JP4140549B2 - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
JP4140549B2
JP4140549B2 JP2004125461A JP2004125461A JP4140549B2 JP 4140549 B2 JP4140549 B2 JP 4140549B2 JP 2004125461 A JP2004125461 A JP 2004125461A JP 2004125461 A JP2004125461 A JP 2004125461A JP 4140549 B2 JP4140549 B2 JP 4140549B2
Authority
JP
Japan
Prior art keywords
refrigerant passage
refrigerant
tube
passage
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004125461A
Other languages
Japanese (ja)
Other versions
JP2005311046A (en
Inventor
基紘 白井
充晴 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004125461A priority Critical patent/JP4140549B2/en
Priority to DE102004057526.6A priority patent/DE102004057526B4/en
Priority to US11/001,509 priority patent/US7571759B2/en
Publication of JP2005311046A publication Critical patent/JP2005311046A/en
Application granted granted Critical
Publication of JP4140549B2 publication Critical patent/JP4140549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Description

本発明は、両面発熱する電子部品を冷却する冷却器に関するもので、特にハイブリッド電気自動車用インバータの両面冷却型電子部品を冷却する冷却器として好適である。   The present invention relates to a cooler that cools an electronic component that generates heat on both sides, and is particularly suitable as a cooler that cools a double-sided cooling electronic component of an inverter for a hybrid electric vehicle.

従来、半導体モジュール(電子部品)を水冷式の冷却器に取り付けて冷却するものが知られている。両面冷却型半導体装置として特許文献1で提案された装置は、冷却水の通路を有するチューブと両面冷却型半導体モジュールとを交互に積層している。   Conventionally, a semiconductor module (electronic component) is mounted on a water-cooled cooler and cooled. The device proposed in Patent Document 1 as a double-sided cooling type semiconductor device is formed by alternately stacking tubes having cooling water passages and double-sided cooling type semiconductor modules.

また、本出願人は、特願2003−404940号にて、チューブに中間壁を設けてチューブ内を第1冷媒通路と第2冷媒通路とに分割した冷却器を提案している。
特開2002−26215号公報
In addition, in Japanese Patent Application No. 2003-404940, the present applicant has proposed a cooler in which an intermediate wall is provided in a tube and the inside of the tube is divided into a first refrigerant passage and a second refrigerant passage.
JP 2002-26215 A

しかしながら、発熱体である半導体モジュールは、両面発熱するが、内部の構造上両面への放熱量が異なっている。そのため、特願2003−404940号に示された冷却器にて両面冷却型半導体モジュールを冷却する場合、第1冷媒通路と第2冷媒通路のうちの一方に過度に負担が掛かってしまい、冷却効率が低下するという問題が発生する。   However, the semiconductor module, which is a heating element, generates heat on both sides, but the amount of heat radiation to both sides differs due to the internal structure. Therefore, when the double-sided cooling type semiconductor module is cooled by the cooler shown in Japanese Patent Application No. 2003-404940, one of the first refrigerant passage and the second refrigerant passage is excessively burdened, and the cooling efficiency is increased. This causes a problem of lowering.

本発明は上記点に鑑みて、両面で放熱量が異なる電子部品を効率よく冷却することを目的とする。   In view of the above points, an object of the present invention is to efficiently cool electronic components having different heat dissipation amounts on both sides.

上記目的を達成するため、請求項1に記載の発明では、冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接するチューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、1つのチューブ(1)内に形成された冷媒通路は、チューブ(1)の長手方向に沿って延びるように冷媒通路内に配置された中間壁(14)によって、チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、第1冷媒通路(11)を流れる冷媒の流れ方向および第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、隣接する2つのチューブ(1)のうち、一方のチューブ(1)の第1冷媒通路(11)が、電子部品(5)の一方の面を冷却し、他方のチューブ(1)の第2冷媒通路(12)が、電子部品(5)の他方の面を冷却するようになっており、第1冷媒通路(11)側の冷却能力と第2冷媒通路(12)側の冷却能力とが異なることを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, a plurality of tubes (1) having refrigerant passages through which refrigerant flows are stacked at a predetermined interval, and electrons held between adjacent tubes (1) are retained. In the cooler for cooling the part (5) from both sides, the refrigerant passage formed in one tube (1) is an intermediate wall arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). (14) divides the first refrigerant passage (11) and the second refrigerant passage (12) arranged in the stacking direction of the tube (1) into the first refrigerant passage (11) and the second flow direction of the refrigerant. The flow direction of the refrigerant flowing through the refrigerant passage (12) is the same direction (X), and the first refrigerant passage (11) of one tube (1) of the two adjacent tubes (1) is an electronic component. (5) Cool one side and the other The second refrigerant passage (12) of the other tube (1) cools the other surface of the electronic component (5), and the cooling capacity on the first refrigerant passage (11) side and the second refrigerant passage (12) The cooling capacity on the side is different.

これによると、電子部品における発熱量(放熱量)が大きい方の面を、冷却能力が高い方の冷媒通路側に合わせ、電子部品における発熱量(放熱量)が小さい方の面を、冷却能力が低い方の冷媒通路側に合わせることにより、電子部品を効率よく冷却することができる。   According to this, the surface with the larger amount of heat generation (heat dissipation) in the electronic component is aligned with the refrigerant passage side with the higher cooling capacity, and the surface with the smaller amount of heat generation (heat dissipation) in the electronic component is the cooling capacity. By adjusting to the lower refrigerant passage side, the electronic component can be efficiently cooled.

また、第1冷媒通路と第2冷媒通路を流れる冷媒の温度上昇が略等価になることで、熱の移動が減少し、温度差によるチューブの歪み発生が防止されてチューブの信頼性(寿命)が向上する。そして、電子部品の両面の表面温度も同様に均一化することで、温度差による電子部品の歪み発生が防止されて電子部品の信頼性(寿命)も向上する。   Further, since the temperature rise of the refrigerant flowing through the first refrigerant passage and the second refrigerant passage becomes substantially equivalent, heat transfer is reduced, and the occurrence of distortion of the tube due to the temperature difference is prevented, and the reliability (life) of the tube. Will improve. And since the surface temperature of both surfaces of the electronic component is also made uniform, the occurrence of distortion of the electronic component due to the temperature difference is prevented, and the reliability (life) of the electronic component is improved.

請求項2に記載の発明のように、第1冷媒通路(11)の冷媒の流量と第2冷媒通路(12)側の冷媒の流量とを異ならせて、第1冷媒通路(11)側の冷却能力と第2冷媒通路(12)側の冷却能力とを異ならせることができる。   As in the second aspect of the invention, the flow rate of the refrigerant in the first refrigerant passage (11) and the flow rate of the refrigerant in the second refrigerant passage (12) are made different from each other, The cooling capacity and the cooling capacity on the second refrigerant passage (12) side can be made different.

請求項3に記載の発明では、冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接するチューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、隣接するチューブ(1)における冷媒の入口側を連結する筒状の連結部材(2)を備え、チューブ(1)には、連結部材(2)の筒部(22)が挿入される挿入穴(131)が形成され、冷媒通路は、冷媒通路内に配置された中間壁(14)によって、チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、中間壁(14)には、挿入穴(131)に対向する位置に、第1冷媒通路(11)と第2冷媒通路(12)とを連通させる中間壁穴(141)が形成され、筒部(22)の内径(D1)と中間壁穴(141)の内径(D2)とが異なることを特徴とする。   In the invention according to claim 3, the plurality of tubes (1) having the refrigerant passages through which the refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is attached from both sides. The cooler to be cooled includes a cylindrical connecting member (2) that connects the refrigerant inlet side in the adjacent tube (1), and the tube (1) includes a cylindrical portion (22) of the connecting member (2). An insertion hole (131) to be inserted is formed, and the refrigerant passage is configured by the first refrigerant passage (11) and the second refrigerant arranged in the stacking direction of the tubes (1) by the intermediate wall (14) arranged in the refrigerant passage. An intermediate wall hole that is divided into a passage (12) and communicates the first refrigerant passage (11) and the second refrigerant passage (12) at a position facing the insertion hole (131) in the intermediate wall (14). (141) is formed, and the inner diameter (D1) of the cylindrical portion (22) And the inner diameter (D2) of Makabe holes (141) are different from each other.

