JPH0737814A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH0737814A
JPH0737814A JP20299193A JP20299193A JPH0737814A JP H0737814 A JPH0737814 A JP H0737814A JP 20299193 A JP20299193 A JP 20299193A JP 20299193 A JP20299193 A JP 20299193A JP H0737814 A JPH0737814 A JP H0737814A
Authority
JP
Japan
Prior art keywords
gap
thin film
semiconductor wafer
film forming
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20299193A
Other languages
Japanese (ja)
Inventor
Yuji Ota
裕治 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20299193A priority Critical patent/JPH0737814A/en
Publication of JPH0737814A publication Critical patent/JPH0737814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To almost equalize the flow rate of a gaseous raw material running along the whole outer periphery of a semiconductor wafer by a method wherein a gap adjusting member is arranged in the gap between a notch part of the semiconductor wafer and a reaction tube inner wall so as to almost equalize the gap along the whole periphery. CONSTITUTION:When plural semiconductor wafers 3 are mounted on a holding member 20 for transfer to be contained in a reaction tube, the gap made in the nearby part to a notch part 3A of the semiconductor wafers 3 is almost equalized with the gap excluding the nearby part by a gap adjusting member 21 provided in the holding means 20 for transfer so as to almost equalize the whole peripheral gap of the semiconductor wafers 3. At this time, the gap adjusting member 21 is a bar type member 21 having an opposite surface 21a commonly opposing to the notch part 3A of the plural semiconductor wafers 3 mounted on the holding member 20 for transfer. Furthermore, the gap adjusting member 21 is arranged in the holding member for transfer so that the opposite surface 21A makes a specific gap at specific interval with the notch part 3A of a plurality of semiconductor wafers 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図11〜図15) 発明が解決しようとする課題(図16) 課題を解決するための手段(図1〜図3) 作用(図1〜図3) 実施例(図1〜図10) 発明の効果[Table of Contents] The present invention will be described in the following order. Industrial Application Conventional Technology (FIGS. 11 to 15) Problem to be Solved by the Invention (FIG. 16) Means for Solving the Problem (FIGS. 1 to 3) Action (FIGS. 1 to 3) Example (FIGS. 1-10) Effect of the invention

【0002】[0002]

【産業上の利用分野】本発明は薄膜形成装置に関し、特
にシリコンウエハの表面に原料ガスを流して均一な薄膜
を形成するCVD(Chemical Vapor Deposition )装置
に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus, and is particularly suitable for application to a CVD (Chemical Vapor Deposition) apparatus for forming a uniform thin film by flowing a raw material gas on the surface of a silicon wafer.

【0003】[0003]

【従来の技術】従来、この種のCVD装置においては、
シリコンウエハ(以下、ウエハと呼ぶ)を一旦石英ボー
トに複数枚搭載し、この石英ボートに搭載した状態で反
応炉の中に収納して反応ガスを流すものがある。図11
に示す減圧CVD装置1は、ヒータ部2を上半部にもつ
と共に、このヒータ部2の下部に搬送用のエレベータ機
構(図示せず)を有する。CVD装置1はこのエレベー
タ機構によつてウエハ3を複数枚搭載した石英ボート4
を搬送し、ヒータ部2に内蔵されて加熱される反応炉5
の中に収容するようになされている。
2. Description of the Related Art Conventionally, in this type of CVD apparatus,
There is a method in which a plurality of silicon wafers (hereinafter, referred to as wafers) are once mounted on a quartz boat, and the silicon wafer is loaded in the quartz boat and housed in a reaction furnace to flow a reaction gas. Figure 11
The low-pressure CVD apparatus 1 shown in (1) has a heater part 2 in the upper half part, and has an elevator mechanism (not shown) for transportation under the heater part 2. The CVD apparatus 1 uses the elevator mechanism to mount a plurality of wafers 3 on a quartz boat 4
Reactor 5 that conveys and is heated by being built in the heater unit 2.
It is designed to be housed inside.

【0004】反応炉5は、図12に示すように円筒形状
の石英外管6及び石英外管6の内側に円筒形状の石英内
管7をもつと共に、石英外管6の底部には回転機構部8
をもつ。また反応炉5の内部は30〔Torr〕以下の真空状
態に保たれるようになされている。ウエハ3を複数枚搭
載した石英ボート4は反応炉5の下部よりエレベータで
回転機構部8の装着穴を通つて石英内管7の中に装着さ
れる。石英ボート4が回転機構部8によつて支えられる
と加熱された反応ガスが石英内管7の下から上に流され
る。これにより反応ガスは拡散してそれぞれのウエハ3
の表面に超薄膜を成膜する。
As shown in FIG. 12, the reactor 5 has a cylindrical quartz outer tube 6 and a cylindrical quartz inner tube 7 inside the quartz outer tube 6, and a rotating mechanism at the bottom of the quartz outer tube 6. Part 8
With. Further, the inside of the reaction furnace 5 is kept in a vacuum state of 30 [Torr] or less. A quartz boat 4 having a plurality of wafers 3 mounted therein is mounted in a quartz inner tube 7 from the lower part of a reaction furnace 5 by an elevator through a mounting hole of a rotation mechanism section 8. When the quartz boat 4 is supported by the rotation mechanism portion 8, the heated reaction gas is caused to flow from the bottom to the top of the quartz inner tube 7. As a result, the reaction gas diffuses and each wafer 3
An ultra thin film is formed on the surface of.

