JPH0738321Y2 - Roadbed ballast compaction device - Google Patents

Roadbed ballast compaction device

Info

Publication number
JPH0738321Y2
JPH0738321Y2 JP1990053797U JP5379790U JPH0738321Y2 JP H0738321 Y2 JPH0738321 Y2 JP H0738321Y2 JP 1990053797 U JP1990053797 U JP 1990053797U JP 5379790 U JP5379790 U JP 5379790U JP H0738321 Y2 JPH0738321 Y2 JP H0738321Y2
Authority
JP
Japan
Prior art keywords
compaction
claw
compacting
ballast
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990053797U
Other languages
Japanese (ja)
Other versions
JPH04119803U (en
Inventor
英二 河野
光雄 松宮
Original Assignee
株式会社中道兄弟商会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中道兄弟商会 filed Critical 株式会社中道兄弟商会
Priority to JP1990053797U priority Critical patent/JPH0738321Y2/en
Publication of JPH04119803U publication Critical patent/JPH04119803U/en
Application granted granted Critical
Publication of JPH0738321Y2 publication Critical patent/JPH0738321Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shovels (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

【考案の詳細な説明】[Detailed description of the device] 【産業上の利用分野】[Industrial applications]

本考案は、鉄道のレール保守作業において使用される、
枕木下にバラスを詰め込むための道床バラスの締固装置
に関するものである。
The present invention is used in rail rail maintenance work,
The present invention relates to a ballast ballast compaction device for packing a ballast under a sleeper.

【従来の技術】[Prior art]

道床バラスの締固作業にあっては、伝統的にツルハシが
使用されていたが、現在においては、作業者が手に持っ
て人為的に作業を行うハンディタイプのタイタンパ(以
下「第1従来機」という)や、自走者に締固爪部材を組
み込んで、作業を自動的に行うように構成されたマルチ
プルタイタンパ(以下「第2従来機」という)が使用さ
れている。
Traditionally, a pickaxe was used for compaction of ballast ballasts, but nowadays, a handy type tie tamper (hereinafter referred to as "the first conventional machine" that is manually held by an operator is used. Or a multiple tie tamper (hereinafter referred to as “second conventional machine”) configured to automatically perform work by incorporating a compacting claw member into a self-propelled person.

【考案が解決しようとする課題】[Problems to be solved by the device]

第1従来機は手軽で安価なものであるが、騒音公害対策
として枕木の幅が広くなる傾向にあることとも相俟っ
て、枕木下にバラスを十分に詰め込むことが困難なもの
であり、良好なバラス締固作業を行い得ないといった機
能上の問題がある。また、作業者に苛酷な労働を強いる
といった作業上の問題もある。また、第2従来機は、か
かる問題を生じないものであるが、大型で極めて高価な
ものであるから、数百メートル程度のレール保守を行う
場合には採算が合わず、ランニングコストの面で問題が
ある。したがって、鉄道の高速運転化に伴いこの種のレ
ール保守が頻繁に行われる現状においては、上記した問
題の解決が強く要請されている。 本考案は、かかる点に鑑みてなされたもので、枕木下へ
のバラス詰込みを容易且つ良好に行うことができる小型
且つ安価な道床バラスの締固装置を提供することを目的
とするものである。
The first conventional machine is simple and inexpensive, but it is difficult to fully pack the ballast under the sleepers in combination with the fact that the sleepers tend to be wide as a measure against noise pollution. There is a functional problem that good compaction work cannot be performed. In addition, there is a problem in work such as forcing the worker to work hard. In addition, the second conventional machine does not cause such a problem, but is large and extremely expensive. Therefore, when performing rail maintenance of several hundred meters, it is not profitable and running cost is reduced. There's a problem. Therefore, in the current situation where this kind of rail maintenance is frequently performed along with the speeding up of railway operations, there is a strong demand for solving the above-mentioned problems. The present invention has been made in view of the above point, and an object thereof is to provide a compact and inexpensive compacting device for ballast ballasts that can easily and satisfactorily pack the ballast under the sleepers. is there.

【課題を解決するための手段】[Means for Solving the Problems]

この課題を解決した本考案の道床バラスの締固装置は、
パワーシャベル等の昇降機に取付けて使用するように構
成されたもので、移動可能な昇降機に取付けられて昇降
操作される取付フレームと、取付フレームに緩衝機構を
介して懸吊支持された本体フレームと、下端部に締固爪
を有し、本体フレームに前後方向に揺動自在に垂下支持
された前後一対の締固爪部材と、両締固爪部材間に介装
されて、両締固爪部材を対向方向に接近動作させる締固
動作機構と、各締固爪部材に取付けられた、回転方向が
逆である前後一対の振動モータとを具備しており、締固
動作機構と各締固爪部材とが、両者の一方に嵌合固定し
た環状のゴム体にその他方に設けた連結ピンをゴム体の
弾性変形範囲内において前後上下に相対変位しうる状態
で嵌挿させることによって、連結されていて、各締固爪
部材が振動モータにより前後上下に二次元振動されうる
ように構成したものである。
The compacting device of the ballast ballast of the present invention that solves this problem is
It is configured to be used by being attached to an elevator such as a power shovel, and a mounting frame that is attached to a movable elevator and is operated to elevate, and a main frame that is suspended and supported by the mounting frame via a buffer mechanism. , A pair of front and rear compacting claw members that have a compacting claw at the lower end portion and are supported by the main body frame so as to be swingable in the front-rear direction, and both compacting claws are interposed between the compacting claw members. The compaction operation mechanism that causes the members to move closer to each other in the opposite direction, and the pair of front and rear vibration motors that are attached to the respective compaction claw members and rotate in opposite directions are provided. The claw member is connected by inserting a connecting pin provided on the other side into an annular rubber body fitted and fixed to one of the two in such a state that it can be displaced relative to the front and rear and up and down within the elastic deformation range of the rubber body. And each compacting claw member is a vibration motor. More back and forth up and down those configured so that it can be vibrated two-dimensionally.

