Aは、各素子9の上面に弾
性的に面接触している。The heat transfer 10 has a large number of U-shaped cuts 12 formed at equal intervals by punching or laser processing, and the tongues 11 inside these cuts 12 are bent and protruded to provide heat conduction. Molded with a material with good properties.
The tip 11A of each tongue piece 11 elastically comes into surface contact with the upper surface of each element 9.
この例では、回路基板1の各素子9を効果的に冷却でき
るうえ、第5図の構成に比して、回路基板1と冷却体2
との着脱が容易に行なえる利点を有する。In this example, each element 9 of the circuit board 1 can be effectively cooled, and in comparison with the configuration of FIG.
It has an advantage that it can be easily attached and detached.
なお、舌片11の形状や配置は素子9の大きさや配置に合
わせて適宜変更してよいのは勿論である。Needless to say, the shape and arrangement of the tongue piece 11 may be appropriately changed according to the size and arrangement of the element 9.
次に、第9図は冷却体2と回路基板1との間に、柔軟な
伝熱体シート13を着脱自在にはさんだことを特徴とす
る。伝熱体13としては、シリコーン樹脂等が使用可能で
ある。Next, FIG. 9 is characterized in that a flexible heat transfer sheet 13 is detachably inserted between the cooling body 2 and the circuit board 1. Silicone resin or the like can be used as the heat transfer body 13.
次に、第10図は回路基板1上の特に発熱量の大きい素子
15に、放熱板14を固定し、この放熱板14を冷却体2の裏
面に当接させたことを特徴とする。この例によれば、特
に発熱量の大きい素子15を、他の素子9よりも重点的に
冷却することが可能である。Next, FIG. 10 shows an element having a particularly large heat generation on the circuit board 1.
A heat radiation plate 14 is fixed to 15 and the heat radiation plate 14 is brought into contact with the back surface of the cooling body 2. According to this example, it is possible to cool the element 15 that generates a particularly large amount of heat more intensively than the other elements 9.
次に、第11図は、各回路基板1の裏面に当接するよう
に、長い冷却体2を蛇行させて配置した例を示す。Next, FIG. 11 shows an example in which a long cooling body 2 is arranged in a meandering manner so as to come into contact with the back surface of each circuit board 1.
また、第12図は、冷却体2に多数の通風孔(図示略)を
形成するとともに、ケーシング17内で空気を循環させる
送風ファン16を設け、冷却体2を通って冷却された空気
をファン16で送り、各回路基板1の間隙を通すようにし
た構成を示す。この場合も、ファンのみで強制冷却して
いた従来構造に比べて送風量が小さくて済むため、ファ
ンの騒音や磁気影響等が軽減できる。さらに、本発明は
上記実施例のみに限られず、回路基板の配置や形状に応
じて適宜構成を変更してよい。In addition, FIG. 12 shows that a plurality of ventilation holes (not shown) are formed in the cooling body 2 and a blower fan 16 for circulating air in the casing 17 is provided to blow the air cooled through the cooling body 2 into a fan. 16 shows a configuration in which the circuit board 1 is fed by 16 and is passed through the gap between the circuit boards 1. In this case as well, the amount of air blown can be smaller than that in the conventional structure in which the fan is forcibly cooled, so that noise and magnetic influence of the fan can be reduced. Furthermore, the present invention is not limited to the above embodiments, and the configuration may be changed as appropriate according to the arrangement and shape of the circuit board.
「実施例」 次に、実験例を挙げて本発明の効果を実証する。[Examples] Next, the effects of the present invention will be demonstrated with reference to experimental examples.
(実験例1) 純銅とFe含有量の異なるCu-Fe系合金におけるヤング率
および導電率の変化を調べた。(Experimental Example 1) Changes in Young's modulus and conductivity in pure copper and Cu-Fe based alloys having different Fe contents were examined.
ヤング率の測定は金属材料引張試験方向(JIS Z 2241)
により行なった。試料の材質は 純銅:銅純度99.9wt%以上 Cu-Fe系合金: P:0.03wt% Fe:後記 残部Cu 試料の寸法はJIS5号片とし、伸び計を用いて応力と伸び
量との関係線図を求めたうえ、初期の直線部分に平行線
を引き、交わる点の示す応力と弾性の関係からヤング率
(E)を求めた。結果を第1表に示す。なお、導電率は
その材質の熱伝導率と比例するため、熱伝導率の評価値
として挙げてあり、純銅を100%とした場合の相対値を
示している。Young's modulus is measured in the direction of tensile test of metallic materials (JIS Z 2241)
It was done by. The material of the sample is pure copper: copper purity 99.9 wt% or more Cu-Fe alloy: P: 0.03 wt% Fe: The balance of the Cu sample is JIS No. 5 and the relationship between stress and elongation is measured using an extensometer. After obtaining the figure, a parallel line was drawn on the initial straight line portion, and the Young's modulus (E) was obtained from the relationship between the stress and elasticity indicated by the intersecting points. The results are shown in Table 1. Since the electrical conductivity is proportional to the thermal conductivity of the material, it is given as an evaluation value of the thermal conductivity, and the relative value when pure copper is 100% is shown.