これによると、筒部の内径と中間壁穴の内径とを異ならせることにより、図4に示すように、筒部(22)からチューブ(1)に流入するときに起こる拡大流れによって第1冷媒通路に流入する冷媒の流量と第2冷媒通路に流入する冷媒の流量を異ならせて、第1冷媒通路側の冷却能力と第2冷媒通路側の冷却能力とを異ならせることができ、したがって、請求項1の発明と同様の効果を得ることができる。   According to this, by making the inner diameter of the cylinder part different from the inner diameter of the intermediate wall hole, as shown in FIG. 4, the first refrigerant is generated by the expanded flow that occurs when flowing from the cylinder part (22) into the tube (1). The cooling capacity on the first refrigerant path side and the cooling capacity on the second refrigerant path side can be made different by changing the flow rate of the refrigerant flowing into the passage and the flow rate of the refrigerant flowing into the second refrigerant path. The same effect as that of the invention of claim 1 can be obtained.

請求項4に記載の発明では、筒部(22)の内径(D1)よりも中間壁穴(141)の内径(D2)が大きいことを特徴とする。   The invention according to claim 4 is characterized in that the inner diameter (D2) of the intermediate wall hole (141) is larger than the inner diameter (D1) of the cylindrical portion (22).

これによると、筒部の内径よりも中間壁穴の内径が小さい場合と比較して、中間壁穴部位での圧損を小さくすることができる。   According to this, compared with the case where the inner diameter of the intermediate wall hole is smaller than the inner diameter of the cylindrical portion, the pressure loss at the intermediate wall hole portion can be reduced.

請求項5に記載の発明では、冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接するチューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、隣接するチューブ(1)における冷媒の入口側を連結する筒状の連結部材(2)を備え、チューブ(1)には、連結部材(2)の筒部(22)が挿入される挿入穴(131)が形成され、冷媒通路は、冷媒通路内に配置された中間壁(14)によって、チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、中間壁(14)には、挿入穴(131)に対向する位置に、第1冷媒通路(11)と第2冷媒通路(12)とを連通させる中間壁穴(141)が形成され、筒部(22)は、挿入穴(131)から冷媒通路内に突出しており、第1冷媒通路(11)側の筒部(22)の突出長さ(L1)と第2冷媒通路(12)側の筒部(22)の突出長さ(L2)とが異なることを特徴とする。   In the invention according to claim 5, the plurality of tubes (1) having the refrigerant passages through which the refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is attached from both sides. The cooler to be cooled includes a cylindrical connecting member (2) that connects the refrigerant inlet side in the adjacent tube (1), and the tube (1) includes a cylindrical portion (22) of the connecting member (2). An insertion hole (131) to be inserted is formed, and the refrigerant passage is configured by the first refrigerant passage (11) and the second refrigerant arranged in the stacking direction of the tubes (1) by the intermediate wall (14) arranged in the refrigerant passage. An intermediate wall hole that is divided into a passage (12) and communicates the first refrigerant passage (11) and the second refrigerant passage (12) at a position facing the insertion hole (131) in the intermediate wall (14). (141) is formed, and the cylindrical portion (22) is inserted into the insertion hole (13 ) Projecting into the refrigerant passage, the projecting length (L1) of the cylindrical portion (22) on the first refrigerant passage (11) side, and the projecting length of the cylindrical portion (22) on the second refrigerant passage (12) side (L2) is different.

これによると、第1冷媒通路側の筒部の突出長さと第2冷媒通路側の筒部の突出長さとを異ならせることにより、第1冷媒通路に流入する冷媒の流量と第2冷媒通路に流入する冷媒の流量を異ならせて、第1冷媒通路側の冷却能力と第2冷媒通路側の冷却能力とを異ならせることができ、したがって、請求項1の発明と同様の効果を得ることができる。   According to this, the flow rate of the refrigerant flowing into the first refrigerant passage and the second refrigerant passage are made different by making the protruding length of the cylindrical portion on the first refrigerant passage side different from the protruding length of the cylindrical portion on the second refrigerant passage side. The cooling capacity on the first refrigerant passage side and the cooling capacity on the second refrigerant passage side can be made different by changing the flow rate of the refrigerant flowing in, and therefore the same effect as that of the invention of claim 1 can be obtained. it can.

請求項6に記載の発明では、冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接するチューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、1つのチューブ(1)内に形成された冷媒通路は、チューブ(1)の長手方向に沿って延びるように冷媒通路内に配置された中間壁(14)によって、チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、第1冷媒通路(11)を流れる冷媒の流れ方向および第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、隣接する2つのチューブ(1)のうち、一方のチューブ(1)の第1冷媒通路(11)が、電子部品(5)の一方の面を冷却し、他方のチューブ(1)の第2冷媒通路(12)が、電子部品(5)の他方の面を冷却するようになっており、熱交換を促進するフィン(15)が第1冷媒通路(11)と第2冷媒通路(12)とに配置され、第1冷媒通路(11)内のフィン(15)と第2冷媒通路(12)内のフィン(15)とは、熱交換性能が異なることを特徴とする。 In the invention described in claim 6, the plurality of tubes (1) having the refrigerant passages through which the refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is attached from both sides. In the cooler to be cooled, the refrigerant passage formed in one tube (1) is separated from the tube (1) by an intermediate wall (14) arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). 1) is divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction, and flows through the first refrigerant passage (11) and the second refrigerant passage (12). The flow direction of the refrigerant is the same direction (X), and of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) is one surface of the electronic component (5). The second of the other tube (1) The refrigerant passage (12) cools the other surface of the electronic component (5), and the fin (15) that promotes heat exchange includes the first refrigerant passage (11) and the second refrigerant passage (12). The fins (15) in the first refrigerant passage (11) and the fins (15) in the second refrigerant passage (12) are different in heat exchange performance.

これによると、第1冷媒通路内のフィンと第2冷媒通路内のフィンの熱交換性能を異ならせることにより、第1冷媒通路側の冷却能力と第2冷媒通路側の冷却能力を異ならせることができ、したがって、請求項1の発明と同様の効果を得ることができる。   According to this, by making the heat exchange performance of the fins in the first refrigerant passage and the fin in the second refrigerant passage different, the cooling ability on the first refrigerant passage side and the cooling ability on the second refrigerant passage side are made different. Therefore, the same effect as that of the invention of claim 1 can be obtained.