【0005】石英ボート4は、図13及び図14に示す
ように上下の1対デイスク9及び10の間に互いに平行
な4本の支柱11〜14及び支柱11〜14の補強リブ
15が設けられている。それぞれの支柱11〜14に
は、石英ボート4の断面を上方に見た図15に示すよう
に幅がウエハ3の厚さとほぼ等しく、深さがそれぞれの
支柱11〜14の約半分まで堀り込まれたスロツト16
が同一間隔で50〜200 個設けられており、これによりこ
のスロツト16に50〜200 枚のウエハ3をそれぞれ差し
込むことができるようになされている。
As shown in FIGS. 13 and 14, the quartz boat 4 is provided with four columns 11 to 14 parallel to each other and reinforcing ribs 15 of the columns 11 to 14 between the upper and lower paired disks 9 and 10. ing. As shown in FIG. 15 in which the cross section of the quartz boat 4 is viewed upward, the width of each of the columns 11 to 14 is substantially equal to the thickness of the wafer 3, and the depth thereof is dug to about half of each of the columns 11 to 14. Slots 16 included
50 to 200 wafers are provided at the same intervals, so that 50 to 200 wafers 3 can be inserted into the slot 16, respectively.

【0006】[0006]

【発明が解決しようとする課題】ところで各ウエハ3
は、一旦、円盤形状に形成された後、外周の一部が直線
で切断されて三日月形状部分が切除され、これによりウ
エハ3上に形成される集積回路の位置の基準となる切り
欠き部(以下、これをオリエンテーシヨンフラツトと呼
ぶ)3Aを与えられる。各ウエハ3は、オリエンテーシ
ヨンフラツト3Aの向きをウエハ3を挿入する側又はそ
の反対側に全て揃えて石英ボート4に並べられる。
By the way, each wafer 3
Is once formed into a disc shape, and then a part of the outer periphery is cut with a straight line to cut out a crescent-shaped portion, whereby a notch (reference to the position of the integrated circuit formed on the wafer 3 ( Hereinafter, this will be referred to as an orientation flat) 3A. The wafers 3 are arranged on the quartz boat 4 with the orientation of the orientation flats 3A all aligned on the side into which the wafer 3 is inserted or on the opposite side.

【0007】ところが図16に示すように、石英ボート
4が石英内管7の中に収納されたとき石英内管7の内壁
7Aとウエハ3の外周との間に形成される隙間は、石英
内管7の断面が円形であることによりオリエンテーシヨ
ンフラツト3Aの部分では広く、これ以外の部分では均
一になる。これによりオリエンテーシヨンフラツト3A
の部分の隙間を流れる反応ガスの流速が遅くなつてこの
部分に反応ガスが滞留し、オリエンテーシヨンフラツト
3Aの付近の成膜速度が速くなる。この結果ウエハ3全
体に亘つて均一な膜厚を得ることが難しいという問題が
ある。
However, as shown in FIG. 16, when the quartz boat 4 is housed in the quartz inner tube 7, the gap formed between the inner wall 7A of the quartz inner tube 7 and the outer periphery of the wafer 3 is inside the quartz. Since the tube 7 has a circular cross section, it is wide in the portion of the orientation flat 3A and uniform in the other portions. As a result, the orientation flat 3A
As the flow velocity of the reaction gas flowing through the gap of the portion becomes slow, the reaction gas stays in this portion, and the film forming rate near the orientation flat 3A becomes faster. As a result, there is a problem that it is difficult to obtain a uniform film thickness over the entire wafer 3.

【0008】また薄膜の厚さを均一にするため、反応ガ
スを流しているとき回転機構部8により石英ボート4を
回転させているが、この方法では回転機構部8の回転不
良や回転軸より外気が反応炉5の内部に漏れて真空度の
不良が生じる等の問題が有り、解決策としては未だ不十
分である。
Further, in order to make the thickness of the thin film uniform, the quartz boat 4 is rotated by the rotating mechanism portion 8 while the reaction gas is flowing. In this method, however, the rotating mechanism portion 8 is not rotated properly or is rotated from the rotating shaft. There is a problem that the outside air leaks into the reaction furnace 5 and the degree of vacuum is deteriorated, which is still insufficient as a solution.

【0009】本発明は以上の点を考慮してなされたもの
で、反応管内に複数枚収納された半導体ウエハの外周を
流れる原料ガスの流速を全周に亘つてほぼ均一にし得る
薄膜形成装置を提案しようとするものである。
The present invention has been made in consideration of the above points, and provides a thin film forming apparatus capable of making the flow velocity of a raw material gas flowing around the outer circumference of a plurality of semiconductor wafers housed in a reaction tube substantially uniform over the entire circumference. It is a proposal.