(実施例2) 純銅およびCu-Fe系合金の肉厚の変化による撓み量の変
化を測定した。純銅は実験例1と同じもの、合金として
はFe:0.1wt%、P:0.03wt%、残部Cuの組成のものを使用
した。 (Example 2) A change in the amount of bending due to a change in the thickness of pure copper and a Cu-Fe alloy was measured. The pure copper was the same as that used in Experimental Example 1, and the alloy used had a composition of Fe: 0.1 wt%, P: 0.03 wt% and the balance Cu.
測定試料の寸法はJIS5号片とし、両端支持梁のスパンの
中央部に荷重をかけて撓み量の変化を測定した。なお、
梁のスパンは100mm、荷重は100gfとした。結果を第2表
に示す。The size of the measurement sample was JIS No. 5 piece, and the change in the amount of bending was measured by applying a load to the center part of the span of the support beam at both ends. In addition,
The span of the beam was 100 mm and the load was 100 gf. The results are shown in Table 2.
(実験例3) 実際の使用状態を模すため、純銅とCu-Fe系合金の板材
(100×135×1.0mm)を使用し、これら板材の135mm方向
の両端を支持したうえで、板材の全面に均一な圧力分布
で400gfの荷重をかけ、中央部での撓み量を測定した。
合金の組成は実験例2と同一である。その結果を第3表
に示す。 (Experimental example 3) In order to imitate the actual use condition, pure copper and Cu-Fe alloy plate materials (100 x 135 x 1.0 mm) are used, and both ends of the plate materials in the 135 mm direction are supported, A load of 400 gf was applied to the entire surface with a uniform pressure distribution, and the amount of bending at the center was measured.
The composition of the alloy is the same as in Experimental Example 2. The results are shown in Table 3.
「発明の効果」 以上説明したように、本発明に係わる回路基板用冷却体
は、構成する一対の金属板の少なくとも一方がFe-Cu系
合金で成形されているので、純銅など通常の伝熱材料に
よって冷却体を成形した場合に比してばね性および剛性
が格段に高く、長期使用後にも冷却体の平面性が悪化す
ることが少ない。 "Effects of the Invention" As described above, in the circuit board cooling body according to the present invention, since at least one of the pair of metal plates constituting the cooling body is formed of Fe-Cu based alloy, ordinary heat transfer such as pure copper is performed. Compared to the case where the cooling body is formed of a material, the spring property and rigidity are remarkably high, and the flatness of the cooling body does not deteriorate even after long-term use.
また、本発明の回路基板の冷却構造によれば、前記のよ
うに回路基板用冷却体の平面度が長期に亙って高く維持
されるので、回路基板と冷却体の距離が変化して冷却効
率が不均一になったり、回路基板に冷却体が接触して悪
影響を及ぼす等の問題が生じにくく、信頼性を向上する
ことができる。Further, according to the circuit board cooling structure of the present invention, since the flatness of the circuit board cooling body is maintained high for a long period of time as described above, the distance between the circuit board and the cooling body is changed to cool the circuit board. Problems such as non-uniform efficiency and the adverse effect of the cooling body coming into contact with the circuit board are less likely to occur, and reliability can be improved.
また、冷却体に変形が生じない分、回路基板の配置間隔
を小さくすることができ、冷却体による冷却効果が向上
できるとともに、回路基板の集積密度を高めて装置の小
形化が図れる。Further, since the cooling body is not deformed, the arrangement interval of the circuit boards can be reduced, the cooling effect by the cooling body can be improved, and the density of the circuit boards can be increased to reduce the size of the device.