請求項7に記載の発明では、冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接するチューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、1つのチューブ(1)内に形成された冷媒通路は、チューブ(1)の長手方向に沿って延びるように冷媒通路内に配置された中間壁(14)によって、チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、第1冷媒通路(11)を流れる冷媒の流れ方向および第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向X)であり、隣接する2つのチューブ(1)のうち、一方のチューブ(1)の第1冷媒通路(11)が、電子部品(5)の一方の面を冷却し、他方のチューブ(1)の第2冷媒通路(12)が、電子部品(5)の他方の面を冷却するようになっており、熱交換を促進するフィン(15)が、第1冷媒通路(11)および第2冷媒通路(12)の一方のみに配置されていることを特徴とする。 In the invention according to claim 7 , the plurality of tubes (1) having the refrigerant passages through which the refrigerant flows are laminated at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is attached from both sides. In the cooler to be cooled, the refrigerant passage formed in one tube (1) is separated from the tube (1) by an intermediate wall (14) arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). 1) is divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction, and flows through the first refrigerant passage (11) and the second refrigerant passage (12). The flow direction of the refrigerant is the same direction X), and of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) is connected to one surface of the electronic component (5). Cool, the second cold of the other tube (1) The medium passage (12) cools the other surface of the electronic component (5), and the fin (15) that promotes heat exchange includes the first refrigerant passage (11) and the second refrigerant passage (12). ) Is disposed only on one side.

これによると、第1冷媒通路および前記第2冷媒通路の一方のみにフィンを配置することにより、第1冷媒通路側の冷却能力と第2冷媒通路側の冷却能力を異ならせることができ、したがって、請求項1の発明と同様の効果を得ることができる。
請求項8に記載の発明では、冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接するチューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、1つのチューブ(1)内に形成された冷媒通路は、チューブ(1)の長手方向に沿って延びるように冷媒通路内に配置された中間壁(14)によって、チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、第1冷媒通路(11)を流れる冷媒の流れ方向および第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、隣接する2つのチューブ(1)のうち、一方のチューブ(1)の第1冷媒通路(11)が、電子部品(5)の一方の面を冷却し、他方のチューブ(1)の第2冷媒通路(12)が、電子部品(5)の他方の面を冷却するようになっており、チューブ(1)には、冷媒を流入させる流入穴が形成され、中間壁(14)には、流入穴に対向する位置に、第1冷媒通路(11)と第2冷媒通路(12)とを連通させる中間壁穴(141)が形成され、流入穴の内径(D1)と中間壁穴(141)の内径(D2)とが異なることを特徴とする。これによれば、請求項3に記載の発明と同様の効果を得ることができる。
請求項9に記載の発明では、第1冷媒通路(11)側および第2冷媒通路(11、12)側のうち冷却能力の低い側は、電子部品(5)の両面のうち発熱量が小さい側の面を冷却し、第1冷媒通路(11)側および第2冷媒通路(11、12)側のうち冷却能力の高い側は、電子部品(5)の両面のうち発熱量が大きい側の面を冷却するようになっていることを特徴とする。これによれば、電子部品(5)を効率よく冷却することができる。
According to this, by disposing the fin only in one of the first refrigerant passage and the second refrigerant passage, the cooling ability on the first refrigerant passage side and the cooling ability on the second refrigerant passage side can be made different, and accordingly The effect similar to that of the invention of claim 1 can be obtained.
In the invention according to claim 8, the plurality of tubes (1) having the refrigerant passages through which the refrigerant flows are laminated at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is attached from both sides. In the cooler to be cooled, the refrigerant passage formed in one tube (1) is separated from the tube (1) by an intermediate wall (14) arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). 1) is divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction, and flows through the first refrigerant passage (11) and the second refrigerant passage (12). The flow direction of the refrigerant is the same direction (X), and of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) is one surface of the electronic component (5). The second of the other tube (1) The medium passage (12) cools the other surface of the electronic component (5), the tube (1) is formed with an inflow hole through which the refrigerant flows, and the intermediate wall (14) An intermediate wall hole (141) for communicating the first refrigerant passage (11) and the second refrigerant passage (12) is formed at a position facing the inflow hole, and the inner diameter (D1) of the inflow hole and the intermediate wall hole (141) ) Is different from the inner diameter (D2). According to this, the same effect as that of the invention of the third aspect can be obtained.
According to the ninth aspect of the present invention, the low cooling capacity of the first refrigerant passage (11) side and the second refrigerant passage (11, 12) side has a small amount of heat generated on both sides of the electronic component (5). Of the first refrigerant passage (11) side and the second refrigerant passage (11, 12) side, the side with the higher cooling capacity is the side of the electronic component (5) where the heat generation amount is larger. It is characterized in that the surface is cooled. According to this, an electronic component (5) can be cooled efficiently.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本発明の第1実施形態に係る冷却器について説明する。図1は第1実施形態に係る冷却器の正面図、図2は図1のA−A線に沿う要部の断面図、図3は図1のB部の正面断面図、図4は図3のC部の拡大正面断面図である。
(First embodiment)
A cooler according to a first embodiment of the present invention will be described. 1 is a front view of a cooler according to the first embodiment, FIG. 2 is a cross-sectional view of a main part taken along line AA in FIG. 1, FIG. 3 is a front cross-sectional view of part B in FIG. It is an expanded front sectional view of the C section of 3.

本発明の冷却器は、ハイブリッド電気自動車用インバータの両面冷却型半導体モジュールの冷却に用いることができる。   The cooler of the present invention can be used for cooling a double-sided cooling type semiconductor module of an inverter for a hybrid electric vehicle.

図1〜図3に示すように、冷却器は、冷媒が流れる冷媒通路11、12が内部に形成されるとともに、冷媒通路11、12内での冷媒の流れ向きX(以下、流れ向きXという)に対して直交する方向Y(以下、積層方向Yという)に所定間隔を隔てて積層された多数のチューブ1と、隣接するチューブ1間に配置されて隣接するチューブ1同士を連結するベローズ2と、積層方向Yの一端側に位置するチューブ1にろう付け接合されて、冷媒が流入する入口パイプ3と、積層方向Yの一端側に位置するチューブ1にろう付け接合されて、冷媒が流出する出口パイプ4とを備えている。なお、冷媒としては、本実施形態ではエチレングリコール系の不凍液が混入した水を用いている。   As shown in FIGS. 1 to 3, the cooler has refrigerant passages 11 and 12 through which a refrigerant flows, and a refrigerant flow direction X (hereinafter referred to as a flow direction X) in the refrigerant passages 11 and 12. ) And a plurality of tubes 1 stacked at a predetermined interval in a direction Y (hereinafter referred to as a stacking direction Y), and a bellows 2 arranged between adjacent tubes 1 and connecting adjacent tubes 1 to each other. Then, the pipe 1 is brazed and joined to the tube 1 located on one end side in the stacking direction Y, and the inlet pipe 3 into which the refrigerant flows and the tube 1 located on one end side in the stacking direction Y are brazed and joined, and the refrigerant flows out. The outlet pipe 4 is provided. In this embodiment, water mixed with ethylene glycol antifreeze is used as the refrigerant.

チューブ1は、2枚の外部プレート13を最中状に合わせて内部に空間が形成されており、扁平形状になっている。その空間は、2枚の外部プレート13間に狭持された平板状の1枚の内部プレート14によって、積層方向Yに並ぶ第1冷媒通路11と第2冷媒通路12とに分割されている。各冷媒通路11、12には、熱交換を促進する波板状のフィン15が配置されている。   The tube 1 has a flat shape in which a space is formed inside by aligning the two external plates 13 in the middle. The space is divided into a first refrigerant passage 11 and a second refrigerant passage 12 arranged in the stacking direction Y by a single flat plate-like inner plate 14 sandwiched between two outer plates 13. Corrugated plate-like fins 15 that promote heat exchange are disposed in the refrigerant passages 11 and 12.

各プレート13、14およびフィン15は、アルミニウム製の薄板をプレス成形したものであり、孔食防止の観点から、内側が犠牲陽極材付きのブレージングシート材を使用するのが望ましい。   Each of the plates 13 and 14 and the fin 15 is formed by press-molding a thin plate made of aluminum. From the viewpoint of preventing pitting corrosion, it is desirable to use a brazing sheet material with a sacrificial anode material on the inside.