【作用】[Action]

昇降機により取付フレームを下降させて、両締固爪部材
を枕木の両側においてバラス中に侵入させておく。この
侵入は、昇降機による下降動作力と装置の自重とによっ
て行われる。 そして、前後に対向する締固爪を互いに接近する方向
(以下「締固方向」という)に締固動作機構により移動
させて、バラスを枕木下に詰め込む。このとき、各振動
モータを駆動させると、連結ピンがゴム体の弾性変形範
囲内において相対変位することによって、各締固爪部材
は前後上下に各別に二次元振動せしめられることから、
締固爪の振動によりバラスが半流動化せしめられて、バ
ラスが枕木下に均一且つ緊密に詰め込まれることにな
り、バラスの締固めが良好に行われる。 このようにして締固爪を侵入させたバラス層部分が締固
められると、引続き、このバラス層部分(以下「締固層
部分」という)下のバラス層部分(以下「未締固層部
分」という)へと締固爪を下降させて、この未締固層部
分を、上記したと同様に、締固爪の二次元振動により半
流動化させながら締固爪を締固動作機構により締固方向
に移動させて、締固めるのである。爾後、このような締
固爪の下降と締固方向への動作とを繰り返すことによっ
て、バラス層全体を締固めるのである。 ところで、締固爪を締固層部分から未締固層部分へと下
降させる場合、締固爪部材が二次元振動していると、締
固爪を未締固層部分へと円滑に侵入させ得ない。すなわ
ち、締固爪部材が侵入方向に直交する前後方向に振動し
ていると、締固爪を侵入させようとする未締固層部分が
深くなればなる程、バラス層による通過抵抗が大きくな
るからである。この場合、昇降機により締固爪の押し込
み力を大きくして、締固爪を締固層部分から未締固層部
分へと無理やり侵入させようとすると、締固爪等が破損
する虞れがあり、実際上、締固爪の未締固層部分への押
し込みは不可能となる。 しかし、本考案の締固装置にあっては、次のような作用
により、締固爪の締固層部分から未締固層部分への侵入
が極めて円滑に行われることになる。 すなわち、バラス層部分が締固められて締固層部分とな
ると、締固動作機構が作動しても締固爪が締固方向に動
作しなくなり、各締固爪部材には、締固動作機構により
締固方向に回動させようとするモーメントと締固められ
たバラスから受ける逆方向のモーメントとが作用するこ
とから、連結ピンがゴム体を弾性変形不能な状態にまで
圧縮する位置へと相対変位せしめられることになる。こ
の状態となると、各連結ピンの相対変位が阻止されて、
各締固爪部材と締固動作機構とが固定連結された状態と
なり、両締固爪部材は締固動作機構を介して一体化され
ることになり、つまり両締固爪部材、締固動作機構及び
本体フレームが相対運動を生じない一体構造物となり、
振動モータの性質上、両振動モータの振動が同調するこ
とになる。その結果、両振動モータの回転方向が逆にな
っていることから、この一体構造物が緩衝機構を介して
取付フレームに懸吊支持されていることとも相俟って、
一体構造物に作用する上下方向の振動は同調されて強大
となるが、左右方向の振動は互いに相殺されて消滅す
る。すなわち、締固爪部材には上下方向の加振力のみが
作用することになる。 したがって、この上下方向の加振力によって、締固爪は
締固層部分から未締固部分へと円滑且つ容易に侵入せし
められる。この侵入は、昇降機による積極的な押し込み
によるのではなく、締固爪に作用する上下方向の加振力
によって行われるのであって、いわば、締固爪が自己的
に未締固層部分へと潜り込んでいくことになる。すなわ
ち、締固めが終了すると、つまり締固爪の締固方向への
移動が締固層部分によって阻止されると、締固爪の二次
元振動が自動的に上下方向の一次元振動に変化して、昇
降機による積極的な押し込みを行わずとも、締固爪が自
動的に未締固層部分へと侵入していくのである。 そして、締固爪がバラスが締固められていない未締固層
部分に侵入して、締固爪の締固方向への移動が可能な状
態となると、つまり連結ピンとゴム体との相対変位が可
能となると、再び締固爪の二次元振動が自動的に開始さ
れ、未締固層部分が半流動化される。 このように、締固爪は、それが侵入したバラス層部分が
締固められるまでは二次元振動して、バラスを半流動化
させつつ締固め、その締固めが終了すると、上下方向に
のみ振動して締固層部分下の未締固層部分へと円滑に侵
入し、再び二次元振動して未締固層部分の締固めを行う
のであり、二次元振動による締固めと上下方向振動によ
る未締固層部分への侵入とを円滑に繰り返しながら、バ
ラス層全体を良好且つ容易に締固めるのである。 また、振動機構による振動は、緩衝機構により吸収緩和
されて取付フレームに伝達されることがない。したがっ
て、締固爪部材を振動させることによっては、昇降機に
何らの悪影響も及ぼさない。
The mounting frame is lowered by an elevator, and both fastening claw members are invaded in the ballast on both sides of the sleeper. This intrusion is performed by the descending operation force of the elevator and the weight of the device. Then, the compaction claws that are opposed to each other in the front-rear direction are moved in a direction toward each other (hereinafter, referred to as “compaction direction”) by the compaction operation mechanism, and the ballast is packed under the sleepers. At this time, when each vibration motor is driven, the coupling pin relatively displaces within the elastic deformation range of the rubber body, so that each compaction claw member is vibrated two-dimensionally in the front, rear, up, and down directions.
The vibration of the compaction claws causes the ballast to be semi-fluidized, so that the ballast is uniformly and tightly packed under the sleepers, so that the ballast can be compacted well. In this way, when the ballast layer portion in which the compaction claw has entered is compacted, the ballast layer portion below this ballast layer portion (hereinafter referred to as "compacted layer portion") (hereinafter referred to as "unconsolidated layer portion") continues. , The unconsolidated layer portion is semi-fluidized by the two-dimensional vibration of the compacting claw, and the compacting claw is compacted by the compacting operation mechanism as described above. Move in the direction and compact. After that, the entire ballast layer is compacted by repeating the descending of the compacting claw and the operation in the compacting direction. By the way, when lowering the compaction claw from the compaction layer part to the unconsolidated layer part, if the compaction claw member is two-dimensionally vibrated, the compaction claw will smoothly enter the unconsolidated layer part. I don't get it. That is, when the compaction claw member is vibrating in the front-back direction orthogonal to the intrusion direction, the deeper the unconsolidated layer portion to which the compaction claw is to penetrate is, the larger the passage resistance due to the ballast layer becomes. Because. In this case, if the pressing force of the compaction claw is increased by the elevator and the compaction claw is forced to enter from the compaction layer part to the unconsolidated layer part, the compaction claw etc. may be damaged. Actually, it is impossible to push the compaction claw into the unconsolidated layer portion. However, in the compacting device of the present invention, the intrusion from the compacted layer portion of the compaction claw into the unconsolidated layer portion is carried out very smoothly by the following action. That is, when the loose layer portion is compacted to become the compaction layer portion, the compaction claw does not move in the compaction direction even if the compaction motion mechanism operates, and each compaction claw member has a compaction motion mechanism. The moment that tries to rotate in the compaction direction and the moment in the opposite direction that is received from the compacted ball acts due to the action of the coupling pin, so that the connecting pin moves relative to the position that compresses the rubber body to the state where it cannot elastically deform. It will be displaced. In this state, the relative displacement of each connecting pin is blocked,
Each compacting claw member and the compacting operation mechanism are fixedly connected, and both compacting claw members are integrated through the compacting operation mechanism, that is, both compacting claw members and compacting operation mechanism. The mechanism and body frame become an integrated structure that does not cause relative movement,
Due to the nature of the vibration motors, the vibrations of both vibration motors are synchronized. As a result, since the rotation directions of both vibration motors are opposite, this integrated structure is suspended and supported by the mounting frame via the cushioning mechanism,
The vertical vibrations acting on the integrated structure are synchronized and become strong, but the horizontal vibrations cancel each other out and disappear. That is, only the vertical vibration force acts on the compaction claw member. Therefore, the vibrating force in the vertical direction allows the compaction claw to smoothly and easily enter from the compacted layer portion to the unconsolidated portion. This invasion is not done by positive pushing by the elevator, but by the vertical vibration force acting on the compaction claw, so to speak. I will sneak in. That is, when the compaction is completed, that is, when the movement of the compaction claw in the compaction direction is blocked by the compaction layer portion, the two-dimensional vibration of the compaction claw automatically changes to the vertical one-dimensional vibration. Thus, the compacting claws automatically invade into the unconsolidated layer portion without positively pushing by the elevator. Then, when the compaction claw enters the uncompacted layer portion where the ballast is not compacted, and the compaction claw can move in the compaction direction, that is, the relative displacement between the connecting pin and the rubber body is When possible, the two-dimensional vibration of the compaction claw is automatically started again, and the uncompacted layer portion is semi-fluidized. In this way, the compaction claw vibrates two-dimensionally until the invading ballast layer portion is compacted, semi-fluidizing the ballast while compacting it, and when the compaction is completed, it vibrates only in the vertical direction. Then, it smoothly penetrates into the unconsolidated layer portion below the consolidated layer portion, and again two-dimensionally vibrates to compact the unconsolidated layer portion. By smoothly repeating the invasion into the unconsolidated layer portion, the entire ballast layer is favorably and easily compacted. Further, the vibration generated by the vibration mechanism is not absorbed by the cushioning mechanism and is not transmitted to the mounting frame. Therefore, by vibrating the compaction claw member, the elevator is not adversely affected.