さらに、ファン等で機器内の回路基板を冷却する構造と
異なり、素子への磁気影響や騒音発生のおそれもないう
え、冷却体の配置や冷却材通路の平面形状(密度)等を
調節することにより、回路基板の局部的な加熱や冷却し
すぎを防ぎ、素子の温度をより狭い範囲に保ことが容易
で、機器の動作安定性を格段に向上できる。Furthermore, unlike the structure that cools the circuit board inside the device with a fan, there is no risk of magnetic influence on the element or noise generation, and the arrangement of the cooling body and the planar shape (density) of the coolant passages can be adjusted. As a result, it is possible to prevent local overheating and overcooling of the circuit board, easily maintain the element temperature in a narrower range, and significantly improve the operational stability of the device.
第1図ないし第3図は本発明に係わる回路基板の冷却構
造および回路基板用冷却体の一実施例を示し、第1図は
回路基板の冷却構造の正面図、第2図は冷却体の裏面を
示す平面図、第3図は冷却材通路の断面拡大図である。 また、第4図は本発明の回路基板冷却体の他の実施例を
示す平面図、第5図は本発明に係わる回路基板の冷却構
造の第2実施例を示す正面図、第6図は回路基板の冷却
構造の第3実施例を示す正面図、第7図および第8図は
回路基板の冷却構造の第3実施例を示す正面図および平
面図、第9図ないし第12図は回路基板の冷却構造の第4
実施例ないし第7実施例を示す正面図である。 1……回路基板、2……回路基板、3A,3B……金属板、
4……冷却材通路、5……チューブ、6……接続パイ
プ、7……ヒートシンク、8,9,15……素子、10,13,14…
…伝熱部材。1 to 3 show one embodiment of a circuit board cooling structure and a circuit board cooling body according to the present invention. FIG. 1 is a front view of the circuit board cooling structure, and FIG. 2 is a cooling body. FIG. 3 is a plan view showing the back surface, and FIG. 3 is an enlarged cross-sectional view of the coolant passage. Also, FIG. 4 is a plan view showing another embodiment of the circuit board cooling body of the present invention, FIG. 5 is a front view showing a second embodiment of the circuit board cooling structure according to the present invention, and FIG. A front view showing a third embodiment of the circuit board cooling structure, FIGS. 7 and 8 are front views and a plan view showing a third embodiment of the circuit board cooling structure, and FIGS. 9 to 12 are circuits. Fourth of substrate cooling structure
It is a front view which shows an Example thru | or 7th Example. 1 ... Circuit board, 2 ... Circuit board, 3A, 3B ... Metal plate,
4 ... Coolant passage, 5 ... Tube, 6 ... Connection pipe, 7 ... Heat sink, 8, 9, 15 ... Element, 10, 13, 14 ...
… Heat transfer member.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−45900(JP,A) 実開 昭59−6893(JP,U) 実開 昭51−140449(JP,U) 実開 平2−26289(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-45900 (JP, A) Actually open 59-6893 (JP, U) Actually open 51-140449 (JP, U) Actually open 2- 26289 (JP, U)
Claims (7)
の間に中空の冷却材通路を形成してなる回路基板用冷却
体であって、 前記金属板はいずれも、Fe:0.05〜3wt%、P:0.01〜0.15
wt%、残部Cuの組成を有する銅合金で成形されているこ
とを特徴とする回路基板用冷却体。1. A cooler for a circuit board, comprising a pair of metal plates bonded together, and a hollow coolant passage formed between the metal plates, wherein each of the metal plates is Fe: 0.05-3 wt%, P : 0.01 to 0.15
A cooling body for a circuit board, which is formed of a copper alloy having a composition of wt% and the balance of Cu.
の間に冷却材通路を形成してなる回路基板用冷却体であ
って、 前記金属板の一方は、Fe:0.05〜3wt%、P:0.01〜0.15wt
%、残部Cuの組成を有する銅合金で成形され、前記金属
板の他方は純銅から成形されていることを特徴とする回
路基板用冷却体。2. A circuit board cooling body comprising a pair of metal plates bonded together and a coolant passage formed between the metal plates, wherein one of the metal plates is Fe: 0.05-3 wt%, P: 0.01. ~ 0.15wt
%, The balance being formed of a copper alloy having a composition of Cu, and the other of the metal plates is formed of pure copper.
一方を断面半円状に膨出させて形成されていることを特
徴とする請求項1または2記載の回路基板用冷却体。3. The cooling body for a circuit board according to claim 1, wherein the coolant passage is formed by bulging one of the metal plates in a semicircular cross section.