外部プレート13には、冷媒通路11、12内での冷媒の流れ方向の両端側に、ベローズ2の筒部(詳細後述)が挿入される円形の挿入穴131が形成されている。内部プレート14には、挿入穴131に対向する位置に、第1冷媒通路11と第2冷媒通路12とを連通させる連通穴141が形成されている。なお、内部プレート14は本発明の中間壁に相当し、連通穴141は本発明の中間壁穴に相当する。   The outer plate 13 is formed with circular insertion holes 131 into which the cylindrical portions (described later in detail) of the bellows 2 are inserted at both ends in the refrigerant flow direction in the refrigerant passages 11 and 12. A communication hole 141 that allows the first refrigerant passage 11 and the second refrigerant passage 12 to communicate with each other is formed in the inner plate 14 at a position facing the insertion hole 131. The inner plate 14 corresponds to the intermediate wall of the present invention, and the communication hole 141 corresponds to the intermediate wall hole of the present invention.

ベローズ2は、蛇腹状の管であり、積層方向Yに容易に伸縮可能な蛇腹部21と、蛇腹部21の両端に設けられた円筒状の筒部22と、筒部22の外周部に設けられた鍔部23とを有する。ベローズ2は、アルミニウムよりなり、隣接する2つのチューブ1の挿入穴131に筒部22を挿入して接合されている。   The bellows 2 is a bellows-like tube, and is provided at a bellows portion 21 that can be easily expanded and contracted in the stacking direction Y, a cylindrical tube portion 22 provided at both ends of the bellows portion 21, and an outer peripheral portion of the tube portion 22. And the flange 23 formed. The bellows 2 is made of aluminum, and is joined by inserting the cylindrical portion 22 into the insertion holes 131 of two adjacent tubes 1.

入口パイプ3および出口パイプ4は、アルミニウムよりなり、積層方向Yの一端側に位置するチューブ1の挿入穴131に挿入されてチューブ1にろう付け接合されている。入口パイプ3および出口パイプ4は、冷媒を循環させる図示しないポンプ、および冷媒を冷却する図示しない熱交換器に接続されている。   The inlet pipe 3 and the outlet pipe 4 are made of aluminum, inserted into the insertion hole 131 of the tube 1 located on one end side in the stacking direction Y, and brazed to the tube 1. The inlet pipe 3 and the outlet pipe 4 are connected to a pump (not shown) that circulates the refrigerant and a heat exchanger (not shown) that cools the refrigerant.

発熱体となる両面冷却型の半導体モジュール5は、本発明の電子部品に相当するものであり、IGBT素子51と、銅板52と、放熱板53が、モールド樹脂54にて一体化されている。そして、半導体モジュール5は隣接する2つのチューブ1間に配置され、半導体モジュール5は、絶縁材6(主にセラミック板)や熱伝導グリスを介してチューブ1に接触するようになっている。なお、半導体モジュール5は、チューブ1に直接接触させた状態で配設してもよい。また、図示しない板ばねによって、積層されたチューブ1を積層方向Y両端から挟圧することにより、チューブ1間に半導体モジュール5が保持される。   The double-sided cooling type semiconductor module 5 serving as a heating element corresponds to the electronic component of the present invention, and an IGBT element 51, a copper plate 52, and a heat radiating plate 53 are integrated with a mold resin 54. And the semiconductor module 5 is arrange | positioned between the two adjacent tubes 1, and the semiconductor module 5 contacts the tube 1 via the insulating material 6 (mainly ceramic board) and heat conductive grease. The semiconductor module 5 may be disposed in a state of being in direct contact with the tube 1. Further, the semiconductor module 5 is held between the tubes 1 by sandwiching the stacked tubes 1 from both ends in the stacking direction Y by a leaf spring (not shown).

図4は、チューブ1における冷媒の入口側を示しており、この冷媒入口側においては、ベローズ2の筒部22の内径φD1と、内部プレート14の連通穴141の内径φD2が、異なっている。より詳細には、筒部22の内径φD1よりも連通穴141の内径φD2が大きくなっている。なお、ベローズ2は本発明の連結部材に相当する。   FIG. 4 shows the refrigerant inlet side of the tube 1. On the refrigerant inlet side, the inner diameter φD 1 of the cylindrical portion 22 of the bellows 2 and the inner diameter φD 2 of the communication hole 141 of the inner plate 14 are different. More specifically, the inner diameter φD2 of the communication hole 141 is larger than the inner diameter φD1 of the cylindrical portion 22. The bellows 2 corresponds to the connecting member of the present invention.

上記構成において、入口パイプ3から流入した冷媒は、ベローズ2内を通って各チューブ1の冷媒通路11、12の一端側に流入し、冷媒通路11、12内を流れ向きXに沿って流れ、冷媒通路11、12の他端側からベローズ2内を通って出口パイプ4に至る。このとき、冷媒通路11、12内を流れる冷媒と半導体モジュール5との間で熱交換が行われ、半導体モジュール5が冷却される。   In the above configuration, the refrigerant flowing in from the inlet pipe 3 passes through the bellows 2 and flows into one end side of the refrigerant passages 11 and 12 of each tube 1 and flows in the refrigerant passages 11 and 12 along the flow direction X. The refrigerant passages 11 and 12 reach the outlet pipe 4 through the bellows 2 from the other end side. At this time, heat exchange is performed between the refrigerant flowing in the refrigerant passages 11 and 12 and the semiconductor module 5 to cool the semiconductor module 5.

そして、筒部22の内径φD1よりも連通穴141の内径φD2を大きくすることにより、ベローズ2から各冷媒通路11、12に冷媒が分配される部分で図4に示すような急拡大流れを生じさせることで、ベローズ2内での冷媒の流れ向きに対し手前側(上流側)の第1冷媒通路11には冷媒が流れにくく、奥側(下流側)の第2冷媒通路12には流れやすくなる。したがって、第1冷媒通路11を流れる冷媒の流量Q1よりも第2冷媒通路12を流れる冷媒の流量Q2の方が多くなり、第1冷媒通路11側よりも第2冷媒通路12側の方が冷却能力が高くなる。   Then, by making the inner diameter φD2 of the communication hole 141 larger than the inner diameter φD1 of the cylindrical portion 22, a suddenly expanding flow as shown in FIG. 4 occurs in the portion where the refrigerant is distributed from the bellows 2 to the refrigerant passages 11 and 12. By doing so, it is difficult for the refrigerant to flow in the first refrigerant passage 11 on the near side (upstream side) with respect to the flow direction of the refrigerant in the bellows 2, and easily flows in the second refrigerant passage 12 on the back side (downstream side). Become. Therefore, the flow rate Q2 of the refrigerant flowing through the second refrigerant passage 12 is larger than the flow rate Q1 of the refrigerant flowing through the first refrigerant passage 11, and the second refrigerant passage 12 side cools more than the first refrigerant passage 11 side. Ability increases.

そして、半導体モジュール5における発熱量(放熱量)が大きい方の面を、冷却能力が高い方の第2冷媒通路12側に合わせ、半導体モジュール5における発熱量(放熱量)が小さい方の面を、冷却能力が低い方の第1冷媒通路11側に合わせることにより、半導体モジュール5を効率よく冷却することができる。   Then, the surface with the larger amount of heat generation (heat radiation amount) in the semiconductor module 5 is aligned with the second refrigerant passage 12 side with the higher cooling capacity, and the surface with the smaller amount of heat generation (heat radiation amount) in the semiconductor module 5 is formed. The semiconductor module 5 can be efficiently cooled by adjusting to the first refrigerant passage 11 side having the lower cooling capacity.