【実施例】【Example】

以下、本考案の構成を第1図〜第7図に示す実施例に基
づいて具体的に説明する。 第1図において、1は道床バラス2上に枕木3を介して
敷設されたレール、4はレール1上を走行する台車5と
これに搭載したパワーシャベル6とからなる昇降機、7
は昇降機4に取付けられた道床バラスの締固装置であ
る。 この実施例の締固装置7は、第1図〜第3図に示す如
く、昇降機4に取付けられて昇降操作される取付フレー
ム8と、取付フレーム8に緩衝機構10を介して懸吊支持
された本体フレーム9と、本体フレーム9に前後方向
(第1図〜第3図における左右方向)に対向して垂下支
持された前後一対の締固爪部材12,12と、締固爪部材12,
12を揺動操作させる締固動作機構13と、締固爪部材12,1
2を前後上下方向に二次元振動させる振動機構14とを具
備してなる。 取付フレーム8は、第1図〜第3図に示す如く、上面部
に取付部8aを設けた矩形枠状のもので、取付部8aがパワ
ーシャベル6の昇降アーム6aの先端部に着脱自在に取付
けられている。 本体フレーム9は、第1図〜第3図に示す如く、矩形板
状の上壁9aとその左右端から垂下する両側壁9b,9bと両
側壁9b,9bの下端中央部間を連結する前後一対の水平な
支軸17,17とを備えた形状に構成されている。 緩衝機構10は、第2図及び第6図に示す如く、両フレー
ム8,9間を連結する4本の懸吊部材15…からなる。各懸
吊部材15は、上下一対の角筒状の外殻体15a,15aと両外
殻体15a,15a間を連結するネジ杆15bと各外殻体15aに45
度回転変位させた状態で同心的に内挿された上下一対の
角筒状の内殻体15c,15cと各内外殻体15a,15c間に圧縮状
態で嵌入された4個の円柱状のゴム体15d…とからな
り、上位の内殻体15cを取付フレーム8に取付けると共
に下位の内殻体15cを本体フレーム9の側壁9bに取付け
ることによって、本体フレーム9を取付フレーム8に前
後揺動可能に懸吊支持している。かかる揺動は、内外殻
体15a,15cがゴム体15d…を弾性変形,回転させつつ相対
回転せしめられることで可能となり、ゴム体15d…によ
る防振効果を伴う。なお、両フレーム8,9の間隔は各ネ
ジ杆15bにより適宜に調整しうるようになっている。 各締固爪部材12は、第3図に示す如く、本体フレーム9
の両側壁9b,9bに取付けた支軸17に前後揺動自在に支持
させた支持フレーム16と、この支持フレーム16に垂下状
に固着した左右一対のホルダー16a,16aと、各ホルダー1
6aの下端部に取付けた締固爪12aとからなり、本体フレ
ーム9に支軸17回りで前後揺動自在に垂下支持されたも
のである。両締固爪部材12,12の対向間隔つまり前後方
向間隔は枕木3の幅よりも所定量大きく設定されてお
り、各締固爪部材12における両締固爪12a,12aの対向間
隔つまり左右方向間隔はレール1の幅よりも所定量大き
く設定されている。 締固動作機構13は、第3図〜第5図に示す如く、各締固
爪部材12の上端部に左右一対の操作アーム13a,13aを立
設し、油圧シリンダ13gの両端取付部13′g,13′gを前
後の操作アーム13a,13a及び13a,13aに枢着連結13b,13b
してなり、油圧シリンダ13gを伸縮操作することによっ
て、両締固爪部材12,12をハ字状をなして対向する締固
作用待機位置(第2図及び第3図一点鎖線位置)と倒立
ハ字状をなして対向する締固作用終了位置(同図二点鎖
線位置)とに亘って揺動させうるように構成されてい
る。さらに、油圧シリンダ13gの各取付部13′gと操作
アーム13a,13aとは、第4図に示す如く、連結ピン13bの
両端部を操作アーム13a,13aに回転自在に取付けると共
に、連結ピン13bの中央部を取付部13′gに形成せる貫
通孔18に遊嵌状に洞貫させ、且つ貫通孔18の内周面と連
結ピン13bの外周面との間隙に環状のゴム体19を充填保
持させることによって、緩衝的に連結されている。すな
わち、第4図及び第5図(A)に示す如く、締固動作機
構13である油圧シリンダ13gの両端部に嵌合固定した環
状のゴム体19,19に、各締固爪部材12の操作アーム13aに
設けた連結ピン13bを、夫々、ゴム体19の弾性変形範囲
内において前後上下に相対変位しうる状態で嵌挿させる
ことによって、両締固爪部材12,12が、共に本体フレー
ム9に軸支17,17されているにも拘わらず、後述する振
動モータ14a,14aにより各別に前後上下に二次元振動さ
れるように工夫してある。 振動機構14は、第2図及び第3図に示す如く、各振動モ
ータ14aを、揺動支点17に直対向する位置に配して、締
固爪部材12と操作アーム13a,13aとの連結部分に取付け
てなる。両振動モータ14a,14aは、偏心回転軸を左右方
向に沿わせた状態で且つ回転方向が逆となる状態で配置
されている。したがって、両振動モータ14a,14aを駆動
させると、両締固爪部材12,12,12は揺動支点17,17回り
で微小揺動される。すなわち、両締固爪部材12,12には
上下振動と前後振動とが同期して付与されることにこと
になる。なお、かかる振動に伴い操作アーム13a…の上
端部も振動して油圧シリンダ13gの両端部との連結点に
は負荷が作用することになるが、この負荷は上記した緩
衝体19,19の弾性変形により吸収されて、締固爪部材12,
12の振動が油圧シリンダ13gに悪影響を及ぼすことがな
い。また、本体フレーム9に付与される前後方向の加振
力は相殺されることと、本体フレーム9が緩衝機構10を
介して吊支されていることから、締固爪部材12,12の振
動が取付フレーム8したがって昇降機4に悪影響を及ぼ
すことこともない。ところで、この実施例では、振動モ
ータ14aとして出力0.75KW,回転数3500rpmのものを使用
して、締固爪12a…に加振力1800Kgの上下振動(振幅は
約2mm)及び前後振動(振幅は約4mm)が同期して付与さ
れるように工夫してある。また、これにより操作アーム
13aの連結点13bも約2mmの振幅で振動するが、緩衝体19
の材質,形状はかかる連結点振動を充分に吸収緩和でき
るように設定されている。 次に、以上のように構成された締固装置1によるバラス
締固作業を具体的に説明する。 まず、台車5を移動させると共にパワーシャベル6を旋
回させて、両締固爪部材12,12を、前後に対向する締固
爪12a,12aが枕木3の前後両側に配置され且つ左右に対
向する締固爪12a,12aがレール1の左右両側に配置され
るような位置にもたらす(第1図〜第3図参照)。この
状態では、締固動作機構13たる油圧シリンダ13gを縮小
状態として、両締固爪部材12,12を締固作用待機位置に
保持させておく(第2図及び第3図一点鎖線参照)。 そして、パワーシャベル6の昇降アーム6aを操作して締
固装置7を下降させて、締固爪12a…をバラス層2内に
下降侵入させると共に、振動モータ14a,14aを駆動させ
て、締固爪12a…を前後上下に二次元振動させる。な
お、締固爪12a…のバラス層2への侵入は、パワーシャ
ベル9による下降動作力と装置1の自重とによって行わ
れる。このとき、締固爪12a…を侵入させたバラス層部
分においては、締固爪12a…の二次元振動によりバラス2
a…が振動せしめられて、締固爪12a…が侵入されたバラ
ス層部分のバラス2a…は半流動状態となる。 しかる後、油圧シリンダ13gを伸長操作して、両締固爪
部材12,12を締固作用終了位置に向けて回動させ、前後
に対向する締固爪12a,12aを互いに接近する方向つまり
締固方向に漸次移動させていく。この締固爪12a…の移
動に伴って、バラス2a…は枕木3下へと詰め込まれる。 このとき、バラス2a…が半流動状態となっていることか
ら、締固爪12a…に大きなエネルギを必要とさせること
なく、バラス2a…を容易に詰め込みうる。しかも締固爪
12a…が略楕円軌道を描いて前後上下に二次元振動して
いることと相俟って、枕木3下においてはバラス2a…が
均一且つ緊密に締固められることになる。すなわち、締
固爪12a…が二次元振動している場合には、バラス2a…
には第7図に示す如き二次元方向の振動力P,Pが作用し
て、バラス2a…が二次元方向に詰め込まれることにな
る。例えば、第7図に実線で示す状態にある3つのバラ
ス2a…に上記振動力P,Pが作用すると、これにより両側
のバラス2a,2aが、鎖線で示す如く、中央のバラス2′
aを枕木3方向に押し上げつつ、接近せしめられること
になる。なお、締固爪12a…が前後方向に一次元振動し
ているにすぎない場合には、第8図に鎖線で示す如く、
バラス2a…は一次元方向に詰め込まれるにすぎず、その
締固めが不充分であり、しかも半流動化させ得ない。 したがって、両締固爪部材12,12がシリンダ13gの作動に
拘わらず締固方向に動作しなくなった段階では、枕木3
下にバラス2a…が充分に締固められた状態で均一詰め込
まれることになる。 そして、上記バラス層部分が締固められると、シリンダ
13gの作動に拘わらず締固爪12a…が締固方向に動作しな
くなり、第5図(B)に示す如く、各連結ピン13bがゴ
ム体19を弾性変形不能な状態にまで圧縮する位置へと相
対変位せしめられて、各連結ピン13bの相対変位が阻止
される。この状態となると、両締固爪部材12,12とシリ
ンダ13gとは固定連結された状態となり、両締固爪部材1
2,12はシリンダ13gを介して一体化されることになる。
したがって、両締固爪部材12,12とシリンダ13g及び本体
フレーム9とは一体構造物となり、振動モータ14aの性
質上、両振動モータ14a,14aの振動が同調することにな
る。その結果、両振動モータ14a,14aの回転方向が逆に
なっていることから、左右方向の振動は互いに相殺され
て消滅し、両締固爪部材12,12は上下方向にのみ振動す
ることになる。 したがって、締固爪12a…は、パワーシャベル6による
積極的な押し込みを必要とすることなく、バラス2a…が
締固められたバラス層部分つまり締固層部分からその下
位のバラス層部分である未締固層部分へと潜り込んでい
くことになる。 そして、締固爪12a…がバラス2a…が締固められていな
い未締固層部分に侵入して、締固爪12a…の締固方向へ
の動作が可能な状態となると、締固爪部材12,12とシリ
ンダ13gとの固定連結状態が解除されて、例えば第5図
(A)に示す如く、各連結ピン13bとゴム体19との相対
変位が可能な状態となり、再び締固爪12a…の二次元振
動が開始される。締固爪12a…の二次元振動が開始され
ると、未締固層部分のバラス2a…が半流動状態となり、
シリンダ13gによる締固爪12a…の締固方向への移動によ
って、この未締固層部分におけるバラス締固めが上記し