前記冷却材通路の断面の幅は6〜15mm、冷却材通路の断
面の高さは0.5〜3.0mmとされる一方、他方の金属板の厚
さは0.3〜5.0mmとされていることを特徴とする請求項3
記載の回路基板用冷却体。4. The thickness of the metal plate on the bulging side is 0.3 to 2.0 mm,
The width of the cross section of the coolant passage is 6 to 15 mm, the height of the cross section of the coolant passage is 0.5 to 3.0 mm, and the thickness of the other metal plate is 0.3 to 5.0 mm. Claim 3
The cooling body for a circuit board described.
用冷却体を、互いに間隔を空けて平行に配置された複数
の回路基板の間に平行に配置したことを特徴とする回路
基板の冷却構造。5. A circuit characterized in that the cooling body for a circuit board according to claim 1, 2, 3 or 4 is arranged in parallel between a plurality of circuit boards which are arranged in parallel with each other at intervals. Substrate cooling structure.
て隣接する回路基板に連結されていることを特徴とする
請求項5記載の回路基板の冷却構造。6. The circuit board cooling structure according to claim 5, wherein the circuit board cooling body is connected to an adjacent circuit board via a heat transfer member.
離間距離は0.5mm以下とされていることを特徴とする請
求項5または6記載の回路基板の冷却構造。7. The circuit board cooling structure according to claim 5, wherein the distance between each of the circuit boards and the circuit board cooling body is 0.5 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18572190A JPH073914B2 (en) | 1990-07-13 | 1990-07-13 | Circuit board cooling body and circuit board cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18572190A JPH073914B2 (en) | 1990-07-13 | 1990-07-13 | Circuit board cooling body and circuit board cooling structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0472795A JPH0472795A (en) | 1992-03-06 |
JPH073914B2 true JPH073914B2 (en) | 1995-01-18 |
Family
ID=16175696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18572190A Expired - Lifetime JPH073914B2 (en) | 1990-07-13 | 1990-07-13 | Circuit board cooling body and circuit board cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH073914B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108351672A (en) * | 2015-11-16 | 2018-07-31 | 株式会社ExaScaler | Immersion liquid cooling electronic equipment and the cooling system for using the electronic equipment |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3495098B2 (en) * | 1994-06-30 | 2004-02-09 | 昭和電工株式会社 | Radiator and manufacturing method thereof |
JP3315649B2 (en) | 1998-08-11 | 2002-08-19 | 富士通株式会社 | Electronics |
JP4848539B2 (en) * | 2001-08-23 | 2011-12-28 | Dowaメタルテック株式会社 | Heat sink, power semiconductor module, IC package |
TWI234063B (en) | 2002-05-15 | 2005-06-11 | Matsushita Electric Ind Co Ltd | Cooling apparatus for electronic equipment |
JP2017092401A (en) * | 2015-11-17 | 2017-05-25 | 星和電機株式会社 | Heat conductive component |
-
1990
- 1990-07-13 JP JP18572190A patent/JPH073914B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108351672A (en) * | 2015-11-16 | 2018-07-31 | 株式会社ExaScaler | Immersion liquid cooling electronic equipment and the cooling system for using the electronic equipment |
CN108351672B (en) * | 2015-11-16 | 2021-08-31 | 株式会社ExaScaler | Electronic apparatus for immersion cooling and cooling system using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0472795A (en) | 1992-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6360813B1 (en) | Electronic components cooling apparatus | |
US6918432B2 (en) | Heat exchanger | |
CN212876432U (en) | Heat radiator | |
JP4140549B2 (en) | Cooler | |
JP2004116937A (en) | Heat exchanger module | |
JPH073914B2 (en) | Circuit board cooling body and circuit board cooling structure | |
JP5333161B2 (en) | heatsink | |
JP2006078035A (en) | Heat exchange device | |
CN211457798U (en) | Heat radiator | |
EP2400251B1 (en) | Gas cooler | |
JPH05235572A (en) | Cooling apparatus for circuit board | |
JP2009081220A (en) | Heat dissipating component, and heat dissipating structure | |
US11725885B2 (en) | Heat exchanger fin and manufacturing method of the same | |
JP4415712B2 (en) | Heat exchanger | |
CN214701838U (en) | Radiator and bulldozer | |
JP2010065873A (en) | Heat exchanger | |
JP7328213B2 (en) | heat sink | |
JP2010185660A (en) | Heat exchanging tube and condenser | |
JPH08250633A (en) | Boiling cooling equipment | |
CN216352178U (en) | Cladding heat conduction type heat dissipation device | |
JP2003086742A (en) | Heat sink | |
JP2021023438A (en) | Body warming/cooling device | |
JP2024016787A (en) | heat sink | |
JP2005252139A (en) | Liquid cooling system | |
TW202411588A (en) | Heat sink |