因みに、図5は、筒部22の内径φD1が20mm程度で、冷却器に12L/minの冷媒を流した場合の、内径差増減率(D2−D1)/D1と流量差増減率(Q2−Q1)/Q1の関係を示している。   Incidentally, FIG. 5 shows that the inner diameter difference increase / decrease rate (D2-D1) / D1 and the flow rate difference increase / decrease rate (Q2-) when the inner diameter φD1 of the cylindrical portion 22 is about 20 mm and a refrigerant of 12 L / min is passed through the cooler. The relationship of Q1) / Q1 is shown.

図5に示すように、筒部22の内径φD1よりも連通穴141の内径φD2を大きくして内径差増減率を増加させた場合、内径差増減率が略0%から略10%まで増加する範囲では、流量差増減率も増加することが確認された。但し、筒部22の内径φD1よりも連通穴141の内径φD2が大きくなりすぎると、ベローズ2方向の流れからチューブ1方向の流れが支配的になり流量差が生じなくなる。   As shown in FIG. 5, when the inner diameter difference increase / decrease rate is increased by increasing the inner diameter φD2 of the communication hole 141 to be larger than the inner diameter φD1 of the cylindrical portion 22, the inner diameter difference increase / decrease ratio increases from approximately 0% to approximately 10%. In the range, it was confirmed that the flow rate difference increase / decrease rate also increased. However, if the inner diameter φD2 of the communication hole 141 is too larger than the inner diameter φD1 of the cylindrical portion 22, the flow in the tube 1 direction becomes dominant from the flow in the bellows 2 direction, and a flow rate difference does not occur.

以上述べたように、本実施形態では、筒部22の内径φD1よりも連通穴141の内径φD2を大きくすることにより、第1冷媒通路11側よりも第2冷媒通路12側の方が冷却能力が高くなるようにしている。したがって、半導体モジュール5における発熱量(放熱量)が大きい方の面を、冷却能力が高い方の第2冷媒通路12側に合わせ、半導体モジュール5における発熱量(放熱量)が小さい方の面を、冷却能力が低い方の第1冷媒通路11側に合わせることにより、半導体モジュール5を効率よく冷却することができる。   As described above, in the present embodiment, the inner diameter φD2 of the communication hole 141 is made larger than the inner diameter φD1 of the cylindrical portion 22, so that the cooling capacity on the second refrigerant passage 12 side is higher than that on the first refrigerant passage 11 side. Is going to be high. Therefore, the surface with the larger amount of heat generation (heat dissipation amount) in the semiconductor module 5 is aligned with the second refrigerant passage 12 side with the higher cooling capacity, and the surface with the smaller amount of heat generation (heat dissipation amount) in the semiconductor module 5 is formed. The semiconductor module 5 can be efficiently cooled by adjusting to the first refrigerant passage 11 side having the lower cooling capacity.

また、第1冷媒通路11と第2冷媒通路12を流れる冷媒の温度上昇が略等価になることで、熱の移動が減少し、温度差によるチューブ1の歪み発生が防止されてチューブ1の信頼性(寿命)が向上する。そして、半導体モジュール5の両面の表面温度も同様に均一化することで、温度差による半導体モジュール5の歪み発生が防止されて半導体モジュール5の信頼性(寿命)も向上する。   In addition, since the temperature rise of the refrigerant flowing through the first refrigerant passage 11 and the second refrigerant passage 12 becomes substantially equivalent, the movement of heat is reduced, the occurrence of distortion of the tube 1 due to the temperature difference is prevented, and the reliability of the tube 1 is improved. (Life) is improved. Then, the surface temperatures of both surfaces of the semiconductor module 5 are also made uniform, so that the generation of distortion of the semiconductor module 5 due to the temperature difference is prevented, and the reliability (life) of the semiconductor module 5 is improved.

また、筒部22の内径φD1よりも連通穴141の内径φD2を小さくした場合と比較すると、本実施形態のように、筒部22の内径φD1よりも連通穴141の内径φD2を大きくした場合、連通穴141部位での圧損を小さくすることができる。   Further, when compared with the case where the inner diameter φD2 of the communication hole 141 is smaller than the inner diameter φD1 of the cylindrical portion 22, as in the present embodiment, when the inner diameter φD2 of the communication hole 141 is larger than the inner diameter φD1 of the cylindrical portion 22, The pressure loss at the communication hole 141 can be reduced.

(第2実施形態)
本発明の第2実施形態について説明する。図6は第2実施形態に係る冷却器の要部の断面図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described. FIG. 6 is a cross-sectional view of a main part of the cooler according to the second embodiment. The same or equivalent parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第1実施形態では、筒部22の内径φD1よりも連通穴141の内径φD2を大きくしたのに対し、本実施形態は、筒部22の内径φD1よりも連通穴141の内径φD2を小さくしている。   In the first embodiment, the inner diameter φD2 of the communication hole 141 is larger than the inner diameter φD1 of the cylindrical portion 22, whereas in the present embodiment, the inner diameter φD2 of the communication hole 141 is smaller than the inner diameter φD1 of the cylindrical portion 22. Yes.

これにより、ベローズ2内での冷媒の流れ向きに対し手前側(上流側)の第1冷媒通路11には冷媒が流れやすく、奥側(下流側)の第2冷媒通路12には冷媒が流れにくくなる。すなわち、図5に示すように、筒部22の内径φD1よりも連通穴141の内径φD2を小さくして内径差増減率を減少させた場合、内径差増減率が略0%から−側に減少すると流量差増減率も減少する。   Thus, the refrigerant easily flows in the first refrigerant passage 11 on the near side (upstream side) with respect to the flow direction of the refrigerant in the bellows 2, and the refrigerant flows in the second refrigerant passage 12 on the back side (downstream side). It becomes difficult. That is, as shown in FIG. 5, when the inner diameter difference increase / decrease rate is decreased by making the inner diameter φD2 of the communication hole 141 smaller than the inner diameter φD1 of the cylindrical portion 22, the inner diameter difference increase / decrease ratio decreases from approximately 0% to the minus side. Then, the flow rate difference increase / decrease rate also decreases.

本実施形態では、第1冷媒通路11側よりも第2冷媒通路12側の方が冷却能力が低くなるため、半導体モジュール5における発熱量(放熱量)が大きい方の面を、冷却能力が高い方の第1冷媒通路11側に合わせ、半導体モジュール5における発熱量(放熱量)が小さい方の面を、冷却能力が低い方の第2冷媒通路12側に合わせることにより、半導体モジュール5を効率よく冷却することができる。   In this embodiment, since the cooling capacity is lower on the second refrigerant path 12 side than on the first refrigerant path 11 side, the surface on which the heat generation amount (heat radiation amount) in the semiconductor module 5 is larger has a higher cooling capacity. The semiconductor module 5 is made efficient by matching the surface of the semiconductor module 5 with the smaller amount of heat generation (heat dissipation amount) with the side of the first refrigerant passage 11 with the lower cooling capacity. Can cool well.

また、第1実施形態と同様に、チューブ1や半導体モジュール5の信頼性(寿命)を向上させることができる。   Moreover, the reliability (life) of the tube 1 and the semiconductor module 5 can be improved similarly to 1st Embodiment.