たと同様に良好に行われる。 爾後、以上の作業を繰り返すことによって、バラス層2
全体が良好に締固められるのである。 なお、本考案に係る締固装置7は、上記各実施例に限定
されるものではなく、本考案の基本原理を逸脱しない範
囲において適宜に変更,改良しておくことができる。ま
た、本考案に係る締固装置は、パワーシャベルの他、昇
降機構を備えたトロッコ等の適宜の昇降機に取付けて使
用することができる。
Hereinafter, the structure of the present invention will be specifically described with reference to the embodiments shown in FIGS. In FIG. 1, 1 is a rail laid on a ballast ballast 2 through sleepers 3, 4 is an elevator consisting of a trolley 5 traveling on the rail 1 and a power shovel 6 mounted on the trolley, 7
Is a ballast ballast compaction device attached to the elevator 4. As shown in FIGS. 1 to 3, the compaction device 7 of this embodiment has a mounting frame 8 which is mounted on the elevator 4 and operated to move up and down, and is suspended and supported by the mounting frame 8 via a buffer mechanism 10. Body frame 9, a pair of front and rear compaction claw members 12, 12 supported by the main body frame 9 so as to face each other in the front-rear direction (left-right direction in FIGS. 1 to 3), and the compaction claw members 12,
The compaction operation mechanism 13 for swinging the 12 and the compaction claw members 12, 1
A vibration mechanism 14 for two-dimensionally vibrating 2 in the front-back and up-down directions is provided. As shown in FIGS. 1 to 3, the mounting frame 8 has a rectangular frame shape with a mounting portion 8a provided on the upper surface, and the mounting portion 8a is detachably attached to the tip end of the lifting arm 6a of the power shovel 6. Installed. As shown in FIGS. 1 to 3, the main body frame 9 includes a rectangular plate-shaped upper wall 9a, side walls 9b, 9b hanging from the left and right ends thereof, and front and rear connecting center portions of lower ends of the side walls 9b, 9b. It is configured to have a pair of horizontal support shafts 17, 17. As shown in FIGS. 2 and 6, the buffer mechanism 10 is composed of four suspension members 15 ... Which connect the frames 8 and 9 together. Each suspension member 15 includes a pair of upper and lower rectangular tubular outer shells 15a, 15a and a screw rod 15b for connecting the outer shells 15a, 15a to each other, and each outer shell 15a has 45
4 cylindrical rubbers inserted in a compressed state between a pair of upper and lower rectangular tubular inner shells 15c, 15c that are concentrically inserted while being rotationally displaced The main body frame 9 can be swung back and forth on the mounting frame 8 by mounting the upper inner shell body 15c on the mounting frame 8 and the lower inner shell body 15c on the side wall 9b of the main body frame 9. Suspended and supported by. Such swinging is possible because the inner and outer shell bodies 15a and 15c are relatively deformed while elastically deforming and rotating the rubber bodies 15d, and the rubber bodies 15d have a vibration damping effect. The distance between the two frames 8 and 9 can be adjusted appropriately by the screw rods 15b. Each compacting claw member 12 has a body frame 9 as shown in FIG.
A support frame 16 supported by a support shaft 17 attached to both side walls 9b, 9b of the support frame 16 so as to be swingable back and forth; a pair of left and right holders 16a, 16a fixed in a hanging manner to the support frame 16;
It is composed of a compaction claw 12a attached to the lower end of 6a, and is supported by the main body frame 9 so as to be swingable back and forth around the support shaft 17. The facing interval between the two clamping claw members 12, 12, that is, the front-rear direction interval is set to be larger than the width of the sleeper 3 by a predetermined amount. The interval is set to be larger than the width of the rail 1 by a predetermined amount. As shown in FIGS. 3 to 5, the compaction operation mechanism 13 has a pair of left and right operation arms 13a, 13a provided upright on the upper end of each compaction claw member 12, and both end mounting portions 13 'of a hydraulic cylinder 13g. g, 13'g is pivotally connected to the front and rear operation arms 13a, 13a and 13a, 13a 13b, 13b