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、一部に切欠き部3Aを有する半導
体ウエハ3を複数枚搭載した搬送用保持部材を反応管内
の所定位置に位置決めし、反応管の内壁と半導体ウエハ
3との間に生じた隙間を通じて半導体ウエハ3の表面に
原料ガスを流し込むことにより半導体ウエハ3の表面に
薄膜を形成する薄膜形成装置において、半導体ウエハ3
の切欠き部3Aと反応管の内壁との間に生じた隙間に隙
間調整部材を配置し、半導体ウエハ3の外周と反応管の
内壁との隙間を全周に亘つてほぼ均一にするようにし
た。
In order to solve such a problem, in the present invention, a carrying holding member having a plurality of semiconductor wafers 3 each having a notch 3A is positioned at a predetermined position in a reaction tube. In the thin film forming apparatus for forming a thin film on the surface of the semiconductor wafer 3 by pouring a raw material gas on the surface of the semiconductor wafer 3 through a gap formed between the inner wall of the reaction tube and the semiconductor wafer 3,
A gap adjusting member is arranged in the gap formed between the notch portion 3A and the inner wall of the reaction tube so that the gap between the outer circumference of the semiconductor wafer 3 and the inner wall of the reaction tube is substantially uniform over the entire circumference. did.

【0011】また本発明においては、隙間調整部材21
は、搬送用保持部材20に搭載された複数枚の半導体ウ
エハ3の切欠き部3Aに共通して対向する対向面21A
を有する棒状の部材21でなり、対向面21Aが複数枚
の半導体ウエハ3の切欠き部3Aとの間に所定間隔の隙
間を形成するように搬送用保持部材20に配置されてい
るようにした。
Further, in the present invention, the gap adjusting member 21
Is a facing surface 21A that commonly faces the cutout portions 3A of the plurality of semiconductor wafers 3 mounted on the carrying holding member 20.
And is arranged on the carrier holding member 20 so that the facing surface 21A forms a predetermined gap between the facing surface 21A and the notches 3A of the plurality of semiconductor wafers 3. .

【0012】さらに本発明においては、隙間調整部材4
2は、搬送用保持部材40に搭載された複数枚の半導体
ウエハ3のそれぞれの切欠き部3Aにほぼ隙間なく当接
して、複数枚の半導体ウエハ3をそれぞれ切欠き部3A
が無い元の形状に近づけるように搬送用保持部材40に
配置されているようにした。
Further, in the present invention, the gap adjusting member 4
2 contacts the cutout portions 3A of the plurality of semiconductor wafers 3 mounted on the carrying holding member 40 with almost no space, and the plurality of semiconductor wafers 3 are cutout portions 3A.
It is arranged on the carrying holding member 40 so as to come close to the original shape with no gap.

【0013】さらに本発明においては、隙間調整部材3
0Aは、搬送用保持部材4に搭載された複数枚の半導体
ウエハ3の切欠き部3Aに共通して対向する対向面30
Aを有し、対向面30Aが複数枚の半導体ウエハ3の切
欠き部3Aとの間に所定間隔の隙間を形成するように反
応管30の内壁に配置されているようにした。
Further, in the present invention, the gap adjusting member 3
OA is a facing surface 30 that is commonly facing the cutout portions 3A of the plurality of semiconductor wafers 3 mounted on the transport holding member 4.
A, and the opposing surface 30A is arranged on the inner wall of the reaction tube 30 so as to form a gap at a predetermined interval between the facing surface 30A and the cutout portions 3A of the plurality of semiconductor wafers 3.

【0014】さらに本発明においては、一部に切欠き部
3Aを有する半導体ウエハ3を複数枚搭載した搬送用保
持部材4を反応管7内の所定位置に位置決めし、反応管
7の内壁と半導体ウエハ3との間に生じた隙間を通じて
半導体ウエハ3の表面に原料ガスを流し込むことにより
半導体ウエハ3の表面に薄膜を形成する薄膜形成装置に
おいて、半導体ウエハ3の切欠き部3Aの向きが揃わな
いように所定の枚数毎位置を変えて搬送保持手段4に複
数枚搭載し、反応管7の内壁と半導体ウエハ3との間に
生じた隙間を通る原料ガスの流れを半導体ウエハ3の全
周に亘つてほぼ均一にするようにした。
Further, in the present invention, the carrier holding member 4 having a plurality of semiconductor wafers 3 each having a notch portion 3A mounted therein is positioned at a predetermined position in the reaction tube 7 and the inner wall of the reaction tube 7 and the semiconductor In a thin film forming apparatus for forming a thin film on the surface of the semiconductor wafer 3 by pouring a source gas onto the surface of the semiconductor wafer 3 through a gap formed between the semiconductor wafer 3 and the wafer 3, the cutout portions 3A of the semiconductor wafer 3 are not aligned in the same direction. As described above, a plurality of sheets are mounted on the carrier holding means 4 while changing the position for each predetermined number of sheets, and the flow of the raw material gas through the gap formed between the inner wall of the reaction tube 7 and the semiconductor wafer 3 is distributed around the entire circumference of the semiconductor wafer 3. It was made to be almost uniform over the entire length.