(第3実施形態)
本発明の第3実施形態について説明する。図7は第3実施形態に係る冷却器の要部の断面図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Third embodiment)
A third embodiment of the present invention will be described. FIG. 7 is a cross-sectional view of a main part of a cooler according to the third embodiment. The same or equivalent parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図7に示すように、本実施形態は、筒部22の第1冷媒通路11への突出長さL1と、筒部22の第2冷媒通路12への突出長さL2とを異ならせることによって、チューブ1の入口断面積、すなわち、ベローズ2から各冷媒通路11、12に冷媒が分配される部分の通路断面積を変えるようにしている。   As shown in FIG. 7, in the present embodiment, the protruding length L1 of the cylindrical portion 22 into the first refrigerant passage 11 is different from the protruding length L2 of the cylindrical portion 22 into the second refrigerant passage 12. The cross-sectional area of the inlet of the tube 1, that is, the cross-sectional area of the passage where the refrigerant is distributed from the bellows 2 to the refrigerant passages 11 and 12, is changed.

これにより、第1冷媒通路11を流れる冷媒の流量Q1と第2冷媒通路12を流れる冷媒の流量Q2とを異ならせ、第1冷媒通路11側の冷却能力と第2冷媒通路12側の冷却能力とを異ならせることができる。   Thereby, the flow rate Q1 of the refrigerant flowing through the first refrigerant passage 11 and the flow rate Q2 of the refrigerant flowing through the second refrigerant passage 12 are made different, so that the cooling capacity on the first refrigerant path 11 side and the cooling capacity on the second refrigerant path 12 side are different. Can be different.

したがって、本実施形態では、第1実施形態と同様に、半導体モジュール5を効率よく冷却することができるとともに、チューブ1や半導体モジュール5の信頼性(寿命)を向上させることができる。   Therefore, in the present embodiment, as in the first embodiment, the semiconductor module 5 can be efficiently cooled, and the reliability (life) of the tube 1 and the semiconductor module 5 can be improved.

(他の実施形態)
上記各実施形態では、第1冷媒通路11を流れる冷媒の流量Q1と第2冷媒通路12を流れる冷媒の流量Q2とを異ならせることにより、第1冷媒通路11側の冷却能力と第2冷媒通路12側の冷却能力とを異ならせるようにしたが、第1冷媒通路11内のフィン15と第2冷媒通路12内のフィン15の熱交換性能を異ならせることにより、換言すると、高性能なフィンをどちらか一方に配置することにより、第1冷媒通路11側の冷却能力と第2冷媒通路12側の冷却能力とを異ならせるようにしてもよい。因みに、上記の高性能なフィンは、微細な流路、伝熱面積の拡大、オフセットフィンにすることで実現可能である。
(Other embodiments)
In each of the above embodiments, the cooling capacity on the first refrigerant passage 11 side and the second refrigerant passage are made different by making the flow rate Q1 of the refrigerant flowing through the first refrigerant passage 11 different from the flow rate Q2 of the refrigerant flowing through the second refrigerant passage 12. Although the cooling capacity on the 12th side is made different, the heat exchange performance of the fins 15 in the first refrigerant passage 11 and the fins 15 in the second refrigerant passage 12 is made different, in other words, high-performance fins. The cooling capacity on the first refrigerant passage 11 side and the cooling capacity on the second refrigerant passage 12 side may be made different from each other. Incidentally, the above-described high-performance fin can be realized by using a fine flow path, an enlarged heat transfer area, and an offset fin.

また、第1冷媒通路11および第2冷媒通路12の一方のみにフィン15を配置することにより、第1冷媒通路11側の冷却能力と第2冷媒通路12側の冷却能力とを異ならせるようにしてもよい。   Further, by disposing the fins 15 in only one of the first refrigerant passage 11 and the second refrigerant passage 12, the cooling ability on the first refrigerant passage 11 side and the cooling ability on the second refrigerant passage 12 side are made different. May be.

上記各実施形態では、冷媒としてエチレングリコール系の不凍液が混入した水を用いたが、冷媒としては、水やアンモニア等の自然冷媒や、フロリナート等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、メタノール、アルコール等のアルコール系冷媒、アセトン等のケトン系冷媒などを用いることができる。   In each of the above embodiments, water mixed with ethylene glycol antifreeze is used as the refrigerant. However, as the refrigerant, natural refrigerants such as water and ammonia, fluorocarbon refrigerants such as fluorinate, chlorofluorocarbons such as HCFC123 and HFC134a are used. A refrigerant based on alcohol, an alcohol based refrigerant such as methanol or alcohol, or a ketone based refrigerant such as acetone can be used.

また、上記実施形態においては、ハイブリッド電気自動車用インバータの両面冷却型半導体モジュールの冷却に本発明を適用したが、例えば産業機器のモータ駆動インバータや、ビル空調用のエアコンインバータなどの半導体モジュールの冷却に本発明を適用することもできる。   In the above embodiment, the present invention is applied to the cooling of a double-sided cooling type semiconductor module of an inverter for a hybrid electric vehicle. For example, cooling of a semiconductor module such as a motor-driven inverter for industrial equipment or an air conditioner inverter for building air conditioning. The present invention can also be applied to.

また、本発明の冷却器は、半導体モジュール5ではなく、パワートランジスタ、パワーFET、IGBTなどの電子部品を冷却することも可能である。   In addition, the cooler of the present invention can cool not the semiconductor module 5 but also electronic components such as a power transistor, a power FET, and an IGBT.

本発明の第1実施形態に係る冷却器の正面図である。It is a front view of the cooler concerning a 1st embodiment of the present invention. 図1のA−A線に沿う要部の断面図である。It is sectional drawing of the principal part in alignment with the AA of FIG. 図1のB部の正面断面図である。It is front sectional drawing of the B section of FIG. 図3のC部の拡大正面断面図である。It is an expanded front sectional view of the C section of FIG. 内径差増減率と流量差増減率の関係を示す特性図である。It is a characteristic view which shows the relationship between an internal diameter difference increase / decrease rate and a flow rate difference increase / decrease rate. 本発明の第2実施形態に係る冷却器の要部の断面図である。It is sectional drawing of the principal part of the cooler concerning 2nd Embodiment of this invention. 本発明の第3実施形態に係る冷却器の要部の断面図である。It is sectional drawing of the principal part of the cooler which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…チューブ、5…半導体モジュール(電子部品)、11…第1冷媒通路、12…第2冷媒通路。   DESCRIPTION OF SYMBOLS 1 ... Tube, 5 ... Semiconductor module (electronic component), 11 ... 1st refrigerant path, 12 ... 2nd refrigerant path.

Claims (9)

冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接する前記チューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、
1つの前記チューブ(1)内に形成された前記冷媒通路は、前記チューブ(1)の長手方向に沿って延びるように前記冷媒通路内に配置された中間壁(14)によって、前記チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、
前記第1冷媒通路(11)を流れる冷媒の流れ方向および前記第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、
隣接する2つの前記チューブ(1)のうち、一方のチューブ(1)の前記第1冷媒通路(11)が、前記電子部品(5)の一方の面を冷却し、他方のチューブ(1)の前記第2冷媒通路(12)が、前記電子部品(5)の他方の面を冷却するようになっており、
前記第1冷媒通路(11)側の冷却能力と前記第2冷媒通路(12)側の冷却能力とが異なることを特徴とする冷却器。
In a cooler in which a plurality of tubes (1) having a refrigerant passage through which a refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is cooled from both sides.
The refrigerant passage formed in one tube (1) is connected to the tube (1) by an intermediate wall (14) arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). ) Are divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction,
The flow direction of the refrigerant flowing through the first refrigerant passage (11) and the flow direction of the refrigerant flowing through the second refrigerant passage (12) are the same direction (X),
Of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) cools one surface of the electronic component (5), and the other tube (1) The second refrigerant passage (12) cools the other surface of the electronic component (5);
The cooler characterized in that the cooling capacity on the first refrigerant passage (11) side and the cooling capacity on the second refrigerant passage (12) side are different.
前記第1冷媒通路(11)の冷媒の流量と前記第2冷媒通路(12)側の冷媒の流量とを異ならせて、前記第1冷媒通路(11)側の冷却能力と前記第2冷媒通路(12)側の冷却能力とを異ならせたことを特徴とする請求項1に記載の冷却器。   The cooling capacity on the first refrigerant path (11) side and the second refrigerant path are made different from the refrigerant flow rate on the first refrigerant path (11) and the refrigerant flow rate on the second refrigerant path (12) side. The cooler according to claim 1, wherein the cooling capacity on the side is different. 冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接する前記チューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、
隣接する前記チューブ(1)における冷媒の入口側を連結する筒状の連結部材(2)を備え、
前記チューブ(1)には、前記連結部材(2)の筒部(22)が挿入される挿入穴(131)が形成され、
前記冷媒通路は、前記冷媒通路内に配置された中間壁(14)によって、前記チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、
前記中間壁(14)には、前記挿入穴(131)に対向する位置に、前記第1冷媒通路(11)と前記第2冷媒通路(12)とを連通させる中間壁穴(141)が形成され、
前記筒部(22)の内径(D1)と前記中間壁穴(141)の内径(D2)とが異なることを特徴とする冷却器。
In a cooler in which a plurality of tubes (1) having a refrigerant passage through which a refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is cooled from both sides.
A cylindrical connecting member (2) for connecting the refrigerant inlet side in the adjacent tube (1),
The tube (1) is formed with an insertion hole (131) into which the cylindrical portion (22) of the connecting member (2) is inserted,
The refrigerant passage is divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction of the tubes (1) by an intermediate wall (14) disposed in the refrigerant passage,
An intermediate wall hole (141) that connects the first refrigerant passage (11) and the second refrigerant passage (12) is formed in the intermediate wall (14) at a position facing the insertion hole (131). And
The cooler, wherein an inner diameter (D1) of the cylindrical portion (22) is different from an inner diameter (D2) of the intermediate wall hole (141).
前記筒部(22)の内径(D1)よりも前記中間壁穴(141)の内径(D2)が大きいことを特徴とする請求項3に記載の冷却器。   The cooler according to claim 3, wherein an inner diameter (D2) of the intermediate wall hole (141) is larger than an inner diameter (D1) of the cylindrical portion (22). 冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接する前記チューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、
隣接する前記チューブ(1)における冷媒の入口側を連結する筒状の連結部材(2)を備え、
前記チューブ(1)には、前記連結部材(2)の筒部(22)が挿入される挿入穴(131)が形成され、
前記冷媒通路は、前記冷媒通路内に配置された中間壁(14)によって、前記チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、
前記中間壁(14)には、前記挿入穴(131)に対向する位置に、前記第1冷媒通路(11)と前記第2冷媒通路(12)とを連通させる中間壁穴(141)が形成され、
前記筒部(22)は、前記挿入穴(131)から前記冷媒通路内に突出しており、
前記第1冷媒通路(11)側の前記筒部(22)の突出長さ(L1)と前記第2冷媒通路(12)側の前記筒部(22)の突出長さ(L2)とが異なることを特徴とする冷却器。
In a cooler in which a plurality of tubes (1) having a refrigerant passage through which a refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is cooled from both sides.
A cylindrical connecting member (2) for connecting the refrigerant inlet side in the adjacent tube (1),
The tube (1) is formed with an insertion hole (131) into which the cylindrical portion (22) of the connecting member (2) is inserted,
The refrigerant passage is divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction of the tubes (1) by an intermediate wall (14) disposed in the refrigerant passage,
An intermediate wall hole (141) that connects the first refrigerant passage (11) and the second refrigerant passage (12) is formed in the intermediate wall (14) at a position facing the insertion hole (131). And
The cylindrical portion (22) protrudes from the insertion hole (131) into the refrigerant passage,
The protruding length (L1) of the cylindrical portion (22) on the first refrigerant passage (11) side is different from the protruding length (L2) of the cylindrical portion (22) on the second refrigerant passage (12) side. A cooler characterized by that.
冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接する前記チューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、
1つの前記チューブ(1)内に形成された前記冷媒通路は、前記チューブ(1)の長手方向に沿って延びるように前記冷媒通路内に配置された中間壁(14)によって、前記チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、
前記第1冷媒通路(11)を流れる冷媒の流れ方向および前記第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、
隣接する2つの前記チューブ(1)のうち、一方のチューブ(1)の前記第1冷媒通路(11)が、前記電子部品(5)の一方の面を冷却し、他方のチューブ(1)の前記第2冷媒通路(12)が、前記電子部品(5)の他方の面を冷却するようになっており、
熱交換を促進するフィン(15)が前記第1冷媒通路(11)と前記第2冷媒通路(12)とに配置され、
前記第1冷媒通路(11)内の前記フィン(15)と前記第2冷媒通路(12)内の前記フィン(15)とは、熱交換性能が異なることを特徴とする冷却器。
In a cooler in which a plurality of tubes (1) having a refrigerant passage through which a refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is cooled from both sides.
The refrigerant passage formed in one tube (1) is connected to the tube (1) by an intermediate wall (14) arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). ) Are divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction,
The flow direction of the refrigerant flowing through the first refrigerant passage (11) and the flow direction of the refrigerant flowing through the second refrigerant passage (12) are the same direction (X),
Of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) cools one surface of the electronic component (5), and the other tube (1) The second refrigerant passage (12) cools the other surface of the electronic component (5);
Fins (15) for promoting heat exchange are disposed in the first refrigerant passage (11) and the second refrigerant passage (12),
The cooler, wherein the fin (15) in the first refrigerant passage (11) and the fin (15) in the second refrigerant passage (12) have different heat exchange performance.
冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接する前記チューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、
1つの前記チューブ(1)内に形成された前記冷媒通路は、前記チューブ(1)の長手方向に沿って延びるように前記冷媒通路内に配置された中間壁(14)によって、前記チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、
前記第1冷媒通路(11)を流れる冷媒の流れ方向および前記第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、
隣接する2つの前記チューブ(1)のうち、一方のチューブ(1)の前記第1冷媒通路(11)が、前記電子部品(5)の一方の面を冷却し、他方のチューブ(1)の前記第2冷媒通路(12)が、前記電子部品(5)の他方の面を冷却するようになっており、
熱交換を促進するフィン(15)が、前記第1冷媒通路(11)および前記第2冷媒通路(12)の一方のみに配置されていることを特徴とする冷却器。
In a cooler in which a plurality of tubes (1) having a refrigerant passage through which a refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is cooled from both sides.
The refrigerant passage formed in one tube (1) is connected to the tube (1) by an intermediate wall (14) disposed in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). ) Are divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction,
The flow direction of the refrigerant flowing through the first refrigerant passage (11) and the flow direction of the refrigerant flowing through the second refrigerant passage (12) are the same direction (X),
Of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) cools one surface of the electronic component (5), and the other tube (1) The second refrigerant passage (12) cools the other surface of the electronic component (5);
The cooler characterized by the fin (15) which accelerates | stimulates heat exchange being arrange | positioned only at one of the said 1st refrigerant path (11) and the said 2nd refrigerant path (12).
冷媒が流れる冷媒通路を有する複数のチューブ(1)が所定間隔を隔てて積層され、隣接する前記チューブ(1)間に保持された電子部品(5)を両面から冷却する冷却器において、In a cooler in which a plurality of tubes (1) having a refrigerant passage through which a refrigerant flows are stacked at a predetermined interval, and the electronic component (5) held between the adjacent tubes (1) is cooled from both sides.
1つの前記チューブ(1)内に形成された前記冷媒通路は、前記チューブ(1)の長手方向に沿って延びるように前記冷媒通路内に配置された中間壁(14)によって、前記チューブ(1)の積層方向に並ぶ第1冷媒通路(11)と第2冷媒通路(12)とに分割され、The refrigerant passage formed in one tube (1) is connected to the tube (1) by an intermediate wall (14) arranged in the refrigerant passage so as to extend along the longitudinal direction of the tube (1). ) Are divided into a first refrigerant passage (11) and a second refrigerant passage (12) arranged in the stacking direction,
前記第1冷媒通路(11)を流れる冷媒の流れ方向および前記第2冷媒通路(12)を流れる冷媒の流れ方向は、同一方向(X)であり、The flow direction of the refrigerant flowing through the first refrigerant passage (11) and the flow direction of the refrigerant flowing through the second refrigerant passage (12) are the same direction (X),
隣接する2つの前記チューブ(1)のうち、一方のチューブ(1)の前記第1冷媒通路(11)が、前記電子部品(5)の一方の面を冷却し、他方のチューブ(1)の前記第2冷媒通路(12)が、前記電子部品(5)の他方の面を冷却するようになっており、Of the two adjacent tubes (1), the first refrigerant passage (11) of one tube (1) cools one surface of the electronic component (5), and the other tube (1) The second refrigerant passage (12) cools the other surface of the electronic component (5);
前記チューブ(1)には、冷媒を流入させる流入穴が形成され、The tube (1) is formed with an inflow hole through which the refrigerant flows.
前記中間壁(14)には、前記流入穴に対向する位置に、前記第1冷媒通路(11)と前記第2冷媒通路(12)とを連通させる中間壁穴(141)が形成され、The intermediate wall (14) is formed with an intermediate wall hole (141) communicating the first refrigerant passage (11) and the second refrigerant passage (12) at a position facing the inflow hole,
前記流入穴の内径(D1)と前記中間壁穴(141)の内径(D2)とが異なることを特徴とする冷却器。The cooler, wherein an inner diameter (D1) of the inflow hole is different from an inner diameter (D2) of the intermediate wall hole (141).
前記第1冷媒通路(11)側および前記第2冷媒通路(11、12)側のうち冷却能力の低い側は、前記電子部品(5)の両面のうち発熱量が小さい側の面を冷却し、Of the first refrigerant passage (11) side and the second refrigerant passage (11, 12) side, the side with the lower cooling capacity cools the surface of the electronic component (5) with the smaller amount of heat generation. ,
前記第1冷媒通路(11)側および前記第2冷媒通路(11、12)側のうち冷却能力の高い側は、前記電子部品(5)の両面のうち発熱量が大きい側の面を冷却するようになっていることを特徴とする請求項1ないし8のいずれか1つに記載の冷却器。Of the first refrigerant passage (11) side and the second refrigerant passage (11, 12) side, the side with the highest cooling capacity cools the surface of the electronic component (5) that has the larger amount of heat generation. The cooler according to any one of claims 1 to 8, wherein the cooler is configured as described above.
JP2004125461A 2003-12-03 2004-04-21 Cooler Expired - Fee Related JP4140549B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004125461A JP4140549B2 (en) 2004-04-21 2004-04-21 Cooler
DE102004057526.6A DE102004057526B4 (en) 2003-12-03 2004-11-29 Stack cooler
US11/001,509 US7571759B2 (en) 2003-12-03 2004-12-01 Stacked type cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125461A JP4140549B2 (en) 2004-04-21 2004-04-21 Cooler