By expanding and contracting the hydraulic cylinder 13g, both the compaction claw members 12, 12 are inverted to the compaction action standby position (the alternate long and short dash line position in FIGS. 2 and 3) facing each other in a V shape. It is constructed so that it can be swung over to the opposite end position of the compaction action (the position indicated by the chain double-dashed line in the figure) which is in the shape of a letter "V". Further, as shown in FIG. 4, the respective mounting portions 13'g of the hydraulic cylinder 13g and the operating arms 13a, 13a have both ends of the connecting pin 13b rotatably attached to the operating arms 13a, 13a, and the connecting pin 13b. The central portion of the through hole is loosely fitted into the through hole 18 formed in the mounting portion 13'g, and the annular rubber body 19 is filled in the gap between the inner peripheral surface of the through hole 18 and the outer peripheral surface of the connecting pin 13b. It is buffered by being held. That is, as shown in FIG. 4 and FIG. 5 (A), the ring-shaped rubber bodies 19, 19 fitted and fixed to both ends of the hydraulic cylinder 13g, which is the compaction operation mechanism 13, are attached to the compaction claw members 12 respectively. By inserting the connecting pins 13b provided on the operation arm 13a in such a state that they can be displaced relative to each other in the longitudinal and vertical directions within the elastic deformation range of the rubber body 19, both the fastening claw members 12 and 12 are both body frames. Despite being pivotally supported 17 on the shaft 9, the vibration motors 14a, 14a, which will be described later, are individually devised so that they can be two-dimensionally vibrated back and forth and up and down. As shown in FIGS. 2 and 3, the vibrating mechanism 14 arranges each vibrating motor 14a at a position directly opposite to the swing fulcrum 17, and connects the compacting claw member 12 and the operating arms 13a, 13a. It is attached to the part. Both vibration motors 14a, 14a are arranged in a state in which the eccentric rotation shaft is along the left-right direction and the rotation directions are opposite. Therefore, when both the vibration motors 14a, 14a are driven, the both fastening claw members 12, 12, 12 are slightly swung around the swing fulcrums 17,17. That is, the vertical vibration and the longitudinal vibration are applied to both the fastening claw members 12, 12 in synchronization. Note that, due to the vibration, the upper ends of the operation arms 13a ... Also vibrate, and a load acts on the connection point with both ends of the hydraulic cylinder 13g. This load is caused by the elasticity of the buffer bodies 19 and 19 described above. Absorbed by the deformation, the compaction claw member 12,
Vibration of 12 does not adversely affect the hydraulic cylinder 13g. Further, since the front-back vibration force applied to the main body frame 9 is offset and the main body frame 9 is suspended via the cushioning mechanism 10, the vibration of the compaction claw members 12, 12 does not occur. The mounting frame 8 and thus the elevator 4 will not be adversely affected. By the way, in this embodiment, a vibration motor 14a having an output of 0.75 KW and a rotation speed of 3500 rpm is used, and the compaction claws 12a ... are subjected to a vertical vibration (amplitude is about 2 mm) and a longitudinal vibration (amplitude is about 2 mm) of an exciting force of 1800 Kg. About 4 mm) is devised so that they are given in synchronization. This also allows the operation arm
The connecting point 13b of 13a also vibrates with an amplitude of about 2 mm, but the shock absorber 19
The material and shape of are designed to absorb and relax the vibration at the connecting point. Next, the compacting operation of the loosening by the compacting device 1 configured as described above will be specifically described. First, the trolley | bogie 5 is moved and the power shovel 6 is rotated, and both the compaction claw members 12 and 12 are the front and rear compaction claws 12a and 12a arrange | positioned at the front and back both sides of the sleeper 3, and it opposes left and right. Bring the compaction claws 12a, 12a to positions such that they are arranged on both left and right sides of the rail 1 (see FIGS. 1 to 3). In this state, the hydraulic cylinder 13g, which is the compaction operation mechanism 13, is set to the contracted state, and both compaction claw members 12, 12 are held at the compaction action standby position (see the alternate long and short dash line in FIGS. 2 and 3). Then, the elevating arm 6a of the power shovel 6 is operated to lower the compaction device 7 so that the compaction claws 12a ... Enter the ballast layer 2 and the vibration motors 14a and 14a are driven to perform the compaction. Two-dimensionally vibrates the claws 12a ... The compaction claws 12a ... Intrude into the ballast layer 2 by the descending force of the power shovel 9 and the weight of the device 1. At this time, in the ballast layer portion where the compaction claws 12a ... Have entered, the ballast 2 is caused by two-dimensional vibration of the compaction claws 12a.
When a ... is vibrated, the ballasts 2a ... In the ballast layer portion into which the compaction claws 12a have entered are brought into a semi-fluid state. Then, the hydraulic cylinder 13g is extended to rotate both the compaction claw members 12, 12 toward the compaction action end position, and the compaction claws 12a, 12a facing each other in the front-rear direction are approached to each other, that is, the compaction claws 12a, 12a are closed. Gradually move in a solid direction. With the movement of the compaction claws 12a, the balls 2a are packed under the sleepers 3. At this time, since the balls 2a are in a semi-fluid state, the balls 2a can be easily packed without requiring a large amount of energy for the compaction claws 12a. Moreover, the compaction claw
Combined with the fact that 12a ... oscillate two-dimensionally in the front-back and up-down directions in a substantially elliptical orbit, the balls 2a ... are compacted uniformly and tightly under the sleepers 3. That is, when the compaction claws 12a ... Are two-dimensionally vibrated, the balls 2a ...
The vibration forces P, P in the two-dimensional directions as shown in FIG. 7 act on the balls, and the balls 2a ... Are packed in the two-dimensional directions. For example, when the vibrating forces P, P act on the three balls 2a ... In the state shown by the solid line in FIG. 7, the balls 2a, 2a on both sides are thereby moved to the center ball 2 ', as shown by the chain line.
While pushing a toward the sleeper 3 direction, it is possible to bring them closer. When the compaction claws 12a are only one-dimensionally vibrated in the front-rear direction, as shown by the chain line in FIG.
The balasses 2a ... are only packed in one dimension, their compaction is insufficient, and they cannot be semi-fluidized. Therefore, at the stage when both the compaction claw members 12, 12 do not move in the compaction direction regardless of the operation of the cylinder 13g, the sleeper 3
The balls 2a ... are uniformly packed in the state that they are sufficiently compacted. When the ballast layer is compacted, the cylinder
Despite the operation of 13g, the compaction claws 12a ... Do not move in the compaction direction, and as shown in FIG. 5 (B), the connecting pins 13b move to a position where the rubber body 19 is compressed to a state where it cannot be elastically deformed. And the relative displacement of each connecting pin 13b is prevented. In this state, both the fastening claw members 12, 12 and the cylinder 13g are fixedly connected, and both the fastening claw members 1
2, 12 will be integrated via a cylinder 13g.
Therefore, both the fastening claw members 12, 12 and the cylinder 13g and the main body frame 9 become an integrated structure, and the vibrations of the two vibration motors 14a, 14a are synchronized due to the nature of the vibration motor 14a. As a result, since the rotation directions of the two vibration motors 14a, 14a are opposite to each other, the vibrations in the left-right direction cancel each other out and disappear, and the both compaction claw members 12, 12 vibrate only in the vertical direction. Become. Therefore, the compaction claws 12a ... Do not need to be positively pushed in by the power shovel 6, and are the ballast layer portion where the ballasts 2a ... It will sneak into the compaction layer. Then, when the compaction claws 12a ... Intrude into the uncompacted layer portion where the balls 2a ... Are not compacted, and the compaction claws 12a ... Can be moved in the compaction direction, the compaction claw members are formed. The fixed connection state between the cylinders 12 and 12 and 12 is released, and as shown in FIG. 5 (A), for example, the relative displacement between each connection pin 13b and the rubber body 19 becomes possible, and the compaction claw 12a is again formed. The two-dimensional vibration of ... is started. When the two-dimensional vibration of the compaction claws 12a ... Is started, the balls 2a.
By the movement of the compaction claws 12a ... In the compaction direction by the cylinder 13g, the compact compaction in the unconsolidated layer portion can be satisfactorily performed as described above. After that, by repeating the above work, the ballast layer 2
The whole is compacted well. The compacting device 7 according to the present invention is not limited to the above-mentioned embodiments, but can be appropriately modified and improved within the range not departing from the basic principle of the present invention. In addition to the power shovel, the compaction device according to the present invention can be used by being attached to an appropriate elevator such as a dolly equipped with an elevator mechanism.

【考案の効果】[Effect of device]

以上の説明から明らかなように、本考案の締固装置は、
第1従来機に比して機能,作業面で優れ、バラス締固作
業を簡便且つ良好に行うことができるものであり、また
第2従来機に比して小形且つ安価で、レール保守区間が
数百メートル程度である場合にも十分採算に見合う作業
を行い得るもので、その実用的価値極めて大なるもので
ある。
As is clear from the above description, the compaction device of the present invention is
Compared to the first conventional machine, it is superior in function and work, and can perform the compaction work easily and satisfactorily. It is smaller and cheaper than the second conventional machine, and the rail maintenance section is small. Even in the case of several hundred meters, it is possible to perform work that is profitable enough, and its practical value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第7図は本考案に係る締固装置の一実施例を示
したもので、第1図は締固装置を昇降機に取付けた状態
を示す側面図、第2図は締固装置の側面図、第3図は同
縦断側面図、第4図は第3図のIV−IV線に沿う要部の横
断平面図、第5図は第4図のV−V線断面図、第6図は
第2図の要部の縦断面図、第7図はバラスの詰め込み作
用を示す説明図であり、第8図は締固爪を前後方向に一
次元振動させた場合におけるバラスの詰め込み作用を示
す説明図である。 1……レール、2……道床バラス、3……枕木、4……
昇降機、7……締固装置、8……取付フレーム、9……
本体フレーム、10……緩衝機構、12……締固爪部材、12
a……締固爪、13……締固動作機構、13b……連結ピン、
14a……振動モータ、19……ゴム体。
1 to 7 show an embodiment of a compaction device according to the present invention. FIG. 1 is a side view showing a state in which the compaction device is mounted on an elevator, and FIG. 2 is a compaction device. Of FIG. 3, FIG. 3 is a longitudinal side view of the same, FIG. 4 is a cross-sectional plan view of a main part taken along line IV-IV of FIG. 3, FIG. 5 is a sectional view taken along line VV of FIG. FIG. 6 is a vertical cross-sectional view of the main part of FIG. 2, FIG. 7 is an explanatory view showing the packing operation of the ball, and FIG. 8 is packing of the ball when the compaction claw is one-dimensionally vibrated in the front-back direction. It is explanatory drawing which shows an effect. 1 …… rail, 2 …… ballast ballast, 3 …… sleepers, 4 ……
Elevator, 7 ... Compaction device, 8 ... Mounting frame, 9 ...
Main body frame, 10 ... Buffer mechanism, 12 ... Compaction claw member, 12
a ... Compaction claw, 13 ... Compaction operation mechanism, 13b ... Connection pin,
14a …… Vibration motor, 19 …… Rubber body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】移動可能な昇降機に取付けられて昇降操作
される取付フレームと、取付フレームに緩衝機構を介し
て懸吊支持された本体フレームと、下端部に締固爪を有
し、本体フレームに前後方向に揺動自在に垂下支持され
た前後一対の締固爪部材と、両締固爪部材間に介装され
て、両締固爪部材を対向方向に接近動作させる締固動作
機構と、各締固爪部材に取付けられた、回転方向が逆で
ある前後一対の振動モータとを具備しており、締固動作
機構と各締固爪部材とが、両者の一方に嵌合固定した環
状のゴム体にその他方に設けた連結ピンをゴム体の弾性
変形範囲内において前後上下に相対変位しうる状態で嵌
挿させることによって、連結されていて、各締固爪部材
が振動モータにより前後上下に二次元振動されうるよう
に構成したことを特徴とする道床バラスの締固装置。
1. A main body frame having a mounting frame mounted on a movable elevator and operated to move up and down, a main body frame suspended and supported by the mounting frame through a buffer mechanism, and a compacting claw at a lower end portion. A pair of front and rear compacting claw members which are hung so as to be swingable in the front-rear direction, and a compacting operation mechanism which is interposed between the two compacting claw members and causes both compacting claw members to approach each other in opposite directions. , A pair of front and rear vibration motors having opposite rotation directions attached to the respective compaction claw members, and the compaction operation mechanism and each compaction claw member are fitted and fixed to one of the two. Connected by inserting a connecting pin provided on the other side of the annular rubber body in a state in which it can be displaced relative to the front, rear, up, and down within the elastic deformation range of the rubber body, and each compaction claw member is connected by the vibration motor. It is configured so that it can be vibrated in two dimensions, Clamping the solid unit of the track bed ballast to symptoms.
JP1990053797U 1990-04-02 1990-05-22 Roadbed ballast compaction device Expired - Lifetime JPH0738321Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990053797U JPH0738321Y2 (en) 1990-04-02 1990-05-22 Roadbed ballast compaction device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP90036094U 1990-04-02
JP3609490 1990-04-02
JP2-36094 1990-04-02
JP1990053797U JPH0738321Y2 (en) 1990-04-02 1990-05-22 Roadbed ballast compaction device

Publications (2)

Publication Number Publication Date
JPH04119803U JPH04119803U (en) 1992-10-27
JPH0738321Y2 true JPH0738321Y2 (en) 1995-08-30

Family

ID=31948482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990053797U Expired - Lifetime JPH0738321Y2 (en) 1990-04-02 1990-05-22 Roadbed ballast compaction device

Country Status (1)

Country Link
JP (1) JPH0738321Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328647A (en) * 2005-05-23 2006-12-07 Nippon Pneumatic Mfg Co Ltd Cutter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347402A (en) * 1986-08-13 1988-02-29 川崎製鉄株式会社 Tamping apparatus for railroad bed
JPS6347401A (en) * 1986-08-13 1988-02-29 川崎製鉄株式会社 Working machine

Also Published As

Publication number Publication date
JPH04119803U (en) 1992-10-27

Similar Documents

Publication Publication Date Title
JP3950374B2 (en) Mobile loading test vehicle
JPH082413A (en) Method and device for continuous measurement of lateral resistance of railroad track and track stabilizing machine
JPS5814521B2 (en) Kidōtsukigatamekikaiyounotsukigatamekogu unit
CN109826076A (en) A kind of concrete vibrating device and method
JPH0738321Y2 (en) Roadbed ballast compaction device
JP3950373B2 (en) Mobile loading test vehicle
JP3702252B2 (en) Mobile loading test vehicle
JPH0260803B2 (en)
GB1585001A (en) Apparatus for tamping or packing the bed of railway tracks
JPH0774483B2 (en) Roadbed ballast compaction device
CN212802585U (en) Flat plate vibrator
JP3702251B2 (en) Mobile loading test vehicle
US3196803A (en) Mobile track aligning machine and method
JP3950375B2 (en) Mobile loading test vehicle
US3012516A (en) Light tamping machine
RU61723U1 (en) COMPLEX FOR VIBRODOWNING OF FOUNDATIONS OF CONTACT NETWORK SUPPORTS AND ANCHORS
JPS6326410Y2 (en)
JPS6347402A (en) Tamping apparatus for railroad bed
JPS5812886Y2 (en) Track alignment machine tamping device
CN211368699U (en) Piling device for constructional engineering
CN210530348U (en) Vibration pump
JP3186480U (en) Compaction device for inorganic waste
JPH04126907U (en) Vibratory compaction machine
JPH07119105A (en) Tamping apparatus
JP3905799B2 (en) Mobile loading test vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term