【0015】[0015]

【作用】半導体ウエハ3を搬送用保持手段20に複数枚
搭載して反応管7内に収納したとき、搬送用保持手段2
0に設けた隙間調整部材21によつて半導体ウエハ3の
切欠き部3Aの付近の隙間をこの付近以外の隙間とほぼ
同一にして半導体ウエハ3の全周の隙間がほぼ均一にな
るようにしたことにより、半導体ウエハ3の外周を流れ
る原料ガスの流速が全周に亘つてほぼ均一になる薄膜形
成装置を実現できる。これにより半導体ウエハ3の表面
の成膜速度がほぼ均一になり、半導体ウエハ3の表面に
従来に比して一段と均一な厚さの薄膜を形成し得る。
When a plurality of semiconductor wafers 3 are mounted on the carrying holding means 20 and housed in the reaction tube 7, the carrying holding means 2 is provided.
The gap adjusting member 21 provided at 0 makes the gap in the vicinity of the cutout portion 3A of the semiconductor wafer 3 almost the same as the gap other than this vicinity so that the gap around the entire circumference of the semiconductor wafer 3 becomes substantially uniform. As a result, it is possible to realize a thin film forming apparatus in which the flow velocity of the source gas flowing on the outer circumference of the semiconductor wafer 3 is substantially uniform over the entire circumference. As a result, the film formation rate on the surface of the semiconductor wafer 3 becomes substantially uniform, and a thin film having a more uniform thickness can be formed on the surface of the semiconductor wafer 3 as compared with the conventional case.

【0016】[0016]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0017】図12との対応部分に同一符号を付して示
す図1において、20は全体として減圧CVD装置の反
応炉5に収納される石英ボートを示し、石英でなる流量
調整支柱21が上下1対のデイスク9及び10の間に支
柱11〜14と平行に架け渡されている。
In FIG. 1 in which parts corresponding to those in FIG. 12 are designated by the same reference numerals, numeral 20 indicates a quartz boat which is wholly housed in the reaction furnace 5 of the low pressure CVD apparatus, and a flow rate adjusting column 21 made of quartz is vertically arranged. It is bridged between a pair of disks 9 and 10 in parallel with the columns 11 to 14.

【0018】流量調整支柱21は、図2に示すようにデ
イスク9及び10の周辺部のうちウエハ3を挿入する側
9A及び10Aとは反対の側9B及び10Bの奥に取り
付けられている。また流量調整支柱21は、図3に示す
ように断面が三日月形状でなり、この三日月形状の平面
部21Aがウエハ3の挿入される側に向けられている。
これにより流量調整支柱21は、オリエンテーシヨンフ
ラツト3Aと対向したとき平面部21Aがオリエンテー
シヨンフラツト3Aと一定の間隔を保つようになされて
いる。
As shown in FIG. 2, the flow rate adjusting column 21 is attached to the back of the sides 9B and 10B of the peripheral portions of the disks 9 and 10 opposite to the sides 9A and 10A into which the wafer 3 is inserted. As shown in FIG. 3, the flow rate adjustment support column 21 has a crescent-shaped cross section, and the crescent-shaped flat surface portion 21A faces the side where the wafer 3 is inserted.
As a result, the flow rate adjusting column 21 is configured such that the flat surface portion 21A keeps a constant distance from the orientation flat 3A when facing the orientation flat 3A.

【0019】以上の構成において、複数枚のウエハ3に
薄膜を形成する場合、全てのウエハ3はオリエンテーシ
ヨンフラツト3Aを流量調整支柱21に向けて石英ボー
ト20に搭載され(図3)、この状態で図4に示すよう
に反応炉5の中に収納される。
In the above structure, when forming a thin film on a plurality of wafers 3, all the wafers 3 are mounted on the quartz boat 20 with the orientation flats 3A facing the flow rate adjusting columns 21 (FIG. 3). In this state, it is housed in the reaction furnace 5 as shown in FIG.

【0020】石英内管7の中においては石英ボート20
の流量調整支柱21がオリエンテーシヨンフラツト3A
の付近の反応ガスが通る隙間を従来の石英ボート4より
も一段と狭くしてこの付近以外の外周部分の隙間とほぼ
同一にする。これによりウエハ3の外周を流れる反応ガ
スの流速は全周に亘つてほぼ同一になり、ウエハ3の表
面には従来に比して一段と均一な厚さの薄膜が形成され
る。また反応ガスが流されているとき石英内管7の中で
石英ボート20は回転しない。
In the quartz inner tube 7, a quartz boat 20 is provided.
The flow rate adjustment support 21 is the orientation flat 3A.
The clearance through which the reaction gas passes is made narrower than that of the conventional quartz boat 4 so as to be substantially the same as the clearance in the outer peripheral portion other than this vicinity. As a result, the flow velocity of the reaction gas flowing on the outer circumference of the wafer 3 becomes substantially the same over the entire circumference, and a thin film having a more uniform thickness is formed on the surface of the wafer 3 as compared with the conventional case. Further, when the reaction gas is flowing, the quartz boat 20 does not rotate inside the quartz inner tube 7.

【0021】ここで薄膜の厚さの均一性Fは、最大膜厚
をMax、最小膜厚をMinとすると次式
Here, the uniformity F of the thickness of the thin film is expressed by the following equation when the maximum film thickness is Max and the minimum film thickness is Min.

【数1】 で表すことができる。従来の石英ボート4を用いたとき
の薄膜の均一性は±5%〜±10%程度であつた。これに
対して石英ボート20を用いるときの薄膜の均一性は±
5%以下となる。
[Equation 1] Can be expressed as The uniformity of the thin film when using the conventional quartz boat 4 was about ± 5% to ± 10%. On the other hand, the uniformity of the thin film when using the quartz boat 20 is ±
It will be 5% or less.

【0022】以上の構成によれば、ウエハ3を石英ボー
ト20に複数枚搭載して石英内管7の中に収納したと
き、石英ボート20に設けた流量調整支柱21によつて
オリエンテーシヨンフラツト3Aの付近の隙間をこの付
近以外の隙間とほぼ同一にしてウエハ3の全周の隙間が
ほぼ均一になるようにしたことにより、ウエハ3の外周
を流れる反応ガスの流速が全周に亘つてほぼ均一にな
る。これによりウエハ3の表面の成膜速度がほぼ均一に
なり、ウエハ3の表面に従来に比して一段と均一な厚さ
の薄膜を形成することができる。
According to the above construction, when a plurality of wafers 3 are mounted on the quartz boat 20 and housed in the quartz inner tube 7, the flow rate adjusting column 21 provided on the quartz boat 20 allows the orientation flare. By making the gap in the vicinity of the chamber 3A substantially the same as the gap other than this vicinity so that the gap in the entire circumference of the wafer 3 becomes substantially uniform, the flow velocity of the reaction gas flowing in the outer circumference of the wafer 3 becomes uniform in the entire circumference. Becomes almost uniform. As a result, the film forming rate on the surface of the wafer 3 becomes substantially uniform, and a thin film having a more uniform thickness can be formed on the surface of the wafer 3 as compared with the conventional case.

【0023】また反応ガスが流されているとき石英ボー
ト20を回転させる必要がなく、これにより反応炉5を
石英ボート4の回転機構部8の無い簡易な構成にするこ
とができる。さらに回転機構部8をなくすことにより反
応炉の中の気密の保持が従来に比して一段と容易にな
る。
Further, it is not necessary to rotate the quartz boat 20 while the reaction gas is flowing, and thus the reaction furnace 5 can have a simple structure without the rotation mechanism portion 8 of the quartz boat 4. Further, by eliminating the rotating mechanism portion 8, it becomes easier to maintain the airtightness in the reaction furnace as compared with the conventional case.

【0024】なお上述の実施例においては、オリエンテ
ーシヨンフラツト3Aの付近の反応ガスの流速を調整す
るために、石英ボート20に流量調整支柱21を設けた
場合について述べたが、本発明はこれに限らず、図5に
示すように石英内管30の内面のうちオリエンテーシヨ
ンフラツト3Aに対向する対向部30Aだけを平面形状
とし、これによりオリエンテーシヨンフラツト3Aの向
きを揃えた複数枚のウエハ3が石英内管30に収納され
たときのウエハ3の外周の隙間が均一になるようにして
も良い。この場合にもウエハ3の外周の反応ガスの流速
は全体的にほぼ均一になり上述と同様の効果を得ること
ができる。
In the above embodiment, the quartz boat 20 is provided with the flow rate adjusting column 21 in order to adjust the flow velocity of the reaction gas in the vicinity of the orientation flat 3A. However, the present invention is not limited to this. Not limited to this, as shown in FIG. 5, only the facing portion 30A of the inner surface of the quartz inner tube 30 that faces the orientation flat 3A has a planar shape, and the orientation flats 3A are aligned. The gaps on the outer circumference of the wafer 3 when the plurality of wafers 3 are housed in the quartz inner tube 30 may be made uniform. Also in this case, the flow velocity of the reaction gas on the outer periphery of the wafer 3 becomes substantially uniform as a whole, and the same effect as described above can be obtained.

【0025】また上述の実施例においては、オリエンテ
ーシヨンフラツト3Aの付近の反応ガスが通る隙間をこ
の付近以外の隙間とほぼ同一にするために、石英ボート
20に流量調整支柱21だけを設けた場合について述べ
たが、本発明はこれに限らず、図1〜図3との対応部分
に同一符号を付した図6〜図8に示すように、石英ボー
ト40の支柱41にスロツト16と同一間隔でオリエン
テーシヨンフラツト3Aを形成するために切除された三
日月形状の部分と同様の形状でなる補助板42を複数枚
取り付け、この補助板42の直線部42Aにオリエンテ
ーシヨンフラツト3Aを当接させてそれぞれのウエハ3
を石英ボート40に複数枚搭載することによつて、石英
内管7に収納された複数枚のウエハ3の外周の隙間が全
周に亘つてほぼ均一になるようにしても良い。この場合
にもウエハ3の周辺の反応ガスの流速は全周に亘つてほ
ぼ均一になり上述と同様の効果を得ることができる。
Further, in the above embodiment, the quartz boat 20 is provided with only the flow rate adjusting support 21 in order to make the clearance near the orientation flat 3A through which the reaction gas passes substantially the same as the clearance other than this vicinity. Although the present invention is not limited to this, the present invention is not limited to this, and as shown in FIGS. 6 to 8 in which parts corresponding to those in FIGS. A plurality of auxiliary plates 42 having the same shape as the crescent-shaped part cut out to form the orientation flats 3A at the same intervals are attached, and the straight parts 42A of the auxiliary plates 42 are attached to the orientation flats 3A. Abutting each wafer 3
By mounting a plurality of wafers 3 in the quartz boat 40, the outer peripheral gaps of the plurality of wafers 3 housed in the inner quartz tube 7 may be made substantially uniform over the entire circumference. Also in this case, the flow velocity of the reaction gas around the wafer 3 is substantially uniform over the entire circumference, and the same effect as described above can be obtained.

【0026】さらに上述の実施例においては、流量調整
支柱21が断面三日月形状でなる場合について述べた
が、本発明はこれに限らず、図3との対応部分に同一符
号を付した図9に示すように石英ボート50の流量調整
支柱51のうちオリエンテーシヨンフラツト3Aに対向
する対向部51Aが曲面形状でなる場合にも適用でき
る。
Furthermore, in the above-mentioned embodiment, the case where the flow rate adjusting support column 21 has a crescent-shaped cross section has been described, but the present invention is not limited to this, and FIG. 9 in which the same parts as in FIG. As shown, the present invention can be applied to the case where the facing portion 51A of the flow rate adjusting column 51 of the quartz boat 50 facing the orientation flat 3A has a curved shape.

【0027】さらに上述の実施例においては、石英ボー
ト20に流量調整支柱21を設ける場合について述べた
が、本発明はこれに限らず、図10に示すように、ウエ
ハ3を石英ボート4に複数枚搭載するときオリエンテー
シヨンフラツト3Aの向きを1枚毎に 180°反転させて
搭載し、この状態で石英ボート4を反応炉5の中に収納
するようにしても良い。この場合にもウエハ3の外周の
反応ガスの流速は全周に亘つてほぼ均一になり上述と同
様の効果を得ることができる。
Further, in the above-mentioned embodiment, the case where the flow rate adjusting column 21 is provided in the quartz boat 20 has been described, but the present invention is not limited to this, and as shown in FIG. It is also possible that the orientation of the orientation flats 3A is reversed 180 ° for each one when they are mounted, and the quartz boat 4 is housed in the reaction furnace 5 in this state. Also in this case, the flow velocity of the reaction gas on the outer circumference of the wafer 3 is substantially uniform over the entire circumference, and the same effect as described above can be obtained.

【0028】さらに上述の実施例においては、本発明を
減圧CVD装置に適用した場合について述べたが、本発
明はこれに限らず、ウエハを搬送用保持手段に複数枚搭
載した状態で反応炉の中に収納し、この反応炉の中に原
料ガスを流すことによつてそれぞれのウエハに薄膜を形
成するCVD装置に広く適用できる。
Further, in the above-mentioned embodiment, the case where the present invention is applied to the low pressure CVD apparatus has been described. However, the present invention is not limited to this, and the reaction furnace of the reaction furnace in the state where a plurality of wafers are mounted on the carrying holding means is described. It can be widely applied to a CVD apparatus in which a thin film is formed on each wafer by storing it inside and flowing a raw material gas into this reaction furnace.

【0029】[0029]

【発明の効果】上述のように本発明によれば、半導体ウ
エハを搬送保持手段に複数枚搭載して反応管内に収納し
たとき、搬送用保持手段に設けた隙間調整部材によつて
半導体ウエハの切欠き部の付近の隙間をこの付近以外の
隙間とほぼ同一にして、半導体ウエハの全周の隙間がほ
ぼ均一になるようにしたことにより、半導体ウエハの外
周を流れる原料ガスの流速が全周に亘つてほぼ均一にな
る薄膜形成装置を実現できる。これにより半導体ウエハ
の表面の成膜速度がほぼ均一になり、半導体ウエハの表
面に従来に比して一段と均一な厚さの薄膜を形成し得
る。
As described above, according to the present invention, when a plurality of semiconductor wafers are mounted on the carrying / holding means and housed in the reaction tube, the gap adjusting member provided on the carrying / holding means serves to secure the semiconductor wafers. By making the gap near the cutouts almost the same as the gaps other than this neighborhood so that the gaps around the entire circumference of the semiconductor wafer are substantially uniform, the flow velocity of the raw material gas flowing around the circumference of the semiconductor wafer becomes equal to the circumference. It is possible to realize a thin film forming apparatus that is substantially uniform over the entire length. As a result, the film forming rate on the surface of the semiconductor wafer becomes substantially uniform, and a thin film having a more uniform thickness can be formed on the surface of the semiconductor wafer as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による薄膜形成装置の一実施例による石
英ボートを示す正面図である。
FIG. 1 is a front view showing a quartz boat according to an embodiment of a thin film forming apparatus according to the present invention.

【図2】その側面図である。FIG. 2 is a side view thereof.

【図3】石英ボートの説明に供する断面図である。FIG. 3 is a sectional view for explaining a quartz boat.

【図4】石英内管の中に収納されたウエハと周辺との隙
間の状態の説明に供する断面図である。
FIG. 4 is a cross-sectional view for explaining a state of a gap between a wafer housed in a quartz inner tube and a periphery thereof.

【図5】他の実施例による石英内管の中に収納されたウ
エハと周辺との隙間の状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state of a gap between a wafer housed in a quartz inner tube and its periphery according to another embodiment.

【図6】他の実施例による石英ボートを示す正面図であ
る。
FIG. 6 is a front view showing a quartz boat according to another embodiment.

【図7】その側面図である。FIG. 7 is a side view thereof.

【図8】石英ボートをVIVI断面より見た断面図である。FIG. 8 is a cross-sectional view of the quartz boat viewed from the VIVI cross section.

【図9】他の実施例による石英ボートを示す断面図であ
る。
FIG. 9 is a sectional view showing a quartz boat according to another embodiment.

【図10】他の実施例によるウエハの搭載状態を示す略
線図である。
FIG. 10 is a schematic diagram showing a mounted state of a wafer according to another embodiment.

【図11】CVD装置を示す略線図である。FIG. 11 is a schematic diagram showing a CVD apparatus.

【図12】CVD装置の中の反応炉の説明に供する斜視
図である。
FIG. 12 is a perspective view for explaining a reaction furnace in a CVD apparatus.

【図13】従来の石英ボートの説明に供する正面図であ
る。
FIG. 13 is a front view for explaining a conventional quartz boat.

【図14】その側面図である。FIG. 14 is a side view thereof.

【図15】石英ボートをXIII XIII 断面よりみた断面
図である。
FIG. 15 is a cross-sectional view of the quartz boat viewed from the XIII XIII cross section.

【図16】石英内管の中に収納されたウエハと周辺との
従来の隙間の状態を示す断面図である。
FIG. 16 is a cross-sectional view showing a state of a conventional gap between a wafer housed in a quartz inner tube and its periphery.

【符号の説明】[Explanation of symbols]

1……減圧CVD装置、2……ヒータ部、3……ウエ
ハ、3A……オリエンテーシヨンフラツト、4、20、
40、50……石英ボート、5……反応炉、6……石英
外管、7、30……石英内管、8……回転機構部、9、
10……デイスク、11〜14……支柱、15……補強
リブ、16……スロツト、21、51……流量調整支
柱、21A……平面部、30A、51A……対向部、4
1……支柱、42……補助板、42A……直線部。
1 ... Low pressure CVD apparatus, 2 ... Heater section, 3 ... Wafer, 3A ... Orientation flat, 4, 20,
40, 50 ... Quartz boat, 5 ... Reactor, 6 ... Quartz outer tube, 7, 30 ... Quartz inner tube, 8 ... Rotation mechanism section, 9,
10 ... Disk, 11-14 ... Strut, 15 ... Reinforcing rib, 16 ... Slot, 21, 51 ... Flow rate adjusting strut, 21A ... Plane section, 30A, 51A ... Opposing section, 4
1 ... Support, 42 ... Auxiliary plate, 42A ... Straight part.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一部に切欠き部を有する半導体ウエハを複
数枚搭載した搬送用保持部材を反応管内の所定位置に位
置決めし、上記反応管の内壁と上記半導体ウエハとの間
に生じた隙間を通じて上記半導体ウエハの表面に原料ガ
スを流し込むことにより上記半導体ウエハの表面に薄膜
を形成する薄膜形成装置において、 上記半導体ウエハの切欠き部と上記反応管の内壁との間
に生じた隙間に隙間調整部材を配置し、上記半導体ウエ
ハの外周と上記反応管の内壁との隙間を全周に亘つてほ
ぼ均一にすることを特徴とする薄膜形成装置。
1. A gap formed between an inner wall of the reaction tube and the semiconductor wafer, in which a carrying holding member, on which a plurality of semiconductor wafers each having a cutout portion are mounted, is positioned at a predetermined position in the reaction tube. In a thin film forming apparatus for forming a thin film on the surface of the semiconductor wafer by pouring a raw material gas onto the surface of the semiconductor wafer through a through hole, a gap is formed between the cutout portion of the semiconductor wafer and the inner wall of the reaction tube. An apparatus for forming a thin film, wherein an adjusting member is arranged to make a gap between the outer circumference of the semiconductor wafer and the inner wall of the reaction tube substantially uniform over the entire circumference.
【請求項2】上記隙間調整部材は、 上記搬送用保持部材に搭載された複数枚の上記半導体ウ
エハの切欠き部に共通して対向する対向面を有する棒状
の部材でなり、当該対向面が複数枚の上記半導体ウエハ
の切欠き部との間に所定間隔の隙間を形成するように上
記搬送用保持部材に配置されていることを特徴とする請
求項1に記載の薄膜形成装置。
2. The gap adjusting member is a rod-shaped member having a facing surface that faces the notches of the plurality of semiconductor wafers mounted on the carrying holding member in common, and the facing surface has a facing surface. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is arranged on the carrying holding member so as to form a gap at a predetermined interval between the cutout portions of the plurality of semiconductor wafers.
【請求項3】上記隙間調整部材は、 上記搬送用保持部材に搭載された複数枚の上記半導体ウ
エハのそれぞれの切欠き部にほぼ隙間なく当接して、複
数枚の上記半導体ウエハをそれぞれ上記切欠き部が無い
元の形状に近づけるように上記搬送用保持部材に配置さ
れていることを特徴とする請求項1に記載の薄膜形成装
置。
3. The gap adjusting member is brought into contact with each notch portion of each of the plurality of semiconductor wafers mounted on the carrying holding member with substantially no gap, thereby cutting each of the plurality of semiconductor wafers. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is arranged on the carrying holding member so as to be close to the original shape having no notch.
【請求項4】上記隙間調整部材は、 上記搬送用保持部材に搭載された複数枚の上記半導体ウ
エハの切欠き部に共通して対向する対向面を有し、当該
対向面が複数枚の上記半導体ウエハの切欠き部との間に
所定間隔の隙間を形成するように上記反応管の内壁に配
置されていることを特徴とする請求項1に記載の薄膜形
成装置。
4. The gap adjusting member has an opposing surface that is commonly opposed to the cutout portions of the plurality of semiconductor wafers mounted on the carrying holding member, and the opposing surface has a plurality of the opposing surfaces. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is arranged on the inner wall of the reaction tube so as to form a predetermined gap between the semiconductor wafer and the cutout portion.
【請求項5】一部に切欠き部を有する半導体ウエハを複
数枚搭載した搬送用保持部材を反応管内の所定位置に位
置決めし、上記反応管の内壁と上記半導体ウエハとの間
に生じた隙間を通じて上記半導体ウエハの表面に原料ガ
スを流し込むことにより上記半導体ウエハの表面に薄膜
を形成する薄膜形成装置において、 上記半導体ウエハの切欠き部の向きが揃わないように所
定の枚数毎位置を変えて上記搬送保持手段に複数枚搭載
し、上記反応管の内壁と上記半導体ウエハとの間に生じ
た隙間を通る上記原料ガスの流れを上記半導体ウエハの
全周に亘つてほぼ均一にすることを特徴とする薄膜形成
装置。
5. A gap formed between an inner wall of the reaction tube and the semiconductor wafer by positioning a carrying holding member on which a plurality of semiconductor wafers each having a cutout portion are mounted at a predetermined position in the reaction tube. In a thin film forming apparatus for forming a thin film on the surface of the semiconductor wafer by injecting a raw material gas onto the surface of the semiconductor wafer through a predetermined number of sheets so that the cutout portions of the semiconductor wafer are not aligned in the same direction. A plurality of the carrier holding means are mounted to make the flow of the source gas through the gap formed between the inner wall of the reaction tube and the semiconductor wafer substantially uniform over the entire circumference of the semiconductor wafer. Thin film forming apparatus.
JP20299193A 1993-07-23 1993-07-23 Thin film forming device Pending JPH0737814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20299193A JPH0737814A (en) 1993-07-23 1993-07-23 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20299193A JPH0737814A (en) 1993-07-23 1993-07-23 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH0737814A true JPH0737814A (en) 1995-02-07

Family

ID=16466525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20299193A Pending JPH0737814A (en) 1993-07-23 1993-07-23 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH0737814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794416A (en) * 1993-09-21 1995-04-07 Nec Corp Chemical vapor deposition device
JP2007221000A (en) * 2006-02-17 2007-08-30 Hitachi Kokusai Electric Inc Substrate processing apparatus
KR20130128815A (en) * 2012-05-18 2013-11-27 엘지이노텍 주식회사 Susceptor for cvd reactor
CN108695138A (en) * 2017-03-29 2018-10-23 株式会社日立国际电气 The manufacturing method of substrate support, substrate processing device and semiconductor devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794416A (en) * 1993-09-21 1995-04-07 Nec Corp Chemical vapor deposition device
JP2007221000A (en) * 2006-02-17 2007-08-30 Hitachi Kokusai Electric Inc Substrate processing apparatus
KR20130128815A (en) * 2012-05-18 2013-11-27 엘지이노텍 주식회사 Susceptor for cvd reactor
CN108695138A (en) * 2017-03-29 2018-10-23 株式会社日立国际电气 The manufacturing method of substrate support, substrate processing device and semiconductor devices

Similar Documents

Publication Publication Date Title
US8066815B2 (en) Multi-workpiece processing chamber
US5194401A (en) Thermally processing semiconductor wafers at non-ambient pressures
CN100435312C (en) Substrate treatment apparatus, substrate holding device, and semiconductor device manufacturing method
KR20190035548A (en) Substrate processing apparatus, reaction tube, semiconductor device manufacturing method, and recording medium
KR20140118829A (en) Film deposition apparatus
US20070148607A1 (en) Vertical boat and vertical heat processing apparatus for semiconductor process
JP5800972B1 (en) Substrate processing apparatus, semiconductor device manufacturing method, gas supply unit, cartridge head, and program
TWI707384B (en) Film forming device
CN102290366A (en) Support structure and processing apparatus
JP2010135510A (en) Depositing device
KR102205381B1 (en) Substrate treatment apparatus
JPH0737814A (en) Thin film forming device
JP2018085392A (en) Substrate processing device
JPH07100861B2 (en) Method and apparatus for performing chemical vapor deposition using an axisymmetric flow of gas
JP6071537B2 (en) Deposition method
JP2008166321A (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR20050060161A (en) Semiconductor manufacturing system for high temperature processes
JP2007035775A (en) Substrate processing apparatus
JP2996355B2 (en) Vertical storage jig
JPH06349738A (en) Vertical low-pressure cvd device
JPH0265122A (en) Semiconductor substrate support boat
JPH04154117A (en) Low pressure cvd system
JPH0193130A (en) Vertical furnace
KR20020027974A (en) Boat of CVD apparatus having loading plate
JPH11102903A (en) Method and equipment for thin film forming and method for manufacturing semiconductor device