Publications (2)

Publication Number Publication Date
JP2005311046A JP2005311046A (en) 2005-11-04
JP4140549B2 true JP4140549B2 (en) 2008-08-27

Family

ID=35439464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125461A Expired - Fee Related JP4140549B2 (en) 2003-12-03 2004-04-21 Cooler

Country Status (1)

Country Link
JP (1) JP4140549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078133A1 (en) 2010-06-29 2011-12-29 Denso Corporation STRUCTURE AND METHOD FOR FIXING A PCB WITH EMBEDDED ELECTRONIC COMPONENTS ON A COOLER

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212075A (en) * 2006-02-10 2007-08-23 Denso Corp Exhaust heat recovery equipment
JP2008171840A (en) * 2007-01-05 2008-07-24 T Rad Co Ltd Liquid-cooling heat sink and design method thereof
JP2009266937A (en) * 2008-04-23 2009-11-12 Denso Corp Stacked cooler
JP5012824B2 (en) * 2009-01-30 2012-08-29 株式会社デンソー Laminated cooling device and manufacturing method of cooling pipe used therefor
WO2011083578A1 (en) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 Semiconductor module
US20110232866A1 (en) * 2010-03-29 2011-09-29 Zaffetti Mark A Integral cold plate and honeycomb facesheet assembly
CN103222049A (en) * 2010-11-24 2013-07-24 丰田自动车株式会社 Stacked cooler
JP5949616B2 (en) * 2013-03-22 2016-07-13 トヨタ自動車株式会社 Stacked cooler
FR3006754B1 (en) * 2013-06-07 2015-06-26 Valeo Systemes Thermiques CONNECTION MODULE, HEAT EXCHANGER, AND CORRESPONDING THERMAL EXCHANGE ASSEMBLY
JP6191540B2 (en) * 2014-05-16 2017-09-06 株式会社デンソー Laminate heat exchanger
JP2016017737A (en) * 2014-07-07 2016-02-01 現代自動車株式会社Hyundaimotor Company TED heat exchanger
JP6350336B2 (en) * 2015-02-23 2018-07-04 株式会社デンソー Cooler
KR102169412B1 (en) * 2019-02-19 2020-10-23 주식회사 고산 Heat exchanger for electric element cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078133A1 (en) 2010-06-29 2011-12-29 Denso Corporation STRUCTURE AND METHOD FOR FIXING A PCB WITH EMBEDDED ELECTRONIC COMPONENTS ON A COOLER

Also Published As

Publication number Publication date
JP2005311046A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US7571759B2 (en) Stacked type cooler
JP4140549B2 (en) Cooler
CA2820330C (en) Two-phase cooling system for electronic components
US7621320B2 (en) Internal heat exchanger
US20060254752A1 (en) Radiator and heatsink apparatus having the radiator
JP4265509B2 (en) Stacked cooler
KR101509937B1 (en) Heat exchanger with thermoelectric element and method for producing the same
KR20130105667A (en) Cooler and refrigeration device provided with same
JP4265510B2 (en) Cooler
JP2009021404A (en) Cooling device for electronic component, and manufacturing method thereof
KR101290962B1 (en) Gas cooler
JP2008221951A (en) Cooling system of electronic parts for automobile
JP6331870B2 (en) Stacked cooler
JP2010065873A (en) Heat exchanger
JP2010010195A (en) Cooling device for electronic component for automobile
JP4128935B2 (en) Water-cooled heat sink
JP4984955B2 (en) Power element mounting unit, power element mounting unit manufacturing method, and power module
JP4400502B2 (en) Stacked cooler
WO2013105490A1 (en) Heat exchanger
KR20120128564A (en) Thermoelectric conversion module
CN112105884B (en) Heat exchanger
JP6787059B2 (en) How to manufacture heat exchangers, information processing devices, and flat tubes
JP6191540B2 (en) Laminate heat exchanger
KR100433156B1 (en) Heat exchanger
JP2007278568A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees